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a b s t r a c t 

Vibrio cholerae , the causative agent of cholera, releases several virulence factors including secreted

proteases when it infects its host. These factors attack host cell proteins and break down tissue barriers

and cellular matrix components such as collagen, laminin, fibronectin, keratin, elastin, and they induce

necrotic tissue damage. The secreted protease PrtV constitutes one virulence factors of V. cholerae . It

is a metalloprotease belonging to the M6 peptidase family. The protein is expressed as an inactive,

multidomain, 102 kDa pre-pro-protein that undergoes several N- and C-terminal modifications after

which it is secreted as an intermediate variant of 81 kDa. After secretion from the bacteria, additional

proteolytic steps occur to produce the 55 kDa active M6 metalloprotease. The domain arrangement of

PrtV is likely to play an important role in these maturation steps, which are known to be regulated

by calcium. However, the molecular mechanism by which calcium controls proteolysis is unknown.

In this study, we report the atomic resolution crystal structure of the PKD1 domain from V. cholera

PrtV (residues 755–838) determined at 1.1 Å. The structure reveals a previously uncharacterized Ca 2 + -
binding site located near linker regions between domains. Conformational changes in the Ca 2 + -free and

Ca 2 + -bound forms suggest that Ca 2 + -binding at the PKD1 domain controls domain linker flexibility,

and plays an important structural role, providing stability to the PrtV protein. 
C © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical

Societies. All rights reserved. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The World Health Organization reports 3–5 million cases of

cholera every year leading to 100,000–120,000 deaths. The disease is

caused by Vibrio cholerae , a Gram-negative motile bacterium, which

upon infection releases several virulence factors [ 1 ]. These include

secreted proteases that proteolyze tissue barriers and cellular matrix

components, such as collagen, laminin, fibronectin, keratin, elastin

and thereby induce necrotic tissue damage [ 2 –4 ]. Microbial proteases

can be classified into four groups on the basis of the essential catalytic

residue at their active site. These four groups are: serine proteases,

cysteine proteases, aspartate proteases and metalloproteases. Most
� This is an open-access article distributed under the terms of the Creative Commons 

Attribution License, which permits unrestricted use, distribution, and reproduction in 

any medium, provided the original author and source are credited. 
1 Present address: Biochemie-Zentrum der Universit ̈at Heidelberg, Im Neuenheimer 

Feld 328, 69120 Heidelberg, Germany. 

* Corresponding author at: Department of Chemistry, Ume ̊a University, Ume ̊a SE-901 

87, Sweden. Tel.: + 46 90 7865923; fax: + 46 90 7865944. 

E-mail address: elisabeth.sauer-eriksson@chem.umu.se (A.E. Sauer-Eriksson). 

 

 

 

 

 

 

 

 

2211-5463/ $ 36.00 c © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation o

http://dx.doi.org/10.1016/j.fob.2013.06.003 
metalloproteases are zinc-containing proteins [ 3 ]. 

The secreted metalloprotease PrtV constitutes a very potent cy-

totoxic agent of V. cholerae [ 5 , 6 ]. PrtV is cytotoxic for human HCT8

cells. It is also known that the fibrinogen, fibronectin and plasmino-

gen present in human blood plasma can function as substrates for the

protease [ 6 ]. PrtV belongs to the M6 peptidase family, sharing 37%

sequence identity with the Immune Inhibitor A (InhA) from Bacillus

thurengiensis . 

PrtV is expressed as an inactive 102 kDa full-length pre-pro-

protein. In addition to a signal peptide, the PrtV protein has four

domains: the N-terminal domain (residues 23–105), the M6 domain

(residues 106–749), and two Polycystic Kidney Disease domains –

PKD1 (residues 755–837) and PKD2 (residues 838–918) ( Fig. 1 A). The

sequence of the N-terminal domain is present in many bacterial pro-

teins; however, its specific function has not yet been identified. The

M6 domain constitutes the catalytic metalloprotease domain with the

characteristic HexxHxxgxxD Zn 

2 + -binding motif [ 7 ]. PKD domains

are found in various eukaryotic and prokaryotic proteins; they are

relatively short domains of 80–90 amino acids with a characteristic

β-sandwich fold [ 8 ]. They are usually found in the extracellular parts
f European Biochemical Societies. All rights reserved. 
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Fig. 1. Domain organization and maturation products of PrtV. (A) A schematic repre- 

sentation of the four domains in 102 kDa full-length PrtV. (B) Ca 2 + -dependent prote- 

olytic degradation of the 81 kDa pro-protein results in formation of the 55 kDa active 

complex comprising two chains of 18 and 37 kDa each. Both chains are originally part of 

the M6 domain. The lightning bolt symbolizes the Ca 2 + -dependent cleavage between 

residues Leu749 and Ser750 [ 6 ]. 
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Fig. 2. Difference Fourier maps showing the quality of the electron density at a rep- 

resentative residue (Leu34). The residue is represented as a ball-and-stick model. The 

2mFo-DFc electron density of the refined structure is shown by a blue mesh contoured 

at 1 σ . The green mesh shows the mFo-DFc electron density omit map contoured at 

+ 3 σ . The positions of hydrogen atoms, not included in refinement or in map calcula- 

tions, are clearly indicated in the map. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 

 

f proteins involved in protein–protein or protein–carbohydrate in- 

eractions. The function of the PKD domains in PrtV is not fully un- 

erstood. 

To form a catalytically active protease, PrtV undergoes several N- 

nd C-terminal modifications. PrtV is exported from the bacteria as a 

1 kDa molecular mass intermediate form that is known to be stabi- 

ized by calcium ions [ 6 ]. After secretion, this intermediate undergoes 

urther degradation that finally results in the formation of the active 

5 kDa M6 metalloprotease form composed of two chains of 18 and 

7 kDa ( Fig. 1 B) [ 6 ]. In this study, we present results from a structural

tudy of the PKD1 domain from V. cholerae PrtV. The crystal structure, 

etermined at 1.1 Å resolution, revealed a calcium-binding site which 

tabilizes the 81 kDa form of the protein, and thus plays a regulatory 

ole in its proteolytic activity. 

. Results 

.1. PKD1 cloning, expression and purification 

His-ZZ-tagged PKD1 domain from V. cholerae was overexpressed 

n E. coli BL21(DE3)pLysS cells and was purified by Ni–NTA agarose 

hromatography (Edwin et al., manuscript in preparation). The 

exahistidine-ZZ fusion tag was cleaved with TEV protease, leaving 

he PKD1 domain with three extra residues, Gly, Ala and Met at the 

-terminus (theoretical molecular mass of the domain is 9.5 kDa). 

he protein was then purified to homogeneity by size exclusion chro- 

atography. Approximately 15 mg pure protein was obtained from 

 l culture. 

.2. Structure determination 

With the X-ray diffraction data from a single crystal, the struc- 

ure of the 85-residue PKD1 domain (residues Glu755-Asn839) from 

. cholerae metalloprotease PrtV was determined by the molecular 

eplacement method. The asymmetric unit contained two molecules: 

hains A and B. Apart from a few residues at the N- and C-termini, 

ll protein residues could be modeled into the electron density. The 

verall quality of the electron density was excellent with clearly de- 

ned hydrogen atoms for most of the residues ( Fig. 2 ). Weak or no 

lectron density was observed for the side-chains of residues Ile757, 

ys766, Glu768, Met773, Gln775, Gln830, Lys834 in both chains and 

esidue Thr837 from chain B: these residues are situated at the sur- 

ace of the molecule. The final model contains residues Ile757-Pro838 

f chain A, and residues Ile757-Thr837 of chain B. In both chains, sev- 

ral residues are modeled in multiple conformations (2 or 3). The first 

wo visible residues, Ile757-Ala758, at the N-terminus of chain B are 
modeled in two conformations depending on whether or not a Ca 2 + 

ion is bound to the main chain carbonyl oxygen of Ala758. 

300 water molecules, one Ca 2 + ion, three Na + ions, and three Cl −

ions were identified in the structure. One di(hydroxyethyl)ether in- 

volved in crystal packing interactions was also identified. Only those 

water molecules with B-factors below 60 Å 

2 and forming hydrogen 

bonds either to protein residues directly or to protein-linked water 

molecules, were included in the structure. Metal ions were identi- 

fied on the basis of their geometry, ligand distances, and B-factors. 

The final R -values, R work = 0.109 and R free = 0.140, are within val- 

ues expected for structures determined at atomic resolution. Table 1 

summarizes the X-ray data collection statistics and refinement of the 

PKD1 structure. The coordinates and structure factors are deposited 

in the Protein Data Bank (PDB) (accession code 4L9D ). 

2.3. The structure of PKD1 

As anticipated from sequence analysis, CD measurements, and 

secondary structure prediction (software Jpred3 [ 9 ]), the amino acid 

chain of the PKD1 domain has an all- β type fold. It comprises two anti- 

parallel β-sheets of three (A, B, E) and four (D, C, F, G) strands, respec- 

tively: strands A (A 1 : residues Val760-Ala761; A 2 : Phe763-Gly769), 

B (B 1 : residues Ser771-Thr777; B 2 : Ser779-Asp780) and E (residues 

Thr804-Tyr807), and strands D (residues Gln796-Thr799), C (residues 

Val786-Gly793), F (residues Gly811-Asp822), and G (residues Gly824- 

Asp836). The two β-sheets are packed face-to-face in a β-sandwich 

– the typical fold for this domain ( Fig. 3 A) [ 8 ]. The core of the β-

sandwich is formed by hydrophobic interactions involving residues 

Pro759, Ala761, Phe763, Leu765, Val772, Ile785, Trp790, Pro803, 

Trp805, Val815, Leu817, and Val819. 

2.4. PKD1 dimerization 

Size-exclusion chromatography showed that PKD1 forms dimers 

at neutral pH. The packing of the molecules in the crystal structure 

http://www.rcsb.org/pdb/explore.do?structureId=4L9D
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Table 1 

Data collection and refinement statistics. 

Data collection 

Beamline ESRF, ID23–1 

Wavelength ( ̊A) 1.0398 

Temparature ( ◦C) −173 

Vm ( ̊A 3 / Da) 1.46 

Space group P2 1 2 1 2 1 
Number of subunits per asymmetric 

unit 

2 

Cell dimesions; a , b , c ( ̊A); α, β , γ ( ◦) 41.80, 50.83, 67.30, 90.0, 90.0, 90.0 

Resolution range a ( ̊A) 12.0–1.10 (1.15–1.10) 

R merge 
b (%) 0.060 (0.175) 

< I / sig I > 16.7 (7.4) 

Completeness for range (%) a 99.0 (96.2) 

Number of observations 423,614 (45,460) 

Number of unique reflections 58,243 (8157) 

Refinement 

Resolution range ( ̊A) 12.0–1.1 (1.13–1.10) 

R -work c 0.109 (0.139) 

R -free d 0.140 (0.180) 

Number of atoms 1747 

Protein 1433 

Ligands 14 

Waters 300 

RMSD bond length ( ̊A) 0.020 

RMSD bond angle ( ◦) 2.192 

Average B 

Protein atoms ( ̊A 2 ) 8.8 

Ca 2 + ( ̊A 2 ) 13.8 

PEG ( ̊A 2 ) 21.3 

Other ligands ( ̊A 2 ) 12.3 

Water molecules ( ̊A 2 ) 21.7 

Ramachandran plot 

Allowed region (%) 98.7 

Number of outliers 0 

a The numbers in parentheses refer to the highest resolution bin. 
b R merge for replicate reflections, R = � | I hi − < I h > | / �| < I h > |; I hi = intensity measured 

for reflection h in data set i , < I h > = average intensity for reflection h calculated from 

replicate data. 
c R -factor = �‖ F o | − | F c ‖ / �| F o |; F o and F c are the observed and calculated structure 

factors, respectively. 
d R free based upon 5% of the data randomly culled and not used in the refinement. 

Fig. 3. Ribbon representation of the PKD1 domain structure shown in two orienta- 

tions. (A) The β-sandwich structure of the PDK1 domain is divided into two sheets 

of three and four β-strands each. (B) Two molecules (Interface-I) were present in the 

asymmetric unit, which could represent the dimer seen in solution. Sodium, chlo- 

ride and calcium ions are colored in cyan, light green and orange, respectively. The 

di(hydroxyethyl)ether is shown as a stick. The N-terminal end of monomer B (blue 

ribbon) has two conformations as indicated by the two blue lines. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

also indicated that PKD1 is dimeric. The asymmetric unit comprises

two molecules of PKD1, monomers A and B, and crystal packing con-

tacts provided two alternative possibilities for homodimeric PKD1

packing interactions. At the first dimer interface, monomers A and B

are packed head-to-head to form a four- β-strand arrangement com-

prising symmetry-related A and G strands ( Fig. 3 B). Across from the

interface, charged side chains of A- and B-Arg762 residues and B- and

A-Asp827 residues form two symmetry-related salt-bridges. Other

contacts involve the N ε 1 atoms of A- and B-His829, which form hy-

drogen bonds via a bridging water molecule to the O ε 2 atom of B-

and A-Glu764, respectively. A high-occupancy chloride ion bound to

symmetry-related amide groups of A- and B-Lys834 and to three wa-

ter molecules was identified at this interface. Furthermore, A- and

B-Gln831 form hydrogen bonds to the main-chain amido group of B-

and A-Leu705; however, the glutamate side chains are flexible and

are therefore modeled in two different conformations. The interface,

which we refer to as Interface-I, is predominantly polar, with more

than 50 water molecules associated with it. A few hydrophobic con-

tacts exist between symmetry-related residues A- and B-Val760, and

the hydrophobic part of the A- and B-Arg762 residues. 

The second putative dimer interface, Interface-II, is formed be-

tween two symmetry-related A- and B- β-sheets, D-C-F-G. The

monomers are packed head-to-tail and contacts are primarily formed

between threonine and aspartate side chains, mediated by bridging

water molecules. Interestingly, the only direct side-chain to side-

chain contact at this interface is between two symmetry-related A-

and B-Asp791 residues (the distance between their O δ2 atoms is

2.5 Å). 

PISA is an interactive tool for exploration of protein interfaces [ 10 ].

PISA analysis of the two interfaces identified in the PKD1 crystals sug-

gested that only Interface-I would be stable in solution. The solvation

energy effect, �i G , of this interface was calculated to be −64.6 kcal /

mol. Furthermore, �G 

diss , which indicates the free energy of assem-

bly dissociation, was calculated to be 7.3 kcal / mol. �i G and �G 

diss for

Interface-II was calculated as −58.5 and −1.8 kcal / mol, respectively.

The size of buried area was estimated to be 2330 and 2300 Å 

2 for

Interface-I and -II, respectively. Taken together, the output data from

PISA indicated that only the dimer Interface-I (as shown in Fig. 1 B)

constitutes a stable interface. 

2.5. Ca 2 + -binding site in PKD1 

The high quality of the electron density maps allowed the unam-

biguous identification of a Ca 2 + -binding site in monomer B of PKD1.

The site is located at one end of the β-sandwich structure near the

N-terminal residues of the PKD1 domain. The site is formed by two

loops, connecting β-strand B with C, and β-strand F with G. In addi-

tion, the first residues of β-strand A1, positioned at the N-terminal

end of the PKD1 domain, are involved in Ca 2 + -binding. The occupancy

of the Ca 2 + ion was refined to 0.5 (i.e., 50% occupancy in the crystal),

and its presence was deduced from the geometry, ligand distances,

and B-factors. The Ca 2 + ion binds to four carboxylate atoms from a

conserved acidic motif and to one water molecule ( Fig. 4 A and B). The

coordination sphere of the five-ligand-coordinated Ca 2 + ion is irreg-

ular (Findgeo server [ 11 ]). This is not uncommon as calcium-binding

sites in proteins in general are highly irregular with large variation in

ligand type, length, and angle of the metal coordination shell [ 12 ]. 

To further investigate the Ca 2 + -binding properties of the protein,

we analyzed pure protein samples after size-exclusion chromatogra-

phy for the presence of metal ions using optical emission spectrom-

etry. The analysis was performed both on purified protein samples

without added metals, and on samples to which we added Ca 2 + -
ions or Mg 2 + -ions. Excess, unbound metals were removed from the

protein solution by extensive dialysis overnight. We found that Ca 2 + -
ions bound in a 1:1 ratio to the PKD1 protein in solution even without

the addition of Ca 2 + -ions. Furthermore, the analysis also showed that
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Fig. 4. Calcium-binding site in the PKD1 domain. (A) One calcium-binding site was 

identified in monomer B and refined at 50% occupancy. (B) The same figure as in (A) 

but without electron density, and with hydrogen and metal bonds indicated as dotted 

lines. (C) The calcium-binding site in the PKD domain from glycoside hydrolase CtCel9D 

from Clostridium thermocellum (pdb code 2C4X ). (D) The calcium-free conformation in 

monomer A of PKD1. In particular, Lys823 has a different orientation in the calcium- 

bound and calcium-free states. (E) The same figure as in (D) with hydrogen bonds 

indicated. The 2mFo-DFc electron density of the refined structure is shown in panels 

(A) and (D) by a blue mesh contoured at 1 σ . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. HCT8 cells after 6 h of incubation with pure PKD1 domain at (A) 20 nM, (B) 

50 nM and (C) 200 nM concentration. No effects on cell morphology were observed 

after incubation with PKD1 even at high concentrations. (D) shows control HCT8 cells, 

and (E) shows the cytotoxic effect on HCT8 cells after incubation with 20 nM of PrtV 

purified in the 55 kDa active form [ 6 ]. Actin filaments and nuclei were stained with 

phalloidin (green color) and DAPI (blue color), respectively. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of 

this article.) 
he Ca 2 + -ions could not be substituted by Mg 2 + -ions. 

Structural similarity searches using the DALI server [ 13 , 14 ] iden- 

ified a number of structures similar to PKD1. The top 6 DALI hits 

re presented in Table 2 . Generally, the protein structures identified 

y DALI comprised other PKD domains. Analysis of the top DALI hits 

howed that Ca 2 + -binding has been previously observed in at least 

ne of them — the C-terminal PKD domain of the glycoside hydrolase 

tCel9D from Clostridium thermocellum (pdb code 2C4X ) [ 15 ]. Struc- 

ural comparisons showed the topology of the Ca 2 + -binding site of 

KD1 and that of PDB ID: 2C4X to be very similar, even though the 

igand-binding partners are not identical ( Table 3 and, Fig. 4 B and C). 

The refined Ca 2 + -ion in monomer B showed about 50% occupancy. 

urthermore, the N-terminal residues, Ile757 and Ala758, were re- 

ned in two conformations with 50% occupancy each. In one of these 

onformations, the main chain carbonyl oxygen of Ala758 constitutes 

ne of the Ca 2 + -binding ligands, extending the β-strand A1 by one 

esidue, in agreement with what is observed in the 2C4X structure. In 

he second conformation, the carbonyl oxygen of Ala758 has a differ- 

nt orientation. The main chain of the first two N-terminal residues 

as changed its direction approximately 90 o , with respect to its con- 

ormation in the Ca 2 + -bound form ( Fig. 4 A and B). We refer to this 
conformation of the N-terminal residues as the Ca 2 + -free form of 

the PKD1 domain. In the calcium-free monomer A, the N-terminal 

residues occupy positions assigned with the Ca 2 + -free conformation 

( Fig. 4 D and E). Lys823 and Asp825, both positioned at the FG-loop, 

have side-chain rotamers such that the N ε atom of Lys823 is posi- 

tioned right at the binding site for the Ca 2 + -ion. No water molecules 

bound in the Ca 2 + -binding site of the Ca 2 + -free monomer A. 

2.6. The PKD1 domain is not toxic for HCT8 cells 

To investigate if the PKD1 domain of PrtV protein is cytotoxic 

in mammalian cells, we incubated the human colon carcinoma 

(HCT8) cells with different concentrations of purified PKD1 protein 

as described in Materials and methods. No significant morphological 

changes of HCT8 cells were observed when the cells were incubated 

with the purified PKD1 domain, although purified extracellular 81 

kDa PrtV pro-protein showed a cytotoxic effect leading to cell death 

( Fig. 5 ). 

2.7. Calcium binding provides interdomain stability to PrtV in vivo 

It is known that calcium ions stabilize the 81 kDa pro-protein in 

vitro [ 6 ]. To test the effect in vivo , V. cholera strain KAS202 overex- 

pressing full length native PrtV were grown in minimal media con- 

taining high (5 mM) and low (20 μM) concentrations of Ca 2 + ions. 

To verify expression of the PrtV protein at the low calcium concen- 

tration, we performed the experiment in the same V. cholera strain 

lacking the haemagglutinin protease HapA and two of its regulatory 

proteins: leucine aminopeptidase and leucine aminopeptidase X [ 6 ]. 

HapA constitutes the major extracellular protease in V. cholera , and 

its expression is regulated by the HapR regulon [ 21 ]. All cultures grow 

equally well at the two calcium concentrations (results not shown). 

Filtered supernatant of the cell cultures was separated on a SDS PAGE 

and the presence of secreted PrtV fragments was detected with poly- 

clonal antibodies against PrtV ( Fig. 6 ). Our results show that the in- 

tegrity of the secreted 81 kDa PrtV pro-fragment in vivo is dependent 

on the presence of calcium ion, and, as shown previously, protease(s) 

regulated by the HapR-pathway are involved in degradation of PrtV 

fragments [ 6 ]. 

3. Discussion 

The secreted metalloprotease PrtV from V. cholerae was recently 

identified as a potent virulence agent during infection of human HCT8 

cells [ 5 ]. For proper function, the 102 kDa PrtV must first be degraded 

http://www.rcsb.org/pdb/explore.do?structureId=2C4X
http://www.rcsb.org/pdb/explore.do?structureId=2C4X
http://www.rcsb.org/pdb/explore.do?structureId=2C4X
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Table 2 

DALI top ranking structures. 

Protein Chain PDB code Z-score rmsd Alignment length % seq. id Ca 2 + bind-ing Reference 

PKD, collagenase A 2Y72 13.3 1.2 81 41 No [ 16 ] 

PKD, endoglucanase A 2C4X 12.8 1.5 82 39 Yes [ 15 ] 

PKD, surface layer protein A 1L0Q 12.0 1.7 77 32 No [ 17 ] 

Neural cell adhesion Molecule 1 D 1LWR 9.8 2.1 82 15 No [ 18 ] 

Neural Cell Adhesion Molecule 2 A 2XYC 9.2 2.2 80 11 No [ 19 ] 

Fragment fibronectin A 3T1W 9.0 2.3 79 9 No [ 20 ] 

Table 3 

Ca 2 + binding geometries. 

PKD1 domain (this work) 2C4X [ 15 ] 

Metal Ligand Distance ( ̊A) Metal Ligand Distance ( ̊A) 

Ca 2 + O Asp782 2.36 Ca 2 + O δ1 Asp35 2.35 

Ca 2 + O δ2 Asp821 2.48 Ca 2 + O δ2 Asp76 2.44 

Ca 2 + O Ile757 2.48 Ca 2 + O Gln5 2.40 

Ca 2 + O Wat177 2.83 Ca 2 + O Wat 2184 2.42 

Ca 2 + O δ2 Asp825 2.46 Ca 2 + Ala80 Not binding 

Ca 2 + O δ1 Asp780 Not binding (4.01) Ca 2 + O δ1 Asp33 2.50 

Ca 2 + O δ1 Asp780 Not binding (4.32) Ca 2 + O δ2 Asp33 2.36 

Ca 2 + Asn756 Not in construct Ca 2 + O δ1 Asn4 2.40 

Fig. 6. Immunoblot of PrtV protein secreted from V. cholerae strain KAS202 ( �prtV) 

(lane 1 and 2) and KAS202 ( �lap �lapX �hapA, �prtV) (lane 3 and 4). Both strains 

carried a plasmid pKVA232 overexpressing native PrtV at two different concentrations 

of calcium ions: 20 μM (lane 1 and 3) or 5 mM (lane 2 and 4). At high concentrations of 

calcium the secreted 81 kDa pro-fragment of PrtV is protected from degradation (lane 2 

and 4). At low calcium concentration however the PrtV pro-fragment is secreted (lane 

3) but completely degraded (lane 1). Complete degradation of secreted PrtV did not 

occur in the �lap �lapX �hapA deletion mutant (lane 3). This verifies that protease(s), 

regulated by the HapR-pathway, can degrade PrtV fragment (compare lane 1 and lane 

3) [ 5 ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and then secreted by the bacteria as an 81 kDa intermediate form.

Once outside the cell, the pro-protein undergoes several additional

modifications steps, which finally results in the active 55 kDa M6

metalloprotease form, comprising the heterodimer of two chains of

18 and 37 kDa each, Fig. 1 [ 5 ]. 

PrtV comprises two PKD domains and, in this work, the struc-

ture of one of them — the 87 residue PKD1 domain – was deter-

mined at atomic resolution. The PKD domain name is derived from

the pkd1 gene, which is mutated in autosomal-dominant Polycystic

Kidney Disease. The product of this gene harbors sixteen copies of this
domain in the extracellular part of polycystin-1, a cell surface glyco-

protein [ 8 , 22 , 23 ]. PKD domains from different proteins and organisms

share low sequence identity but are structurally similar. Interestingly,

they serve different functions even though most of them are found in

the extracellular parts of larger protein adhesins where they are in-

volved in protein–protein or protein–carbohydrate interactions. For

polycystin-1, the PKD domains are involved in intermolecular interac-

tions, where they play an important role in intercellular adhesion [ 24 ].

The PKD domain of the serine protease ColG from Pseudoalteromonas

sp. SM9913 binds to collagen and allows swelling of the target leading

to a more efficient proteolysis [ 25 ]. As a further example, binding of

the PKD domain to chitin is necessary for chitin degradation by chiti-

nase A from the marine bacterium, Pseudoalteromonas piscicida [ 26 ].

It is likely that the PKD domains present in V. cholerae PrtV also are

involved in intermolecular interactions. 

We expressed the PKD1 domain in E. coli and purified the pro-

tein to homogeneity. The 3D-structure was solved by the molecular

replacement methods at 1.1 Å resolution. The protein folds into an

all- β type structure of 2 β-sheets typical for PKD domains ( Fig. 3 ).

Purified PKD1 domains are dimeric in solution and two plausible in-

terfaces were also identified in the crystalline form. Analysis of the

two interfaces suggests that Interface-I is more likely than Interface-II

to constitute the dimer observed in solution. The second Interface-II

involves predominantly one, close side-chain to side-chain contact

between two symmetry-related aspartic acids; these contacts could

explain why crystals only could be obtained at low pH (pH 5–5.5). The

biological relevance, if any, of the dimer form of PKD1 remains to be

elucidated. However, purified PKD1 domains are not toxic for human

HTC8 cells ( Fig. 5 ). 

The secreted and purified 81 kDa pro-protein is known to be stabi-

lized by calcium ions [ 6 ]. In the crystal structure of the PKD1 domain,

a Ca 2 + -binding site in at the N-terminal region of the domain was

identified ( Fig. 4 A). Multiple lines of evidence suggest that the PKD1-

bound Ca 2 + -ion constitutes a natural ligand for the PrtV protein in

vivo . First, the Ca 2 + -binding site that we identified is not unique

for the PrtV PKD1 domain – nearly identical binding sites have been

identified in other PKD domains e.g., microbial cellulases [ 15 ]. Sec-

ond, our metal content analysis verified that Ca 2 + ions bind to the

purified PKD1 domain in solution at a 1:1 ratio. Ca 2 + ions occupy

only one of the two monomers present in the asymmetric unit and

at 50% occupancy. Presumably, the 1.2 M sodium citrate that is part

http://www.rcsb.org/pdb/explore.do?structureId=2Y72
http://www.rcsb.org/pdb/explore.do?structureId=2C4X
http://www.rcsb.org/pdb/explore.do?structureId=1L0Q
http://www.rcsb.org/pdb/explore.do?structureId=1LWR
http://www.rcsb.org/pdb/explore.do?structureId=2XYC
http://www.rcsb.org/pdb/explore.do?structureId=3T1W
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Fig. 7. Suggested mechanism for calcium-dependent stabilization of PrtV. (A) The 

cleavage site after residue Leu749 (marked with an arrow) is connected with a 5- 

residue linker to the PKD1 domain. (B) Left panel: Ca 2 + (orange sphere) bound at 

the N-terminal end of the PKD1 domain shields the accessibility of the neighboring 

residues. Right panel: In the Ca 2 + -free form, the orientation of the N-terminal β-strand 

A1 changes, which makes the cleavage site at residue Leu749 accessible for proteolysis. 

The site of proteolysis is indicated with a yellow arrow. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 8. Sequence alignment (Blast, [ 39 ]) of PKD1 and PKD2 domains from V. cholerae 

PrtV, and the PKD domain of the glycoside hydrolase CtCel9D from Clostridium thermo- 

cellum (pdb code 2C4X , [ 15 ]). The sequence identity is 39% between the PKD1 and PKD2 

domains, and 40% between the PKD1 and the PKD domain present in the 2C4X struc- 

ture. The domain border between PKD1 and PKD2 is not well defined. Secondary struc- 

tural elements from the current structure of PKD1 are shown in black (E, β-strands). 

Residues part of Interface-I are boxed in cyan, while residues found to be important 

for calcium binding, are boxed in green. The secondary structure elements predicted 

for PKD2 with Jpred3 [ 9 ] are shown in blue (E, β-strands). Interestingly, the WDFGDG 

sequence marked in yellow that is generally highly conserved in PKD domains [ 8 ] is 

not conserved in the PKD2 domain. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
f the crystallization conditions chelates the calcium from the pro- 

ein solution however the crystal packing interaction favors only the 

ompletely Ca 2 + -free conformation at monomer A. The 1.1 Å struc- 

ure presented here was determined with 10 mM CaCl 2 present in 

he crystallization conditions. Increasing Ca 2 + -ion concentration in 

he crystallization conditions did not affect the structure. We de- 

ermined a 1.6 Å structure of the PKD1 domain in the presence of 

50 mM CaCl 2 . This structure displayed no structural changes com- 

ared to the 1.1 Å structure, nor did the occupancy of the Ca 2 + ion 

n monomer B change significantly (data not shown). So far we have 

ot succeeded in determining the structure of the complete apo-form 

f the PKD1 domain. When all Ca 2 + ions were removed from the 

rotein by extensive dialysis in the presence of 1 mM EDTA, no crys- 

als could be obtained in the subsequent crystallization trials. Fur- 

hermore, back-soaking Ca 2 + -containing crystals in a calcium-free 

rystallization solution containing EDTA also rendered the crystals 

nsuitable for diffraction studies. Fortunately, in-depth information 

bout Ca 2 + -induced conformational changes in the PKD1 domain 

ould be obtained by comparing the structures of the Ca 2 + -free A 

onomer with the Ca 2 + -bound B monomer. The structural analysis 

howed that calcium binding causes large conformational changes in 

he N-terminal half of the PKD1 domain ( Fig. 4 ). 

The calcium-dependent stability of PrtV was tested in vivo . The 

esting concentration of Ca 2 + in the cytoplasm is normally main- 

ained in the range of 10–100 nM, whereas the concentration is in the 

M range outside the cell [ 27 ]. V. cholera overexpressing the native 

rtV protein were grown in minimal media supplemented with either 

ow (20 μM) or high (5 mM) concentrations of calcium ions. Pres- 

nce of PrtV in the media was investigated directly with immunoblot 

nalysis. The results, shown in Fig. 6 , showed that PrtV secreted by 

he bacteria into the media with low, 20 μM, calcium concentration 

ill rapidly be degraded into low molecular weight fragments not 

etectable on the immunoblot. This complete degradation of the pro- 

ein is due to secreted proteases present in the media. Purified 81 kDa 

rtV degrades into two interacting poly-peptide chains of 37 and 18 

Da in the absence of calcium ions [ 6 ]. Most likely this maturation 

rocess of the pro-protein takes place inside the host cell. A simi- 

ar maturation is described for other metalloproteases including the 

mmune inhibitor A from Bacillus cereus and B. anthracis [ 28 , 29 ]. 

One of the proteolytic cleavage sites on the 81 kDa pro-protein 

as been identified as a short, 5-residue linker that connects the C- 

erminal end of the M6 domain with the N-terminal end of the PKD1 

omain ( Fig. 7 A) [ 6 ]. This site is positioned only 3 residues upstream 

rom the calcium-binding site in PKD1. We therefore hypothesize that 

KD1-bound Ca 2 + ions stabilize the 81 kDa pro-protein outside the 

acterial cell, and protect it from degradation. In our current model, 

he N-terminal residues of the PKD1 domain are locked by bound 

a 2 + ions in an extended β-strand conformation that protects the 

-residue linker (which connects the M6 and PKD1 domains) from 

roteolysis. If the PKD1 domain is depleted of Ca 2 + ions, conforma- 

ional changes of the N-terminal residues expose the 5-residue linker 

o proteolysis ( Fig. 7 B). 

On the basis of sequence analysis, it seems possible that the PKD2 

omain of PrtV could bind calcium as well ( Fig. 8 ). Thus, the protease 

inds calcium ions in the vicinity of two regions involved in the prote- 

lytic maturation process. The PKD2 domain, however, is not secreted 

rom the cell ( Fig. 1 B). The structure of the M6 domain is currently 

nknown, and it remains to be seen if calcium-binding to this domain 

s involved in the maturation process of the protein as well. 

. Experimental procedure 

.1. Protein expression and purification 

The cloning, overexpression and purification of the PKD1 do- 

ain (residues 755–839) will be described separately (Edwin et al., 
manuscript in preparation). Briefly, the PKD1 domain was cloned into 

the pETZZ1a vector [ 30 ] and overexpressed in E. coli Bl21 (DE3) pLysS 

(Novagen) cells. The protein was purified on a Ni-NTA agarose (Qia- 

gen) column followed by a Superdex 200–16 / 60 size exclusion col- 

umn (GE Healthcare). During purification, the 6-His ZZ-tag was re- 

moved with tobacco etch virus (TEV) protease, leaving three extra 

residues Gly, Ala and Met at the N-terminus of the domain. Pure frac- 

tions of the protein in 20 mM Tris pH 8.0 and 150 mM NaCl (buffer A) 

were pooled and concentrated to 20 mg ml −1 (2.1 μM) and stored at 

−80 ◦C. 

4.2. Analysis of biological activity of PKD1 domain 

HCT8 cells were seeded in 24-well plates (Thermo Scientific Nun- 

clon) and grown to 50% confluence [ 31 ]. Purified PKD1 protein (50 μl, 

20–200 nM) was added to the cells. Cytotoxic effects in the form of 

cell rounding and detachment were compared with the responses of 

control cells for up to 6 h. Cells were fixed with 2% paraformaldehyde 

in phosphate-buffered saline (PBS, pH 7.3, Sigma–Aldrich) for 10 min- 

utes. After fixation, cells were washed twice with PBS and incubated 

with 0.1 M glycine for 5 min at room temperature. After washing 

twice with PBS, the cells were permeabilized with 0.5% Triton X-100 

(Sigma–Aldrich). Actin filaments were stained using Alexa Fluor 488 

phalloidin (Molecular Probes, Invitrogen) containing 1% bovine serum 

albumin (BSA) (Sigma–Aldrich). After thorough washing with PBS, 

http://www.rcsb.org/pdb/explore.do?structureId=2C4X
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the nuclei were stained (1:5000) for 5 min with 4 ′ ,6-diamidino-2-

phenylindole dihydrochloride, DAPI, (Sigma–Aldrich) before mount-

ing in a fluorescent mounting medium (Daco Co.). Cells were analyzed

using a NIKON Eclipse 90i microscope, and photographed with a Hi-

mamatsu BW digital camera (12 bit) (Hamamatsu, Japan). 

4.3. PrtV stability assay 

Singles colonies of V. cholerae strains KAS202 ( �prtV) and KAS202

( �lap �lapX �hapA, �prtV), both carrying a plasmid pKVA232 over-

expressing native PrtV under the control of an arabinose-inducible

promotor [ 6 ], were inoculated in 5 ml Luria Bertani medium con-

taining 1% glucose and 50 μg / ml carbenicillin. The pre-cultures were

grown with aeration for ∼12 h (overnight) at 37 ◦C. Subcultures at a

1:100 dilution were started by inoculating 0.5 ml into 50 ml of 25 mM

Tris–buffered media pH 7.4 supplemented with 0.1% casamino acids,

50 μg / ml tryptophan, 150 mM NaCl, 30 mM KCl, 20 mM (NH 4 ) 2 SO 4 ,

1 mM MgSO 4 , 2 mM KH 2 PO 4 0.5% glucose, 50 μg / ml carbenicillin

and trace elements (50 μM FeCl 3 , 20 μM CaCl 2 , 10 μM MnCl 2 , 10 μM

ZnSO 4 , 2 μM CoCl 2 , 2 μM CuCl 2 , 2 μM NiCl 2 , 2 μM Na 2 MoO 4 , and 2

μM H 3 BO 3 ). Cells were grown in either low, 20 μM, or high, 5 mM, cal-

cium concentrations. At OD 600 = 0.6, protein expression was induced

by adding 0.002% w / v arabinose. After growing for 12 h at 30 ◦C, 5 μl

of filtered supernatant was mixed with an equal volume of SDS–PAGE

loading buffer. The sample was boiled for 5 min and analyzed on a 10%

SDS–PAGE and then blotted onto a PVDF membrane. Immunological

detection was performed using polyclonal rabbit anti PrtV antibod-

ies [ 5 ]. Anti-rabbit horseradish peroxidase-conjugate was used as a

secondary antiserum at a final dilution of 1:20,000. The ECL + chemi-

luminescence system was used to detect the level of chemilumines-

cence that was then monitored using a Flour-S MultiImager (BioRad)

and by autoradiography. 

4.4. Metal content analysis 

PKD1 samples, with and without added calcium or magnesium

ions, were tested for their metal content. The final protein concen-

tration was 50 nM in buffer A. Metal ions (MgCl 2 and CaCl 2 ) were

added at a final concentration of 5 mM and incubated for 2 h. All sam-

ples (including the controls without added Ca 2 + ) were extensively

dialyzed against buffer A to ensure complete removal of unbound cal-

cium from the solution. The samples were diluted five times and con-

centrations of calcium and magnesium determined by inductively-

coupled plasma-optical emission spectrometry (PerkinElmer Optima

2000DV). An external calibration and axial viewing mode at wave-

lengths 315.887 and 317.933 nm were used for calcium and 279.077

and 285.213 nm for magnesium. 

4.5. Crystallization, X-ray diffraction data collection, and structural 

refinement 

Initial screening for crystallization conditions was done with the

reservoir solutions from Crystal Screen and Crystal Screen 2 (Hampton

Research) and the sitting-drop vapor-diffusion method. The protein

concentration was 20 mg / ml in buffer A. Equal volumes (100 nl) of

protein and reservoir solutions were placed in 96 well plates (Innova-

dyne Technologies Inc.) using a nanodrop pipetting robot (Mosquito,

TTP Labtech). Crystallization hits were optimized using the hanging-

drop vapor diffusion method in XRL plates (Molecular Dimensions).

The PKD1 domain was crystallized in an equal volume (2 + 2 μl) of

protein (20 mg / ml) and well solution. The best diffracting crystals

grew in 1.2 M sodium citrate, pH 5.5, and 20% (w / v) PEG 8K at 18 o C

to dimensions 0.2 × 0.2 × 0.3 mm 

3 within 2 days. 

Diffraction data from a single crystal were recorded at −173 ◦C

at beam line ID23–1 at the European Synchrotron Radiation Facility
(ESRF), in Grenoble, France. A total of 360 frames of data with an os-

cillation angle of 0.5 ◦ was collected at a wavelength of 1.0398 Å. The

data set was processed with XDS [ 32 ] and scaled using SCALA from

the CCP4 software suite [ 33 ]. The space group was P2 1 2 1 2 1 with two

subunits per asymmetric unit. The PKD1 structure was solved using

AUTO-RICKSHAW: the EMBL-Hamburg automated crystal structure

determination platform [ 34 , 35 ]. The input diffraction data were con-

verted for use in AUTO-RICKSHAW with software from CCP4 [ 33 ]. The

structure was solved by molecular replacement, and the Arp / wARP

module for tracing secondary structure in AUTO-RICKSHAW correctly

built 81 of the 87 amino acid in the protein. Manual map inspection

and model building were performed with COOT [ 36 , 37 ] and posi-

tional refinement with REFMAC5 [ 33 ], using the maximum likelihood

residual, anisotropic scaling, bulk-solvent correction and atomic dis-

placement parameter refinement [ 38 ]. 5% of the observed structure

factors were not included in the refinement so that they could be used

for the free R -factor calculations. Throughout the refinement, the pro-

tein subunits were treated independently. Water molecules, double

conformations, and solvent molecules were built from scratch into the

electron density ( mF o -DF c and 2mF o -DF c ) maps. The resolution limit

was subsequently increased to 1.1 Å to ensure stable refinement. To-

ward the end of the refinement, individual anisotropic B factors were

refined for all atoms. For residues whose side-chains were observed in

discrete alternate conformations, the occupancy of each conformation

was manually estimated (sum of occupancies = 1). The occupancies of

some metal ions were less than 1. In the final stages, hydrogen atoms

were added in riding-model positions during refinement. Molecular

graphics were produced using CCP4mg [ 33 ]. Homology searches were

performed with DALI [ 13 , 14 ]. 

Database 

The structure factor file and the atomic coordinates of the PKD1

domain of Vibrio cholerae metalloprotease PrtV have been deposited

in the Protein Data Bank under the accession number 4L9D . 
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