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Abstract

Pathogen sequencing is an important tool for disease surveillance and demonstrated its high value during

the COVID-19 pandemic. Viral sequencing during the pandemic allowed us to track disease spread,

quickly identify new variants, and guide the development of vaccines. Tiled amplicon sequencing, in

which a panel of primers is used for multiplex amplification of fragments across an entire genome, was

the cornerstone of SARS-CoV-2 sequencing. The speed, reliability, and cost-effectiveness of this method

led to its implementation in academic and public health laboratories across the world and adaptation to a

broad range of viral pathogens. However, similar methods are not available for larger bacterial genomes,

for which whole-genome sequencing typically requires in vitro culture. This increases costs, error rates
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and turnaround times. The need to culture poses particular problems for medically important bacteria such

asMycobacterium tuberculosis, which are slow to grow and challenging to culture. As a proof of concept,

we developed two novel whole-genome amplicon panels for M. tuberculosis and Streptococcus

pneumoniae. Applying our amplicon panels to clinical samples, we show the ability to classify pathogen

subgroups and to reliably identify markers of drug resistance without culturing. Development of this work

in clinical settings has the potential to dramatically reduce the time of diagnosis of drug resistance for

multiple drugs in parallel, enabling earlier intervention for high priority pathogens.

Introduction

In recent years, whole-genome amplicon sequencing has been adopted as a standard technique for

genomic surveillance of viral pathogens. Initially developed for genomic surveillance of the 2016 Zika

epidemic [1], where low viraemia had precluded direct sequencing of clinical samples even where the

infection had been confirmed, amplicon sequencing uses multiplex PCR of tiled overlapping regions of a

target genome to recover whole genomes from samples of low concentration or complex microbial

communities. This has proven particularly useful for sequencing remnant samples from diagnostic tests,

and its use in the ‘ARTIC’ protocol for sequencing SARS-CoV-2 [2] has led to it being deployed in

thousands of public health laboratories around the world, facilitating true global surveillance of viral

dynamics [3]. The ease, reliability, and low cost of amplicon sequencing have seen its adaptation to a

broad range of viral pathogens both in respiratory disease [4,5] and beyond [6,7]. However, more than

half of all infectious disease-related deaths are caused by 33 bacterial pathogens [8]. Of these,

Mycobacterium tuberculosis is the world’s most deadly single pathogen, responsible for 1.5 million

deaths annually [9]. COVID-19-related disruptions are estimated to be responsible for approximately

700,000 excess tuberculosis (TB) deaths in the period 2020-2023, underscoring how vital it is to transfer

advances in public health infrastructure related to the SARS-CoV-2 pandemic to make up for lost ground

in controlling TB [9].
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Whole genome sequencing (WGS) has proven invaluable for both viral and bacterial pathogens, enabling

the reconstruction of transmission chains and routine genomic surveillance [10–13]. Similar to viruses, for

bacteria such as M. tuberculosis and Streptococcus pneumoniae, WGS can facilitate targeting of

interventions, including vaccines and screening programs [14–16]. In addition, WGS of bacteria offers

unique advantages for detecting antimicrobial resistance and informing tailored treatment regimens

[17–19]. WGS ofM. tuberculosis in particular has also demonstrated clear application to detecting

superspreading [20], or distinguishing recrudescence from reinfection [21].

Despite the demonstrated value of genomic surveillance, limitations of existing genomic tools have

restricted their use to high-resource settings and/or retrospective analyses. M. tuberculosis has low

genomic diversity, making traditional approaches, such as restriction fragment length polymorphism

(RFLP), spoligotyping, and variable number tandem repeat (VNTR) insufficient to infer transmission in

many circumstances [22]. Furthermore, these approaches do not provide information on drug resistance.

Previous approaches to bacterial WGS rely on culture, which is relatively laborious and time-consuming.

ForM. tuberculosis in particular, a slow generation time of 24 hours leads to delays of up to 4-6 weeks

before growth is observed on solid media [22]. Though sputum samples, having high viscosity and

relatively low bacterial load, can be handled in many local health centers, the higher risk of airborne

contagion in bacterial culture necessitates greater biosafety infrastructure and expertise, and is typically

handled in a regional reference laboratory [23]. Assembling resources for culturing, extraction, and

sequencing can be particularly challenging in the LMIC settings where TB is most prevalent. The use of

WGS to inform outbreak investigations as they occur has therefore been limited to high-resource settings

such as the United Kingdom [24]. Amplicon sequencing offers a potential solution. Typically used for

viral pathogens, this approach allows the recovery of whole genomes from clinical samples, without the

need for culturing. Adapting these techniques to bacterial pathogens would provide rapid culture-free

sequencing from minimal input volumes. This could unlock the use of remnant tests, such as GeneXpert

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.19.629550doi: bioRxiv preprint 

https://paperpile.com/c/1E3Tyz/5h7UB+CKmSN+K80i+hkJ2
https://paperpile.com/c/1E3Tyz/YeaM+gKsD+eq0L
https://paperpile.com/c/1E3Tyz/D9WsJ+nKDpi+vsWXg
https://paperpile.com/c/1E3Tyz/Kk9j6
https://paperpile.com/c/1E3Tyz/InRMO
https://paperpile.com/c/1E3Tyz/HsOKW
https://paperpile.com/c/1E3Tyz/HsOKW
https://paperpile.com/c/1E3Tyz/Z9JI
https://paperpile.com/c/1E3Tyz/xndZP
https://doi.org/10.1101/2024.12.19.629550
http://creativecommons.org/licenses/by-nc-nd/4.0/


cartridges [25] for M. tuberculosis, or clinical swabs for undiagnosed respiratory tract infections, which

are often collected in antibiotic-containing viral transport media but may contain pathogenic bacteria such

as S. pneumoniae. The capacity to use such passive surveillance techniques could be transformative for

bacterial genomic epidemiology.

We present here the first use of amplicon-based WGS for the sequencing of bacteria. We have selected

two bacterial pathogens, M. tuberculosis and S. pneumoniae serotype 3, each of which impose a

significant global burden of respiratory disease, yet differ markedly in epidemiology, transmission,

evolutionary dynamics, and genome structure. Our tiled amplicon schemes are able to generate complete

genome coverage from samples with minimal input concentrations without any requirement for bacterial

culturing. We compare recovery of genomic data from a broad range of sample types, including saliva,

sputum, and remnant clinical samples from diagnostic testing, and further show that this genomic data can

reliably perform in silico lineage or serotype assignment to enable the surveillance of bacterial

transmission dynamics. We show that our M. tuberculosis amplicon panel can be applied directly to

sputum samples to identify clinically relevant phenotypes, such as antimicrobial susceptibility, within

days of sample collection and can detect resistance loci that were not found by rapid diagnostics. We hope

that this work will not only generate opportunities for future genomic epidemiology of M. tuberculosis,

but will also provide a roadmap for the development of amplicon sequencing for other clinically

important bacterial pathogens.

Results

In silico predictions indicate applicability of amplicon schemes to large bacterial genomes

In order to design primer schemes with efficient amplification of diverse target sequences, we

downloaded a selection of whole-genome sequences available in public repositories for both M.

tuberculosis (n=489, File S1A) and S. pneumoniae (n=490, File S1B). For S. pneumoniae, which is highly
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recombinogenic and frequently reshuffles its genome via horizontal gene transfer, we intended to target

the primers in the core genomic regions shared across several strains rather than the ever-changing

accessory genomic regions unique to individual strains. We achieved this by assembling these sequences

into a reference-guided pseudo-whole-genome alignment based on genomes from multiple strains mapped

to a serotype 3 reference and then generated consensus sequences or ‘metaconsensus’ to use for primer

design. PrimalScheme [1] was run on these reference-guided aligned consensus sequences, in order to

design primers covering the core genomic regions of S. pneumoniae genome as well as some partially

conserved accessory genomic regions while avoiding highly variable sites. Because M. tuberculosis has

very little within-species diversity outside of the repetitive PE/PPE regions (conserved

proline-glutamine/proline-proline-glutamine domains and hypervariable C termini [26]), PrimalScheme

was run directly on the H37Rv reference genome (NCBI accession NC_000962.3) after masking PE/PPE

regions and sites with known resistance-related polymorphisms to avoid primers being designed at these

loci. S. pneumoniae, which has an average core genome size of 2,160,000 bp [27], required 2292 primers

to cover the entire core genome while M. tuberculosis, which has an average genome size of 4,411,000

[28], required 5128 primers to amplify the entire genome.

For both pathogens, we selected a small number of genetically diverse sequences from the larger set of

publicly available sequences to predict coverage beyond the sequences used for primer panel design (see

Methods: Off-target amplification prediction). As expected, predicted amplicon coverage was highest

against the strains used as a reference for panel design (Sp:OXC141: 98.93%; Mt/H37Rv: 94.31%) -M.

tuberculosis coverage is reduced due to the omission of PE/PPE regions from the design, which account

for 8-10% of the genome [18]. However, predicted coverage in M. tuberculosis remained high across all

members of the M. tuberculosis complex, including all 7 major lineages and Mycobacterium bovis (>=

94.23%), as well asMycobacterium canettii (89.44%), while coverage of S. pneumoniae fell sharply

between Global Pneumococcal Sequence Clusters (GPSCs) ( <82.00%->88.00%) and in the

Streptococcus mitis outgroup (32.18%) due to the extremely high genetic diversity of the S. mitis lineages
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in the Mitis species complex (Figure 1) [29]. The range of average nucleotide identity was narrower

acrossM. tuberculosis (99.98-99.27%) compared to the broader variation observed among S. pneumoniae

(98.76-92.51%), reflecting the diversity in the GPSC lineages included. Pangenome size and similarity

were also markedly different between the two species, with M. tuberculosis having a smaller relative

pangenome (4,335 total genes and a mean genome size of 4,067 genes, a ratio of 1.07, based on the 13

genomes included) than S. pneumoniae (3,942 total genes and a mean genome size of 2,071 genes, a ratio

of 1.90, based on the 13 genomes included). As a result, far more sharing of genes with the reference

strain was observed forM. tuberculosis (4,002-4,050 shared genes) than S. pneumoniae (1,705-1,793

shared genes). This difference reflects the open nature of the S. pneumoniae pangenome, which facilitates

adaptive responses by accommodating genetic diversity in a range of environments [30]. Our findings

suggest that panel applicability is influenced by both genome rearrangements and increases in genetic

distance, as evidenced by the low predicted coverage observed in cases of high genetic distance, such as

between S. pneumoniae and S. mitis.

Amplicon sequencing enables recovery ofM. tuberculosis whole genomes from clinical specimens

without prior culturing

ForM. tuberculosis, we sequenced DNA from cultured isolates and sputum samples using a standard

amplicon sequencing workflow, with and without adding amplicon panel primers. Comparisons of

amplified and unamplified M. tuberculosis-positive sputum samples demonstrated dramatic increases in

coverage for amplified samples as compared to the same samples without amplification (Figure 2A-B).

While only 2/10 of unamplified samples achieved more than 75% coverage, 9/10 of the amplified samples

sequenced above this threshold, with 7 of those generating more than 95% coverage. The remaining

sample achieved 33% coverage amplified, and negligible coverage unamplified. Metagenomic sequencing

indicated successful amplification from samples containing both commensal and pathogenic bacteria

including Streptococcus, Pseudomonas, Actinomycetes and Schaalia spp.
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We assessed the limits of detection for each amplicon panel by sequencing serial 10-fold dilutions of 6

cultured isolates using both amplified and unamplified sequencing approaches. For M. tuberculosis, high

genome coverage (>95%) was observed in all amplified samples above 100 genome equivalents per

microliter (GE/µL), compared to 10,000 GE/µL for unamplified samples (Figure 2, S5).

Direct sputum sequencing enables phylogenetic classification and detects markers of antimicrobial

resistance forM. tuberculosis

Lineages of M. tuberculosis were called with the Mykrobe package [31], which assigned all samples to

lineages 2 (sublineage 2.2.1) or 4. Mykrobe performed equally well in high coverage samples, regardless

of whether these were derived from cell culture or sputum. We derived maximum-likelihood (ML)

phylogenies using IQ-tree [32] including all sequenced specimens and the broad reference set of M.

tuberculosis sequences used for primer design (Figure S2; File S1A). In all cases the primary lineage

predicted by Mykrobe aligned with lineages from an ML tree, though in some cases secondary lineages

were predicted based on minor variants which did not concord with the ML tree.

ForM. tuberculosis, sequencing data was high-quality enough to produce a prediction for all template

dilutions from cultured isolates with at least 10 GE/µL starting quantity (Figure 4, Figure S3). While we

do not have access to phenotypic susceptibility results for these isolates, genotypic-based predictions of

drug resistance in M. tuberculosis are usually highly accurate for most drug classes [33]. These

predictions were internally consistent for all template dilutions above 100 GE/µL (though there was some

variability between partial vs. full resistance calling) with the exception of streptomycin. DNA was

extracted directly, without culturing, from 60 sputum specimens with a range of acid-fast bacilli

semi-quantitative measurements (e.g., 1+ to 3+). Sequencing data was high-quality enough to produce a

drug susceptibility prediction for 53/60 sputum specimens. Of the seven specimens which failed, four

(Yale-TB121, Yale-TB123, Yale-TB149, Yale-TB150) had starting quantities (following extraction)

below 10 GE/µL. None of the other three (Yale-TB126, Yale-TB139, Yale-TB148) had GeneXpert results
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available as comparison. Several different extraction methods were used (detailed in Table S1B and

Appendix S1) as it was not clear what method would perform best; all 10 specimens extracted with the

final protocol, which included a NALC-NaOH treatment to deplete non-mycobacterial DNA, had

adequate data to predict resistance.

Tiled amplicon sequencing amplifies S. pneumoniae amongst mixed species clinical samples

To determine our ability to enrich target genomes from within diverse sample sources, for S. pneumoniae,

we sequenced DNA from cultured isolates, saliva samples, and culture-enriched saliva, both using our

amplicon panel and standard metagenomic sequencing. Despite expected high complements of

Streptococcus oralis and S. mitis in saliva samples, post-amplification samples showed an increased

proportion of reads mapping to the S. pneumoniae target genome compared to standard metagenomic

sequencing. However, this was accompanied by an increase in reads mapping to related Streptococcus

species indicating some non-specific amplification across the Streptococcus genus (Figure 3A-B). Serial

dilutions of cultured isolates indicate a low limit of detection with recovery of > 95% of the genome in

most (7/8) samples above 1,000 GE/μL, a 50-fold increase over unamplified samples which were

universally unsequenceable below 50,000 GE/μL (Figure 3C).

Phylogenetic classification and antimicrobial resistance is not readily assessed using amplicon

derived data from S. pneumoniae

Lineage calling for S. pneumoniae using the GPSC nomenclature [34], implemented in the PopPUNK

framework [35], was largely unsuccessful. Culture-derived samples could be assigned to capsular

serotype using PneumoKITy [36] (Table S3), however none of the lineage callers (PopPunk [35] and

SRST2 [37]) were able to assign lineages to any of the direct clinical samples from saliva or culture

isolates. While our data did indicate coverage of the 7 major S. pneumoniae housekeeping genes (aroE,

gdh, gki, recP, spi, xpt, ddl) used to assign sequence types (STs) or clones based on pneumococcal

multilocus sequence typing (MLST) scheme [38] (Table S4; Figure S4), lineage or clone predictions may
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have been impaired by the high concentration of commensal bacteria in the enriched samples which

harbor similar genes in their chromosomes. Further development is required to design primers which are

specific to pathogenic Streptococcus strains.

In silico analysis identified antibiotic resistance against several second-line and broad-spectrum

antibiotics, including Lincosamides, Macrolides, and Fluoroquinolones (Table S5). Resistance was

detected in 8/9 culture isolate samples, 2/3 raw saliva samples, and 1/3 culture enriched saliva samples.

Percent coverage and identity for resistance genes (RlmA(II), patA, patB, and pmrA) ranged from 88.33%

to 100% (mean = 99.57%) and 99.25% to 100% (mean = 99.58%) for cultured isolates, and from 78.72%

to 100% ( mean = 94.28%) and 84.32% and 94.36% (mean = 89.90%) in raw saliva. The single culture

enriched saliva sample showed 87.75% coverage and 85.77% percent identity toward RlmA(II). It is worth

noting that the presence of antibiotic resistance genes in samples containing mixed Streptococcus species

introduces potential challenges in definitely attributing resistance determinants to S. pneumoniae without

additional confirmatory analyses.

Discussion

Tiled amplicon sequencing of pathogens has proven extremely useful for reconstructing disease spread

and gaining insight into transmission patterns for a variety of viruses [39]. The COVID-19 pandemic

stimulated a global effort to adopt these methods and use genomics to track and monitor SARS-CoV-2;

however, it has not previously been applied to the significantly larger and often more complex genomes of

bacteria. We report the first use of a tiled amplicon approach to sequence two pathogenic bacteria from

specimens with minimal input DNA and demonstrated the ability to identify lineages and markers of drug

resistance, which could have a major impact on disease control.
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Both S. pneumoniae andM. tuberculosis are pathogens of prime public health importance. S. pneumoniae

is responsible for more than 800,000 deaths per year, with the majority of these resulting from respiratory

tract infections in children under five [8]. With the exception of three years during the COVID-19

pandemic (2020-2022), TB has been the leading cause of death from a single infectious agent, causing

more than a million deaths per year [40]. Despite the availability of vaccines, treatment, and significant

funding [41], we continue to miss WHO targets for reductions in TB incidence and death by wide

margins. Rather, cases have risen worldwide over the past 2 years [42]. Much of this rise is attributable to

interruptions in disease detection and treatment during the COVID-19 pandemic. As of 2023, with M.

tuberculosis reclaiming the title of most deadly single pathogen, there is a renewed focus on improving

TB treatment and control - in particular, there are 6 vaccine candidates currently in Phase III clinical trials

[43] and efforts to develop shorter and more effective treatment regimens [44]. This may be an ideal time

to apply tools used to control and monitor interventions for COVID-19 to TB [9].

Antimicrobial resistance is a critical issue in treating and controlling TB, due to the prevalence of

resistance to first line drugs and the length, cost, and complexity of treatment regimens [45]. Despite the

introduction of shorter regimens, the time taken to find an effective treatment can be long, and incomplete

treatment remains a problem [46]. For this reason, the WHO now recommends the use of targeted

sequence-based diagnostics for rapid drug susceptibility testing for patients who are at high risk of, or

have already experienced, treatment failure [47]. However, designing such an assay is not simple; more

than 40 separate loci, each containing numerous individual mutations, have been implicated in drug

resistance [48], and uncertainty can be higher for new or second line drugs [49]. WGS works around these

limitations of targeted amplicon sequencing. Unlike targeted sequencing approaches, data are being

generated across the entire genome, therefore as new genetic markers of resistance are discovered, these

can be added bioinformatically without adding new primers. The required time, infrastructure, and costs

for tiled amplicon sequencing are almost identical to targeted amplicons; the additional data generated

through WGS can be used along with phenotypic drug susceptibility to expand our understanding of the
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genetic markers of drug resistance, especially for third-line or novel drugs, increasing the accuracy of

predictions over time [18].

WGS obviates the need to design a targeted assay and can also return resistance predictions within days of

a positive culture. However, the requirement of most existing WGS approaches to first culture a sample

means that the overall sample-to-sequence turnaround time for M. tuberculosis is measured in weeks or

months [24] and significant biases can be introduced during the culturing process itself [18]. Direct WGS

without culture does not consistently produce data of high enough quality for resistance prediction or

thorough epidemiologic investigation [50,51], is limited to specimens with a high bacterial load [51], or

relies on expensive techniques such as hybrid capture [52]. We have demonstrated tiled amplicon

sequencing directly from sputum specimens, without culture, can be used to make accurate drug

susceptibility predictions and lineage assignments for the majority (53/60) of specimens, unlike prior

whole-genome sequencing approaches [24,50–53]. For a notoriously slow-growing organism such as M.

tuberculosis, eliminating this step reduces the time from sample collection to genome from weeks to days.

Not only could patients receive appropriate antibiotics sooner, but genomic epidemiology could be used

in real-time to inform outbreak investigations [10,54] and public health measures to reduce spread

[11,55].

Neither panel showed high rates of amplicon dropout when faced with targets which had drifted from the

reference strain (a regular issue with viral amplicon panels). However, in silico predictions suggest a

weaker applicability of the amplicon panel in species which undergo significant levels of recombination

and horizontal gene transfer, and our inability to reliably recover serotype and resistance loci in S.

pneumoniae supports this conclusion. Indeed, S. pneumoniae exhibits extremely high levels of horizontal

gene transfer, not only within the species, but also with frequently co-occurring commensal bacteria such

as S. mitis and S. oralis [56,57]. This makes it a particularly challenging target for whole-genome

reconstruction using amplicon-based approaches. If the goal is to determine S. pneumoniae serotype,
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antimicrobial resistance, or lineage, an amplicon panel specifically targeted to the relevant genomic

regions may be more reliable. M. tuberculosis showed consistently high coverage across both in vitro and

in silico predictions, however gaps remain in our coverage of the genome in the PE/PPE regions. While

these are frequently omitted from M. tuberculosis analyses, increasing evidence of functions in host cell

invasion [58] and importance for vaccine design [59] suggest inclusion of these regions in future

iterations of this amplicon panel would be a significant improvement.

The comparison between our results for S. pneumoniae andM. tuberculosis is instructive. Faced with both

drift and genomic rearrangement, designing primers that target conserved motifs will rely upon databases

of previously sequenced genomes to allow us to determine circulating genetic diversity. Rapid

improvements in sequencing and assembly technology have generated vast databases of assembled

genomes; while these resources are not comprehensive, their bias towards improved representation of

species of clinical interest [60] suggests this will not be a limiting factor in panel design. An alternative

consideration is targeting bacteria which do not undergo significant levels of horizontal gene transfer, and

the ratio of genome to pangenome size is likely to be a key metric for our ability to design an amplicon

panel. This ratio is highly sensitive to the diversity of habitats in which the pathogen is found: free-living

or commensal species, such as S. pneumoniae, gain particularly large pangenomes to enable adaptation to

diverse environments; intracellular pathogens show strong purifying selection, low effective population

sizes and low genome-to-pangenome ratios [61]. M. tuberculosis, an obligate pathogen and intracellular

bacterium which has been extensively sequenced [19], has little horizontal gene transfer, and remains a

major threat to human life [42], may be archetypal, however other intracellular pathogens such as Yersinia

pestis, Listeria monocytogenes, Legionella pneumophila, Chlamydia trachomatis, Treponema pallidum,

and Neisseria Gonorrhoeae are suitable targets.

The widespread use of tiled amplicon sequencing for pathogen genomics during the COVID-19 pandemic

has ensured that this method is trusted, understood, and easily implemented in academic and public health
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laboratories worldwide. As the focus now turns to adapting this capacity to other public health threats [3],

it is important to prioritize the development of tools for global priority pathogens that can be implemented

in the regions suffering the greatest burden. The method presented here uses the exact same workflow as

used by thousands of public health labs to sequence SARS-CoV-2, utilizing an off-the-shelf commercial

sequencing library preparation kit with the single change of swapping out primer pools used to generate

amplicons. Genomic surveillance of M. tuberculosis has demonstrated capacity to guide TB interventions

in high income countries [20,21]; the reductions in cost and turnaround time afforded by tiled amplicon

sequencing could enable this to be implemented in LMICs with high TB burden. Just four countries

(India, Bangladesh, Indonesia, Democratic Republic of the Congo) account for over half of all TB deaths;

all four have prior in-country experience with amplicon sequencing of SARS-CoV-2 [62–65] suggesting a

ready capacity for tiled amplicon sequencing of M. tuberculosis. Extensive use of alternative sequencing

methods such as Oxford Nanopore in these regions [62,64,66] suggest adaptation to cheaper and more

portable sequencing platforms may further increase surveillance capacity.

Barriers to clinical application are necessarily higher [67]. If diagnostics and resistance prediction are to

be used to tailor treatment regimens, it is vital that they can be shown to work reliably in a range of likely

scenarios: paucibacillary infections; mixed M. tuberculosis strains; mixed M. tuberculosis and

nontuberculous mycobacteria; partial and incomplete resistance. A comprehensive evaluation of

culture-free sequencing methods in a clinical environment should be a priority for TB control, permitting

earlier diagnosis and resistance profiling. Despite this complex landscape, the capacity of culture-free M.

tuberculosis sequencing could be transformative - not only by increasing rates of successful TB treatment

at the patient level [68], but by preventing the further transmission of MDR-TB at the population level

[69,70]. With several new TB vaccines in Phase III trials, WGS can also provide lineage-specific

estimates of vaccine efficacy and early signal of vaccine escape. Optimizing the use of available

antimicrobials and vaccines, both old and new, is vital to improve TB control and culture-free WGS can

be used to ensure the right interventions are reaching the right populations in a timely manner.
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Materials and Methods

Ethics statement

All specimens were de-identified, remnant specimens used previously for diagnostic testing or

IRB-approved human subjects research in accordance with Yale University IRB-exempt protocol

#2000033281. S. pneumoniae-positive specimens were remnant specimens collected from study

participants enrolled and sampled in accordance with the Yale University Humans Investigation

Committee-approved protocol #2000027690. M. tuberculosis-positive specimens from Moldova were

remnant specimens collected from study participants enrolled and sampled in accordance protocol

#2000023071 approved by Yale University Human Investigations Committee and the Ethics Committee

of Research of the Phthisiopneumology Institute, Moldova. M. tuberculosis specimens from Peru were

remnant specimens collected from study participants enrolled in accordance with protocol #204749

approved by the Institutional Committee on Research Ethics at Cayetano Heredia University, Peru.

Primer design

We downloaded all available S. pneumoniae serotype 3 contigs (n=490; File S1B) from the Global

Pneumococcal Sequencing (GPS) database [34], filtered specifically for phenotypic serotype 3, as of

February 2, 2023. We downloaded raw reads for M. tuberculosis sequences from a previously described

globally representative dataset [19] (n=489; File S1A) from the European Nucleotide Archive at the

European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI). For both

targets, we downloaded complete reference genomes from the National Center for Biotechnology

Information (NCBI) GenBank (OXC141; accession NC_017592 and H37Rv; accession NC_000962.3).

ForM. tuberculosis, variants were called against the reference using Snippy and a time-resolved ML tree

was built using our variant call file, along with sample data generated from Augur (v.22.4.0) [71], IQ-Tree
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(v.2.23) [72], and TreeTime (v.0.10.1) [73]. Representative sequences (n=6) were selected from across

this tree using Parnas (v.0.1.4) [74], to cover >50% of the expected overall diversity. We used these

representatives to create an M. tuberculosis core genome assembly using Snippy.

For S. pneumoniae, consensus genome sequences were generated (n=4) with Snippy (v.4.6.0)

(https://github.com/tseemann/snippy).

Tiled primer schemes (target amplicon size 2kb) were designed for both S. pneumoniae andM.

tuberculosis (excluding PE/PPE and repeat regions) using PrimalScheme [1]. Primers were ordered at 100

µM and 200 µM in IDTE for S. pneumoniae andM. tuberculosis, respectively. Primer pools consisted of

an equal volume of each primer and were used for amplification without further dilution.

Clinical specimens

S. pneumoniae samples consisted of DNA extracted from raw saliva (15), culture-enriched saliva samples

(16), and cultured pure isolates (9). All saliva specimens had a paired cultured specimen cultured from the

saliva (either culture-enriched sample or cultured isolate). A full list of S. pneumoniae samples and

descriptions can be found in Table S1A. DNA was extracted from 200 µL of each sample using the

MagMAX Ultra viral/pathogen nucleic acid isolation kit (Thermo Fisher Scientific) using a KingFisher

Apex instrument (Thermo Fisher Scientific) and quantified using two qPCR primer/probe pairs, lytA [75]

and piaB [76], as described previously [77] (Table S6).

M. tuberculosis samples consisted of DNA extracted from positive solid or liquid cultures from sputum

and DNA extracted directly from sputum specimens. Extracts from culture consisted of remnant

specimens from a prior study in Moldova, where sputum specimens were tested at a number of diagnostic

centers in Moldova by microscopy, Xpert, and culture and positive cultures sent to the National TB

Reference Laboratory in Chisnau for extraction by the cetyltrimethylammonium bromide (CTAB)

method, as described previously [11]. Extracts from sputum consisted of specimens collected in Peru
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after routine diagnostics had been carried out and the presence of M. tuberculosis confirmed. In order to

test the efficiency of different methods for extracting DNA from sputum, each specimen was split into

two and processed with two different protocols. A total of 30 unique sputum specimens were processed

with two protocols each, and a total of 6 different protocols were tested. A full list of all M. tuberculosis

samples and the extraction methods used can be found in Table S1B, and a detailed description of

extraction methods can be found in Appendix S1. Following extraction, DNA was quantified with a M.

tuberculosis-complex specific, fluorescence-based real-time PCR assay on the Bio-Rad CFX96

instrument [78].

Metagenomic sequencing

For S. pneumoniae, 1-3 ng of each sample (up to 4 µL for samples which were undetectable) and a

negative template control (4 µL nuclease-free water) underwent tagmentation for 5 minutes followed by a

magnetic bead cleanup. Then, samples were amplified with Nextera dual-index adapters followed by a

second magnetic bead cleanup. Each sample was quantified with a Qubit fluorometer and 5 ng of each

library were pooled together (up to 4 µL for undetectable samples). The pooled libraries underwent a final

0.7X bead clean up, then were quantified on a Qubit fluorimeter and quality and fragment distribution

verified using an Agilent Bioanalyzer. For M. tuberculosis, samples were prepared as described for

amplicon sequencing, but with the addition of sterile water in place of PCR primer pools for both

amplification reactions.

Amplicon sequencing

Amplicon DNA was prepared using the Illumina COVIDSeq DNA prep kit with primer pools for either S.

pneumoniae orM. tuberculosis alongside a negative template control, as previously described [79].

Template DNA from each specimen was amplified in two separate PCRs, one reaction for each primer

pool. For each sample, equal amounts of each PCR product were combined and the 2 kb amplification

products underwent tagmentation for 3 minutes followed by a bead cleanup and library amplification with
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Illumina index adapters. Equal volumes of the fragmented and indexed library for each sample was

pooled, followed by size-selective bead cleanup for DNA fragments between 300-600 bp. The final

pooled library was quantified with a Qubit fluorometer and dsDNA High-Sensitivity Assay kit, and the

fragment distribution verified on an Agilent Bioanalyzer and high-sensitivity DNA kit. Pooled libraries

were sequenced on an Illumina NovaSeq (paired-end 150) with an average of 10 million reads per library.

Alignments & Calling

Reads were aligned to the appropriate reference (S. pneumoniae: CC180 (Serotype 3); M. tuberculosis:

H37Rv) using BWA-MEM (v.2.2.1) [80] and SAMtools (v1.15.1) [81]. Amplicon sequencing data were

filtered (using defaults; Q>20 over a sliding window of 4, minimum read length 50% of the average

length). M. tuberculosis primer sequences were trimmed using iVar (v.1.4.2) [82]. Commonly used

amplicon primer trimming software (iVar) showed little success at removing S. pneumoniae primers from

the sequencing data, likely due to misalignment of primers with the target sequences. Metagenomic

sequences were trimmed and filtered for quality and length (<100bp), using Trim Galore (v.0.6.10) [83].

Variants were called and filtered (Phred score Q>10 and read depth >10) using BCFtools (v.1.21) [84].

Read subsampling, depth, and coverage was calculated using SAMtools [81]. Raw reads were directly

submitted to the CZID mNGS Illumina pipeline [85] for microbial composition characterization within

samples. Further data analyses and visualizations were carried out in Rstudio (v.2024.04.2+764) [86]

using the tidyverse suite (v.2.0.0) [87].

Off-target amplification prediction

For each amplicon panel, off-target amplification was assessed in silico against a set of related genomes.

We first downloaded S. pneumoniae complete genome assemblies (n=35) (Gladstone et al. 2019),

representing 62% of the GPS database lineages. Lineages containing serotype 3 (i.e. GPSC 12) were

excluded to demonstrate off-target amplification, though the reference genome for serotype 3 (i.e. OXC

141) was retained (Figure S1A). We similarly selected a subset of M. tuberculosis sequences (n=76) from
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our initial pool used to develop the M. tuberculosis primer set (Figure S1B). For each species, we further

compiled a genome cluster consisting of the reference genome used for primer design, 12 diverse strains

representing various lineages, and an outgroup (Table S2). The pangenome for each cluster was calculated

using Roary (v.3.13.0) [88] and an ML phylogeny was constructed using FastTree (v.2.1.11) [89]. Average

nucleotide identity was calculated between our references and all other genomes in the cluster using

FastANI (v.1.34) [90]. Off-target amplification was inferred by primer alignment using Bowtie (v.1.3.1)

[91]; amplicons were predicted for any properly oriented amplicon pairs within 2,200 bp.

Serotyping, lineage assignment, and resistance prediction

S. pneumoniae raw reads were first filtered against OXC141 and later de novo assembled with the CZID

mNGS Illumina pipeline [92]. In silico multi-locus sequencing types (MLST) were assigned with mlst

(v.2.23.0) [93]. GPSCs were assigned with PopPUNK (v.2.7.0) [35]. In silico screening of contigs for S.

pneumoniae antimicrobial and virulence genes was done using ABRicate (v1.0.1) [94] and appropriate

antimicrobial resistance databases [95–98]. For M. tuberculosis, Mykrobe [31] was used to both assign

lineages and predict resistance using the built-in panel “202309” for M. tuberculosis [99]. As a

comparison, a time-resolved ML tree was built using our variant call file, along with sample data

generated from Augur (v.22.4.0), IQ-Tree (v.2.23), and TreeTime (v.0.10.1) (Figure S2). Tree

visualizations were done using Auspice (v2.57.0).
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Figures

Figure 1: In silicomodeling indicates broad applicability across diverse Streptococcus pneumoniae

serotypes andMycobacterium tuberculosis lineages.

Pangenome representation of (A) S. pneumoniae whole genome sequences (n=13) and Streptococcus mitis

outgroup (Accession: AP023349) and (B)M. tuberculosis whole genome sequences (n=13) and

Mycobacterium canettii outgroup (Accession: NC_019950). Starred phylogenetic tree tips mark the

reference sequences used for primer design. Shaded bar graphs (middle) denote genes shared amongst
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clades, yellow-red color scale denotes average nucleotide identity. Predicted amplicon coverage (right) is

shown in grey with forward and reverse amplicon pairs displayed above and below the line. M.

tuberculosis has a higher proportion of genes shared between clades and higher ANI than the open

pangenome of S. pneumoniae, driving the higher predicted amplicon coverage. A list of the sequences

used in this analysis can be found in Table S2.

Figure 2: Tiled amplicon sequencing enables culture-free recovery of whole genome sequences from

Mycobacterium tuberculosis sputum specimens.

We compared sequencing results for unamplified and amplified M. tuberculosis clinical specimens with

regard to (A) microbial content via the CZID metagenomics pipeline and (B) average genome coverage.

M. tuberculosis-positive sputum samples sequenced directly showed dramatic increases in genome

coverage, with 8/10 samples generating more than 80% coverage after amplification with our protocol,

and a ninth sample generating 78% coverage despite a significant infection with Schaalia odontolytica.

Serial dilutions of DNA from cultured isolates (C) demonstrated that the amplicon scheme enables
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recovery of genomes with >95% coverage from all samples with ≥100 GE/μL, compared to ≥10,000

GE/μL without amplification.

Figure 3. Tiled amplicon sequencing enhances culture-free recovery of whole genome sequences

from S. pneumoniae sputum specimens

We compared sequencing results for amplified and unamplified S. pneumoniae clinical specimens with

regard to (A) microbial content via the CZID metagenomics pipeline and (B) average genome coverage.

S. pneumoniae-positive respiratory samples from matched patients showed increases in genome coverage

and depth for all sample types, despite simultaneous amplification of closely related taxa.

Non-Streptococcus taxa are indicated by gray shading. Serial dilutions of DNA from cultured isolates (C)

demonstrated that the amplicon scheme enables recovery of genomes with >95% coverage from most

(7/8) isolates with starting quantities ≥1,000 GE/μL, while no isolates below 10,000 GE/μL achieved this

without amplification.
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Figure 4: Amplicon sequencing predicts TB antimicrobial resistance in silico.

Predicted susceptibility to 15 anti-TB drugs by amplicon sequencing for DNA extracted from sputum

without prior culture using our optimized extraction protocol, showing detection of Streptomycin and

combined Rifampicin / Isoniazid resistance.
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