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Abstract
Monoclonal antibodies against soluble targets are often rich and include the sampling of multiple analytes over a lengthy

period of time. Predictive models built on data obtained in such studies can be useful in all drug development phases. If

adequate model predictions can be maintained with a reduced design (e.g. fewer samples or shorter duration) the use of

such designs may be advocated. The effect of reducing and optimizing a rich design based on a published study for

Omalizumab (OMA) was evaluated as an example. OMA pharmacokinetics were characterized using a target-mediated

drug disposition model considering the binding of OMA to free IgE and the subsequent formation of an OMA–IgE

complex. The performance of the reduced and optimized designs was evaluated with respect to: efficiency, parameter

uncertainty and predictions of free target. It was possible to reduce the number of samples in the study by 30% while still

maintaining an efficiency of almost 90%. A reduction in sampling duration by two-thirds resulted in an efficiency of 75%.

Omission of any analyte measurement or a reduction of the number of dose levels was detrimental to the efficiency of the

designs (efficiency B 51%). However, other metrics were, in some cases, relatively unaffected, showing that multiple

metrics may be needed to obtain balanced assessments of design performance.

Keywords Optimal design � Target mediated drug disposition � Monoclonal antibodies � Sampling time optimization �
Model-based

Introduction

Monoclonal antibodies (mAbs) are increasingly present in

pharmaceutical development pipelines [1, 2]. As a result,

methods to characterize mAb disposition have received a

great deal of attention and pharmacometric models

describing the pharmacokinetics (PK) and pharmacody-

namics (PD) of mAbs are frequently published [3–5].

Many mAbs display target-mediated drug disposition

(TMDD), arising when binding to a target affects the dis-

position of the mAb. Such interactions may result in non-

linear PK at low drug concentrations and linear PK at

higher concentrations due to saturation of target-mediated

clearance pathways [6, 7]. Additionally, for mAbs against

soluble targets, elimination may depend on the nature of

the formed antibody–target complex, which may be cleared

differently than the unbound mAb [8].

Pharmacometric models have been used to describe

distribution, binding and elimination of mAbs and the

general TMDD model offers a semi-mechanistic interpre-

tation of the disposition of mAbs [9–11]. This model

describes the formation of a drug–target complex and is

often unidentifiable since samples may not be available for

all analytes described by the system or at time-points

required for accurate parameter estimation. Additionally,

rate parameters in the model can vary greatly in magnitude,

where drug elimination can take weeks while drug–target

binding may occur within minutes, causing model insta-

bility. To ensure identifiability and avoid model instability,

approximations of the general TMDD model have been

suggested, e.g. the quasi-equilibrium (QE) approximation,

assuming rapid equilibrium between drug, receptor and

drug–receptor complex making the TMDD model’s
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reliance on rich information in the transition phase less

critical for identifiable parameter estimates [12, 13]. These

assumptions can be valid when association and dissociation

of the drug and target are rapid compared to other PK

processes. When the internalization and degradation of the

drug–target complex is equal to the elimination of the

target or when no low dose information is available, the

TMDD model approximations can be further simplified to

a Michaelis–Menten (MM) approximation for easier esti-

mation of model parameters [14].

Optimal design (OD) methodology for nonlinear mixed

effects models has been developed to maximize the infor-

mation gathering potential of experiments in drug devel-

opment, to reduce the number of samples required for

accurate parameter estimation and to generally optimize

designs with respect to sampling time points, doses to be

administered and other design variables [15–17]. Model-

based OD is not limited to the optimization of clinical trial

designs of different phases. OD can also be used in most

development phases for mAbs and other biologics,

including preclinical development, starting with the opti-

mization of the drug properties, i.e. identifying the optimal

binding affinity to the pharmacological target to identifying

the optimal administration route/site to optimization of the

trial properties as demonstrated herein [18]. Further, OD is

a flexible methodology that can be performed on an indi-

vidual (fixed effect) or population (mixed effect) level

where the latter considers parameters for the characteri-

zation of variability, such as inter-individual variability.

Population OD is perhaps more relevant in a clinical set-

ting, where several patients in several groups are given an

intervention [17]. Using OD, it may be possible to reduce

rich study designs for mAbs without significantly reducing

the amount of information collected or negatively affecting

model performance [17, 19, 20]. Further, if the same

decisions regarding drug development can be made with

less extensive studies, then the use of such studies can

easily be advocated on ethical and economic grounds.

Study designs for mAbs against soluble targets are often

rich and include the sampling of multiple analytes at a

number of different dose levels and for a lengthy period of

time. This work was performed to determine whether a

reduction (fewer samples, shorter duration, fewer dosing

levels and fewer measured analytes) and optimization of

these rich designs used to study biological drugs charac-

terized by a TMDD model could give adequate information

for drug understanding and development decision making.

To investigate these questions, we utilize a published

rich study design and TMDD model describing the QE

approximation applied for omalizumab (OMA), an anti-

immunoglobulin E (IgE) antibody [21, 22]. The initial rich

design and model were used to determine the consequences

of reducing and optimizing the study design on design

efficiency, parameter precision, precision of free target

level predictions at certain time-points and on a hypo-

thetical go/no-go decision regarding dose selection.

Methods

This work serves as a general illustration of the potential of

reducing and optimizing study designs for data character-

ized by a TMDD model in any stage of drug development.

Further, we illustrate the use of multiple metrics for design

evaluation. Thus, the goal of this work is not focused

particularly on OMA. The model, parameter estimates and

a reference study design previously published used in this

work function as examples [21]. This reference study

design and several alternative designs were evaluated and

optimized.

Population model

The model used in this work is a simplified version of the

QE approximation describing the binding of OMA to IgE

and the formation of an OMA–IgE complex. The model

was simplified by removing covariate relationships (body

weight and baseline IgE levels) and correlation between

parameters. A detailed model description and parameter

values are provided as supplementary information (Sup-

plementary material Appendix 1).

Reference and reduced study designs

The reference study design in this work (illustrated in

Fig. 1) was a single-dose clinical study in which 48 indi-

viduals were allocated to one of four dose groups (75, 150,

300 and 375 mg) receiving a subcutaneous (SC) dose of

OMA. Thirteen blood samples were collected at 0, 0.5, 1,

2, 4, 7, 10, 14, 28, 42, 56, 70 and 84 days after adminis-

tration and each sample was analysed for COMA,T, CIGE,F

and CIGE,T resulting in a total of 39 observations per

individual. The data collected in accordance with the ref-

erence study design was used for model building and val-

idation in the work by Hayashi et al. [21].

The reference study design was reduced and optimized

to answer the following questions;

1. What is the effect of sampling duration given the time

scale of OMA half-life (18.2 days) considering a

maximum sampling times of 2, 14, 28 or 84 days?

2. What is the effect of reducing the total number of

sampling times?

3. What is the effect of reducing the number of dose

groups in addition to the number of samples?

4. What is the effect of not sampling one of the analytes?
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Design optimization

The R package PopED (version 0.2.0) was used to perform

the optimizations of the evaluated study designs (Table 1)

[23]. Optimization speed was increased (* 2 fold) by

writing the model functions in the C language and com-

piling into a dynamically linked library file [24].

When optimizing designs, PopED maximizes the Fisher

Information Matrix (FIM) [15]. According to the Cramer-

Rao inequality, maximizing the FIM with respect to design

variables results in a lower bound of the estimate of the

variance–covariance matrix for model parameter estimates:

COV H;Xð Þ�FIMðH;XÞ�1

where H are population parameters in the model and X are

design variables. Maximizing the determinant of the FIM,

known as the D-optimal criterion, minimizes the expected

variance–covariance matrix of model parameters H fit to

data from design X. The reduced FIM was used assuming

no correlation between the covariance matrix of fixed and

random effects parameters [23]. Each design was opti-

mized using a D-optimal criterion with respect to sampling

times. Sample times were allowed to vary between day 0

and the end of the experiment. A Line Search (LS) opti-

mization algorithm was used, which discretized the

allowed sampling region. A grid size of 84 in the sampling

time optimizations was used ensuring that a sampling time

could be selected every day for the entire time span of the

reference study design. Clustering of sample times was

allowed during the optimizations [25]. The optimized

designs were compared to their non-optimized counterparts

to evaluate the effects of optimization.

Evaluation of designs

Efficiency

D-efficiency was used to compare investigated designs to

the original trial design, defined as [26]:

D-efficiency ¼ FIMj j
FIM�j j

� �1=p

where p is the number of estimated parameters in the model

and * denotes the reference design. Efficiency is a metric of

the amount of information expected in a trial design when

compared with a reference design. For example, a com-

peting design with an efficiency of 0.5 indicates that a trial

would need to be replicated twice (or the number of sub-

jects doubled) in order to achieve parameter estimates with

equal precision as those obtained in a trial with a reference

design. Additionally, efficiency can be interpreted as the

number of individuals needed in an optimized or evaluated

design to match a reference design.

Parameter precision

The stochastic simulation and estimation (SSE) function-

ality in Perl-speaks-NONMEM (PsN) was used to
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Fig. 1 Population predictions of COMA,T (left panel), CIGE,F (middle panel) and CIGE,T (right panel) versus time at four different dose levels (75,

150, 300, 375 mg). The points indicate the reference study design sampling times
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determine the parameter precision resulting from the study

designs [27]. One hundred datasets were simulated and

estimated from the reference model but using the different

trial designs, resulting in 100 parameter vectors from each

design. These vectors were used to calculate the parameter

uncertainty for each design as relative standard error

(%RSE). Overall parameter precision was defined as the

average %RSE of all the parameters in the model (fixed

and random effect parameters) for each competing design,

which was compared to the same value calculated for the

reference study design. All simulations and estimations

were run in NONMEM version 7.3 [28]. Similar results

could, most likely, also be obtained via the FIM without

simulation [29]. In this work we investigate parameter

uncertainty via SSE to investigate realized uncertainty

(instead of asymptotic uncertainty) and to avoid assump-

tions about non-biased parameter estimates. This should

further differentiate this design evolution method from the

efficiency metric discussed above.

Population prediction areas

To investigate the effect of parameter uncertainty on pre-

dictions of the typical individual from the model, ninety-

five percent population prediction areas (PPA) were gen-

erated for CIGE,F population predictions versus time for

each design investigated. For each parameter vector cre-

ated in the SSE described above, CIGE,F population pre-

dictions for the time points of the initial full sampling

schedule were simulated given a dose of 150 mg. For each

time-point the upper 97.5th and lower 2.5th percentiles

were obtained resulting in a 95% prediction interval. The

sum of the resulting 95% prediction intervals were then

used to calculated the PPAs for the time span 0–84 days.

Additionally, a PPA ratio (PPAR) was computed by

dividing the PPA of the reference study design by the PPA

of the competing designs. Ratios below 1 indicate PPAs

that are wider with competing designs. In addition, specific

attention was paid to the prediction at 14 days post-dose,

considering that this is the time of subsequent OMA

administration when OMA is dosed every 2nd week. The

treatment goal of OMA is to maintain CIGE,F beneath a

certain threshold concentration, therefore, it may be

Table 1 The initial sampling schedule for the reference study from Hayashi et al. [21] and for evaluated reduced designs

Design Description Total number of

samples

Sampling times (days) Observations/

individual

Dose

levelsa

Reference design

1 Reference design 1872 0, 0.5, 1, 2, 4, 7, 10, 14, 28, 42, 56, 70, 84 39 4

Reducing sampling duration

2 Sampling for 2 days 1296 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 27 4

3 Sampling for 14 days 1296 0, 0.5, 1, 2, 4, 6, 8, 10, 14 27 4

4 Sampling for 28 days 1296 0, 0.5, 1, 2, 4, 7, 10, 14, 28 27 4

Removal of dose groups

5 Removing 2 dose groupsb 936 0, 0.5, 1, 2, 4, 7, 10, 14, 28, 42, 56, 70, 84 39 2

Removal of samples

6 Minus 4 samples per analyte 1296 0, 0.5, 1, 2, 4, 7, 10, 14, 28c 27 4

7 Minus 6 samples per analyte 1008 0, 0.5, 1, 4, 7, 28, 84 21 4

8 Minus 8 samples per analyte 720 0, 0.5, 7, 14, 84 15 4

Removal of an analyte

9 No total IgE sampling 1248 0, 0.5, 1, 2, 4, 7, 10, 14, 28, 42, 56, 70, 84 26 4

10 No free IgE sampling 1248 0, 0.5, 1, 2, 4, 7, 10, 14, 28, 42, 56, 70, 84 26 4

11 No total omalizumab sampling 1248 0, 0.5, 1, 2, 4, 7, 10, 14, 28, 42, 56, 70, 84 26 4

12 No total IgE minus 8 samples per

remaining analyte

480 0, 0.5, 1, 4, 84 10 4

The designs are grouped by the aspect explored for influence on performance: sampling duration, number of dose groups, number of samples and

analyte omission
aThe dose levels were 75, 150, 300 and 375 mg
bThe dose levels were 75 and 150 mg
cDuring optimization, the final sampling time was permitted to exceed 28 days, in contrast to design 3 where the final sampling time was fixed at

28 days
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important to maintain a tight prediction interval corre-

sponding to the time-point of interest (in this case 14 days).

Go/no-go decision

A, potentially, more understandable design performance

metric was derived as the probability of making an incor-

rect decision with regards to dose-selection utilizing the

trial designs and reference model. First, the dose (true

dose) resulting in a 95% reduction of CIGE,F from the

baseline concentration at 14 days (corresponds to a

reduction from 422.82 ng/mL to the clinically relevant

concentration of 21 ng/mL) was calculated using the ref-

erence parameter estimates (true parameters) [21]. Sec-

ondly, using the SSE parameter vectors, derived above, the

population prediction of CIGE,F at 14 days was computed

for 300 doses ranging from 1.5 to 450 mg. If a prediction

for a dose higher than the true dose resulted in CIGE,F-

[ 21 ng/mL it was defined as an incorrect decision; the

same was true when a prediction for a dose lower than the

true dose resulted in CIGE,F\ 21 ng/mL (Fig. 2). Finally,

for each design, the number of incorrect decisions was

divided by the total number of CIGE,F predictions resulting

in the probability of an incorrect go/no-go decision.

Results

Table 2 presents the efficiency, parameter precision and

PPARs for the competing designs when evaluated and

when optimized. Optimizations took between 53 min and

14 h with the selected settings.

Efficiency

All reported efficiencies are a result of the comparison with

the reference study design. Keeping the reference study

design duration but reducing the number of samples from

1872 (design 1) to 1296 (designs 6 and 6O) and to 1008

(designs 7 and 7O) resulted in efficiencies of 87 and 76%,

respectively, for optimized designs. Reducing the number

of dose groups from four to two (including the 75 mg and

150 mg dose groups) resulted in an efficiency of 51% when

optimized (design 5O).

Efficiency of the designs increased with increasing

duration of sampling (while the number of samples was

kept at 1296). The efficiency of designs 2 and 2O (opti-

mized) were 7 and 11%, respectively, where sampling was

only allowed for up to 2 days. When the final sampling

time was extended to 14 days the efficiency was 46%

(design 3) and 53% when optimized (design 3O). Further

increasing the maximum sampling time to 28 days

improved the efficiency further (67% for design 4 and 75%
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Fig. 2 Population CIGE,F

predictions at 14 days versus

dose. This is a schematic

depiction of how incorrect

decisions were defined. The

black curve is population CIGE,F

based on the true parameter

estimates. The grey shaded

region around the line depicts

the 95% CIGE,F confidence

interval resulting from the same

population CIGE,F predictions

based on estimated parameter

vectors (in this case derived

from an SSE). The black

vertical line represents the true

dose (277.5 mg) resulting in a

95% CIGE,F reduction. A dose

lower than the true dose

yielding a CIGE,F reduction

below 95% or a dose higher

than the true dose yielding a

CIGE,F reduction above 95% was

defined as an incorrect decision

(shown by the red shaded areas)
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for the same design when optimized, design 4O). Effi-

ciency improved to 87% when the maximum sampling

duration was extended to 84 days and the design was

optimized (design 6O). Before optimization designs 4 and

6 were identical, but differences were seen during opti-

mization as the maximum sampling time was allowed to be

larger than 28 days in design 6.

Designs 9O, 10O and 11O omitted CIGE,T, CIGE,F or

COMA,T measurements entirely, respectively. None of the

designs resulted in efficiency that was[ 45% and slightly

improved by optimization. Reducing the number of sam-

ples per analyte from 13 to 5 and omitting CIGE,T

measurements entirely resulted in an efficiency of 31%

(design 12).

Parameter precision

In line with the efficiency results, the average estimated

%RSE increased with decreasing sampling duration. When

sampling was allowed over 2 days (designs 2 and 2O) the

design resulted in an average parameter %RSE in excess of

1000%. This average value was influenced by the %RSE of

OMA clearance (CLOMA) and complex clearance

(CLCOMP) and their associated inter-individual variability

Table 2 Average estimated relative standard error (%RSE), effi-

ciency and population prediction area ratios (PPAR) for each of the

evaluated designs grouped by the aspects explored for influence on

performance: sampling duration, number of dose groups, number of

samples and analyte omission

Design Description Total number

of samples

Sampling times (days) Average

estimated %RSE

Efficiency

(%)

PPAR

Reference

1 Reference 1872 0 0.5 1 2 4 7 10 14 28 42 56 70 84 14 100 1.00

1O 1 Optimized 1872 0 0 0.5 1 11 11 11 11 11 11 46 71 84 13 104 1.11

Reducing sampling duration

2 Sampling for 48 h 1296 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 [1900 7 0.08

2O 2 Optimized 1296 0 0.14 0.14 0.81 0.81 2 2 2 2 [1600 11 0.08

3 Sampling for

14 days

1296 0 0.5 1 2 4 6 8 10 14 27 46 0.39

3O 3 Optimized 0 0.17 4.89 5.06 5.23 14 14 14 14 22 53 0.61

4 Sampling for

28 days

1296 0 0.5 1 2 4 7 10 14 28 18 67 0.74

4O 4 Optimized 1296 0 0.33 7.67 7.67 7.67 7.67 28 28 28 17 75 0.80

Removal of dose groups

5 2 dose groups

removed

936 0 0.5 1 2 4 7 10 14 28 42 56 70 84 20 49 0.61

5O 5 Optimized 936 0 0 0.5 1 10 10 10 10 10 40 40 72 84 20 51 0.62

Removal of samples

6 Minus 4 samples 1296 0 0.5 1 2 4 7 10 14 28 18 67 0.74

6O 6 Optimized 1296 0 24 24 11 11 11 11 47 83 16 87 0.85

7 Minus 6 samples 1008 0 0.5 1 4 7 28 84 16 73 0.93

7O 7 Optimized 1008 0 1 11 11 11 46 83 16 76 0.96

8 Minus 8 samples 720 0 0.5 7 28 84 18 62 0.89

8O 8 Optimized 720 0 0.5 12 12 72 18 63 0.94

Removal of an analyte

9 No total IgE 1248 0 0.5 1 2 4 7 10 14 28 42 56 70 84 18 42 0.90

9O 9 Optimized 1248 0 0 0.5 1 1 11 11 11 11 36 40 74 84 18 45 0.86

10 No free IgE 1248 0 0.5 1 2 4 7 10 14 28 42 56 70 84 22 36 0.36

10O 10 Optimized 1248 0 0 0.5 1 11 11 11 11 46 46 73 84 84 21 38 0.40

11 No total omalizumab 1248 0 0.5 1 2 4 7 10 14 28 42 56 70 84 23 33 0.83

11O 11 Optimized 1248 0 0 0.5 1 1 12 13 13 13 56 72 72 84 24 34 0.92

12 No total IgE minus 8

samples per

remaining analyte

480 0 0.5 1 4 84 43 31 0.73

12O 12 Optimized 480 0 0.5 10 39 83 23 38 0.83
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(IIV) parameters; calculating the average %RSE without

these parameters resulted in an average %RSE\ 30%.

Having up to 8 fewer samples per individual (designs 8

and 8O) than the reference study design had a small impact

on the average %RSE (increased by\ 4% compared with

the reference study design). Parameter imprecision

increased by approximately 6 percentage points when two

dose groups were omitted.

Average %RSE was\ 25% when omitting measure-

ments of CIGE,T, CIGE,F or COMA,T. However, the %RSE for

the fixed effect parameter a was[ 100% in designs 10 and

10O, where CIGE,F was omitted. The other designs omitting

analytes entirely did not have any fixed effect parameter

%RSE[ 30% when optimized. Design 12 featuring 5

measurements of COMA,T and CIGE,F, respectively, resulted

in an estimated average %RSE of 43.3% and decreased to

approximately 23% by optimization.

Population prediction areas

The majority of the evaluated designs had a PPAR between

0.8 and 1 indicating a prediction area up to 25% larger than

the reference study design (Table 2, Fig. 3). Designs 2

(sampling for 2 days), 3 (sampling for 14 days) and 10 (no

CIGE,F measured), resulted in a PPA that was considerably

larger than the reference study design (PPAR of 0.08, 0.61

and 0.40, respectively for optimized designs). PPARs

improved drastically with optimization of Design 3. Design

10 had an unexpectedly large PPA, likely traced back to the

parameter uncertainty of a, described above. At 14 days,

the population predictions of CIGE,F resulting from all

designs excluding designs 2 and ten were relatively tight

(Fig. 3).

Go/no-go decision

The true dose resulting in a 95% reduction of population

predictions of CIGE,F from baseline at 14 days was

277.5 mg. All optimized designs apart from designs 2O

and 10O resulted in an erroneous decision in less than 5%

of the simulations. Designs 2O and 10O resulted in 21.2

and 23.0% erroneous decisions, respectively. With

increasing dose the probability of making an incorrect

decision increased for all designs until it reached a maxi-

mum around the true dose and then decreased again

(Fig. 4). Given a symmetric parameter uncertainty distri-

bution and an unbiased design, a 50% probability of

making a correct decision at the true dose is the best that

can be achieved due to the way incorrect decisions are

defined (CIGE,F predictions above the reduction threshold at

the true dose is considered to be incorrect but CIGE,F pre-

dictions below the threshold at the true dose are not con-

sidered incorrect).
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Fig. 3 Free IgE concentration population predictions versus time for

each of the optimized designs (upper panels) and at 14 days post-dose

for optimized and non-optimized designs (lower panels), following a

150 mg dose. In the top panel the central line is the median

prediction, and the shaded area illustrates the 95% population

prediction areas (PPA). In the bottom panel the black horizontal line

is the median prediction and the boxes represent the 95% prediction

interval

Journal of Pharmacokinetics and Pharmacodynamics (2018) 45:637–647 643

123



Discussion

Sampling schedules for mAb studies are often long due to

the typically long half-life of mAbs [30]. Further, both the

amount of sampling and doses studied are rich in order to

capture the complex kinetics of the system. Thus, a

reduction in the duration, the number of samples and dose

levels investigated in trials featuring mAbs may be bene-

ficial from a cost and patient burden perspective, provided

that the impact is minimal, and accurate decisions regard-

ing drug development can be made. The work performed

herein demonstrates the potential application of OD to

evaluate sampling design reductions for systems described

by TMDD models. Further, this work demonstrates the

importance of utilizing a number of different metrics to

evaluate the information loss when reducing trials.

For the example system investigated, it was possible to

reduce the number of samples in the study by 30% while

still maintaining an efficiency of 87%. Reducing the

number of samples by 62% resulted in lower efficiency

(63%), indicating the need to increase the number of

individuals in the study with this reduced design to match

the original rich design but this reduction had little or no

effect on the other design metrics investigated including

the probability to make an incorrect go/no-go decision.

With the same number of total samples, a reduction in

the sampling duration was detrimental to the efficiency of

the designs. Although the efficiency was impacted

negatively, a reduction of the sampling duration from 84 to

14 days resulted in acceptable performance with regards to

the other performance metrics, at least when optimized.

Sampling for 14 days without optimization resulted in

relatively poor PPAR and this design benefited most with

optimization. A 2 day sampling design was found to be

very poor, especially with regards to estimates of CLOMA

and IgE clearance (CLIGE) and their corresponding IIV.

These results were not unsurprising, given the half-life of

mAbs. Since therapeutic mAbs have the same general

structure (immunoglobulin G) the expectation is for them

to undergo the same intrinsic elimination and as such a

2 day sampling schedule would probably have been avoi-

ded from the outset. However, for molecules for which

little is known, a priori, a very short sampling duration may

be evaluated.

Omission of measuring any analyte was detrimental to

the efficiency of the designs. However, omitting sampling

of CIGE,T (designs 8 and 8O) did not have a substantial

impact on the other evaluated metrics, indicating local

identifiably with no CIGE,T samples (an identifiability

analysis as described by Gibiansky et al. could also be

applied here [13]).

The inclusion of multiple metrics to gauge the perfor-

mance of alternative designs is important to get a balanced

assessment of their performance. Metrics such as efficiency

may not be easily communicated to stakeholders in drug

development and alternative metrics such as the probability
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Fig. 4 The probability of making an incorrect decision defined as incorrectly identifying doses which should result in a CIGE,F reduction of 95%.

The dashed vertical black line indicates the true dose of 277.5 mg
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of making an erroneous decision may be easier to use in

conveying the intended message. Even though the decision

metric in this work is simple, it serves as an example of

how parameter precision propagates to other aspects of trial

performance. All metrics identified the best design as being

the optimized reference (design 1O) and design 2 as the

worst design. However, in some cases, there was a devia-

tion between design performances evaluated with different

metrics. Deviance of the PPAR and go/no-go metric results

from the efficiency and parameter uncertainty results are

not entirely unexpected since the PPAR and go/no-go

metrics depend solely on the fixed-effect parameters while

the other metrics consider random-effects parameters.

Deviation between the efficiency metric and average

%RSE can also be expected as efficiency takes into account

the covariance between uncertainty in parameter estima-

tion, something ignored by average %RSE. Optimizing

designs based solely on increasing efficiency may make

viable trial designs unattractive but by looking at several

alternative metrics acceptable designs may be identified

that do not meet the criteria for efficiency. The optimiza-

tion of designs with OD is flexible and almost any con-

ceivable metric could be optimized. For instance, to obtain

the most accurate prediction of IgE at a certain time-point

an optimization using a C-optimality considering the most

informative parameters for IgE at that time-point could

have been used. Alternative optimizations using different

criterions were omitted due to the additional complexity

that they entail versus ‘‘standard’’ D- or Ds-optimal design.

However, in this work we focused on optimizing a global

metric, parameter precision, in order to be able to draw

conclusions about multiple performance metrics related to

parameter precision.

Many mAbs may exhibit nonlinear PK profiles and thus

optimal sampling times will vary with dose. However,

antibodies against soluble targets, as investigated here, can

display nonlinear PK but do not tend to do so [31]. While

the model for OMA used in this work is a TMDD model

capable of describing nonlinearity, the measured OMA

analyte was the total concentration which appeared to be

linear. If free OMA were measured, nonlinear PK may

have been observed at certain doses and optimizing dose

may be more fruitful than optimizing the sampling times.

In this example, optimizing doses had a marginal effect on

the efficiency of the reference study design (results not

shown). The results in this work are, however, comparable

to results published by Davda et al. where a sparse sam-

pling schedule contained similar information as a rich

sampling schedule for mAbs described by a 2-compartment

linear elimination model [32]. Additionally, when fewer

moieties are sampled, model identifiability issues may be

circumvented by using further simplifications of the model

such as a Michaelis–Menten (MM) approximation.

Additional work is needed to determine whether it is pos-

sible to translate the results of this work to models in the

same hierarchy such as the MM approximation or the more

complex full TMDD model.

The design used as a reference design here is not one

that can be recommended for late phase analyses but it is

typical of early phase data for monoclonal antibodies,

although such studies may often feature dose escalation

[33–35]. Ideally, multiple models and trial designs would

have been explored to obtain a more generalizable con-

clusion. This was not feasible given the lengthy opti-

mization times. However, many mAbs have similar

disposition and the results obtained by this work may be

applicable to other mAbs against soluble targets, but war-

rants further study.

The model employed in this work was a reduction of the

original model where covariate relationships and correla-

tions between random effects were excluded. These sim-

plifications were deemed acceptable since model

performance was not evaluated and the specific aim of this

work was to illustrate a methodology rather than per-

forming a reduction and optimization of trial design

specifically for OMA. Performing OD with models

including covariate relationships comprises integration

over all potential covariate values and substantially

increases the optimization times. A more feasible workflow

for the optimization would be to identify an interesting

reduced design among competing designs to be further

optimized assuming distributions of covariates.

In this work clustering of sample times, rarely feasible

in practice, was allowed in the design optimizations.

Clustering occurs when a design attempts to minimize the

signal-to-noise ratio but usually results in a less informa-

tive design as error generating mechanisms are not con-

sidered. Clustering can be avoided in the optimization at

the outset by incorporating autocorrelation into the model

or through the use of sampling windows [25, 36]. However,

incorporation of an autocorrelation model frequently

increases optimization times and was therefore omitted in

this work. The results of the optimizations can therefore be

regarded as the best possible designs for the model,

parameter values and scenarios investigated. Specific

design scenarios that perform well in these examinations

would then be further improved upon, through more elab-

orate and time-consuming optimization methods.

When optimizing a study design during the development

of a novel compound the parameter estimates are not known

a priori. Thus, reducing the number of samples and opti-

mizing those samples, based on specific parameter values,

may have unintended consequences if those parameter val-

ues are misspecified. Different global optimization criteria,

such as the ED-optimal criteria where uncertainty in

parameter values are accounted for should increase
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robustness in the optimization and can be advocated for

scenarios where knowledge of the compound of interest is

limited [37]. Further, the model structure to describe the

disposition of compounds of a similar nature, such as mAbs,

may be comparable and prior information gathered in other

trials may be included in the optimization for robustness.

However, optimizations accounting for uncertainty increase

the optimization times over simpler optimization criteria

substantially. In this work an evaluation with an ED-optimal

criterion (accounting for 10% uncertainty in the fixed effect

parameters) took * 21 times longer than the same with a

D-optimal criterion (results not shown). An approach to

make ED-optimal design feasible would be to first identify a

trial design among several candidate designs to optimize that

design using an ED-optimal criterion. Model-based adaptive

OD could also be used, where an initial smaller cohort is

optimized based on prior information and subsequent

cohorts use updated information gathered during previous

cohort optimizations [38].

Conclusion

In conclusion, competing reduced study designs for a

TMDD model were optimized using OD methodology and

the performance of the designs was assessed and compared

to a reference design using several performance metrics.

The study reveals factors of importance for an adequate

design and illustrates the importance of a balanced evalu-

ation using alternative metrics, depending on the purpose

of the trial.
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