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Abstract

In this paper we investigate various effects of inbreeding on the likelihood ratio (LR) in forensic kinship testing. The basic
setup of such testing involves formulating two competing hypotheses, in the form of pedigrees, describing the relationship
between the individuals. The likelihood of each hypothesis is computed given the available genetic data, and a conclusion
is reached if the ratio of these exceeds some pre-determined threshold. An important aspect of this approach is that the
hypotheses are usually not exhaustive: The true relationship may differ from both of the stated pedigrees. It is well known
that this may introduce bias in the test results. Previous work has established formulas for the expected value and variance
of the LR, given the two competing hypotheses and the true relationship. However, the proposed method only handles
cases without inbreeding. In this paper we extend these results to all possible pairwise relationships. The key ingredient is
formulating the hypotheses in terms of Jacquard coefficients instead of the more restricted Cotterman coefficients. While
the latter describe the relatedness between outbred individuals, the more general Jacquard coefficients allow any level of
inbreeding. Our approach also enables scrutiny of another frequently overlooked source of LR bias, namely background
inbreeding. This ubiquitous phenomenon is usually ignored in forensic kinship computations, due to lack of adequate
methods and software. By leveraging recent work on pedigrees with inbred founders, we show how background inbreeding
can be modeled as a continuous variable, providing easy-to-interpret results in specific cases. For example, we show that if
true siblings are subjected to a test for parent-offspring, moderate levels of background inbreeding are expected to inflate
the LR by more than 50%.
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Introduction typically the LR or some version of it is included when
the case is reported. The conclusion based on the LR may

The conventional approach to forensic kinship testing includes ~ be flawed when the true pedigree connecting the individu-

formulating two hypotheses and calculating a likelihood
ratio (LR) based on genetic data from genotyped individu-
als. Practice differs between countries and laboratories, but
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als of interest differs from the pedigrees considered by the
hypotheses. As an example, consider a standard paternity
case, where the prosecution asserts that a certain man is the
father of a child, while the defense claims that the man and
the child are unrelated. The truth, on the other hand, may
be that the man is the child’s uncle. A special case of incor-
rect hypotheses occurs when inbreeding is not accounted
for. For example, if the alleged father is inbred, and this is
ignored when formulating the hypotheses, this may signif-
icantly bias the LR. One aim of this paper is to investigate
and quantify this effect.

Slooten and Egeland derived explicit equations for the
expected value and variance of the LR [1]. They also
extended this to cases where the true relationship differs
from those stated in the hypotheses [2]. However, in both of
these works only non-inbred individuals were considered.
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An important contribution of this paper is the extension of
these results to general pairwise relationships. In particular,
we show that exact expressions for the expected value and
variance of the LR can be obtained also in cases with
inbreeding. The expressions are in general more involved
than in the non-inbred case, and not as easy to interpret.
However, we derive interesting and practical results in
important special cases.

A parametric approach to modeling background inbreed-
ing in kinship testing was recently introduced [3], employ-
ing the concept of inbred founders [4]. To exemplify,
consider a pair of paternal half siblings, whose father is
assigned an inbreeding coefficient f. As f increases from
0 to 1, the relationship between the half siblings becomes
genetically indistinguishable from that between parent and
child. We extend the theoretical framework of [1, 2] to
pedigrees with inbred founders. As a result, the impact of
background inbreeding on the expectation and variance of
the LR can be studied based on exact expressions. In cases
where the amount of inbreeding is unknown, we can still
provide guidance on the expected values for the LR. Our
approach conveniently allows a continuous range of pos-
sible true alternatives rather than a discrete set of specific
alternatives. To arrive at explicit results of practical interest,
we restrict attention to pairwise relationships. Furthermore,
as in the work of Slooten and Egeland, we ignore mutations,
dropouts, and silent alleles and we assume Hardy-Weinberg
Equilibrium (HWE). However, we explain how deviation
from HWE can be modeled by the so called theta (6)
correction.

R scripts and functions used to obtain numerical results
in this paper are gathered in a R library (see the
“R implementation” section). Pedigree likelihoods and
marker simulations are performed with the forrel package
[3].

This paper is organized in the following manner: After
establishing some terminology and notation we review
the main results of [2] regarding the expected value and
variance of the LR for non-inbred pairs of individuals. We
then proceed to extend these results to general pairwise
relationships, including relationships in pedigrees with
background inbreeding. Several worked examples follow,
including a simulation study comparing our formulas with
real-life results. Finally, we discuss some consequences of
this work and how it relates to other aspects of forensic
genetics.

Definitions and notation
A central concept for measuring genetic relatedness is that

of identity by descent (IBD). Two alleles are said to be IBD
relative to a given pedigree if they are identical by state and
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originate from the same ancestral allele within the pedigree

[5].
Coefficients of inbreeding and kinship

The coefficient of inbreeding f, introduced by Wright [6],
is the probability that an individual is autozygous at a given
autosomal locus, i.e., that the two homologous alleles are
IBD. This is the same as the kinship coefficient ¢ between
the parents of the same individual, defined as the probability
that a random allele from the mother is IBD to a random
allele from the father at the same locus.

Founders of a pedigree are conventionally assumed to be
unrelated and non-inbred. Following [3] we relax the second
assumption, allowing an arbitrary inbreeding coefficient
f to be assigned to any founder individual. For a given
pedigree with N founders, we denote the set of founder
inbreeding coefficients by f = (fi1, f2, ..., fn).

Background inbreeding in human populations is nor-
mally low, but may exceed 5% in certain cases [7, §]. In
forensic case work inbreeding is common, ranging from
consanguineous marriages between cousins, f = 1/16
or lower, to incestuous relationships between siblings or
parent-child, both with f = 1/4. In breeding applications
values closer to 1 may occur.

Jacquard coefficients and likelihood of a pedigree

The kinship coefficient is a coarse measure of relatedness;
for instance, it has the same value for a parent-child rela-
tionship as for full siblings. A more refined measure is given
by the nine Jacquard coefficients [9] A = (Ay, ..., Ag),
also called the condensed identity coefficients. These are the
expected relative frequencies of the

Jacquard states J1, ..., Jo are depicted in Fig. 1. Alleles
within each individual are unordered, and hence, several
IBD configurations can correspond to the same Jacquard
state. Furthermore, A is related to ¢ through

1 1
0= A +§(A3+A5+A7)+ZA3.

The likelihood of two individuals being related according to
A, given their genotypes G = (g1, g2) at a marker may be
expressed by conditioning on the Jacquard state:

9
LA|G) =) AP(G | ). (0

i=1

The conditional probabilities P(G | J;) are listed in Table 1.
These probabilities are found by direct calculations; for
instance, P((aa,aa) | J1) = pq since J; dictates that all
four alleles are IBD.
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Fig. 1 The Jacquard states Ji, ..., Jo representing all possible IBD
patterns among the four alleles of two individuals at an autosomal
locus. Each row of dots represents the two alleles of an individual.
Connected dots indicate IBD. The states Jy, Jg, and J7 do not involve
inbreeding and are sometimes denoted Ko, K1, and K>

IBD coefficients and inbred founders

For two non-inbred individuals, the first six Jacquard
coefficients are zero, and Ag, Ag, and Ay reduce to the
IBD coefficients k = (kg, k1, k2) introduced by Cotterman
[10]. They give the probabilities that, at a given autosomal

Table 1 The conditional probability P(G | J;) of a pair of genotypes G

locus, the individuals share zero-, one-, and two-allele IBD,
respectively. Note that ko + k1 + k2 = 1, so k can be
represented in a two-dimensional triangle with axes «g and
k2. Thompson [11] showed that the IBD coefficients are
restricted to /c12 > 4koky. This gives rise to an inadmissible
region for the parameters, in gray in Fig. 2.

Although the IBD coefficients are only defined for non-
inbred individuals, other members of the pedigree can
be inbred. For example, a pair of half siblings remain
outbred even if their shared parent is inbred. However, this
inbreeding will affect the relatedness coefficients. Table 2
lists the kinship and the IBD coefficients for some common
relationships, as functions of the founder inbreeding. The
effects are visualized in Fig. 2. In the half sibling example,
the genetic relationship approaches that of parent-child, as
the founder inbreeding increases towards 1. Similarly, the
IBD coefficients of full siblings with inbred parents may fall
anywhere in the lightly shaded region towards the point of
monozygotic twins.

Review of previous results

We next review the main results of [2] relevant for our
work. In particular we restate the explicit formulas for the
expectation and variance of the LR in the case of non-inbred
individuals.

The likelihood ratio as a random variable

We consider a kinship test involving genetic data from two
non-inbred individuals. Two hypotheses Hp and Hp about
the relationship are to be compared using the LR. For our
purposes, each hypothesis corresponds to a point in the
IBD triangle, denoted by k p and k p respectively. However,
the evidence may be generated from another pedigree,
corresponding to a third point k7. We therefore have the

= (g1, &2), given a Jacquard state J;

G Ji J J3 Jy Js Jo J7 Jg Jy

(aa,aa) Pa p2 P2 pa p2 pa P2 pa o

(aa, bb) 0 PaDb 0 PaD} 0 Pips 0 0 Pap;

(aa, ab) 0 0 PaDb 2p2po 0 0 0 P2pb 2p3 o

(aa, be) 0 0 0 2papbpe 0 0 0 0 2p3Pbpe
(ab, aa) 0 0 0 0 PaDb 2p2po 0 P2pb 2p3 o

(b, aa) 0 0 0 0 0 2papbpe 0 0 2p3Pbpe
(ab, ab) 0 0 0 0 0 0 2paps PaPb(Pa + Pb) 4p2p}

(ab, ac) 0 0 0 0 0 0 0 PaPbpe 4p3pope
(ab, cd) 0 0 0 0 0 0 0 0 4papbPePd

The symbols a, b, c, and d represent different alleles, with population frequencies p,, pp, pc, and pg respectively
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Fig.2 The IBD triangle with location of some common relationships.
The gray area is inadmissable. The arrows illustrate the effect of
founder inbreeding in the cases given in Table 2. PO, parent-child;
MZ, monozygotic twins; S, siblings; H, half siblings; U, avuncular; G,
grandparent grandchild; FC, first cousins; UN, unrelated

following setup, comprising the competing hypotheses and
the true relationship:

Hp : K:Kp:(/cé),xfu,/cf)
Hp: k=kp=(k. k. k)= (1,00)

Truth: Kk =kr = (K3, ki, K3).

Reflecting standard practice, we will always use unrelated-
ness as the defense hypothesis, i.e., k p = (1, 0, 0). It should
be noted, however, that this is not a theoretical requirement
for the methods presented here.

The concept of the likelihood ratio as a random variable
was discussed by Slooten and Egeland [1]. We review
the basics here, presented in a slightly simpler notation
sufficient for our purposes.

Denote by K;, i = 0, 1, 2, the event that the individuals
share exactly i alleles IBD. As shown in Fig. 1, Ky, K1,
and K, are identical to the Jacquard states Jy, Jg, and J;
respectively. For fixed « p the likelihood ratio for a given
pair of genotypes G = (g1, g2) can be written as

LR@G) = PGLHD) PG lrp)
" P(GIHp)  P(Glxp)
. »PGIK) o
2" PG Ko)

Note that the final transition was obtained by applying (1)
in both the numerator and denominator. The probabilities
P(G | K;) are given in Table 1.

Now, viewing the genotypes as a random variable G, we
define the random variable LR = LR(G). Note that the
distribution of G is completely determined by « 7 (assuming
HWE), hence the distribution of LR is determined by k p
and k7. If these parameters are clear from the context, we
will suppress them in our notation; otherwise, we write

Table 2 Relatedness coefficients as functions of founder inbreeding, in a selection of common relationships

Relationship 17 o(f) K k(f)
fy f,
B B S ! la+ 44 .35 Kko(fi, f) = (1 = ) = f2)
ki(fi, f) = 31— fi f)
k(fi. ) =10+ A+ f)
f
7 i H g g1+ 1) (3:3:0) Kko(f) = 31— 1)
(f) =30+ 1)
k(f)=0
U 8 1+ 158 (3.5.0) Ko(fi, f) = 3(1 = L5
ka(fi, fo) = 51+ B30
k2(f1, 2) =0
B FC 5 E+ 432 ¢.1.0 ko(fi. o) = +(3 — L5L)

k1(f1, f2) = }—1(1 + %)
k2(f1, f2) =0
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LRy p 7 In the special case when Hp equals the truth, i.e.,
kp = k1, we may simplify LRy, t0 LRy ,.
Throughout, we assume the following condition to hold

P(G | Hp) >0= P(G | Hp) > 0. 3)

In the present context, it means that all DNA profiles
that can occur under Hp, can also occur under Hp. In
our examples Hp specifies unrelated individuals, and then
(3) holds. The condition also holds for mutation models
provided all elements of the mutation matrix are positive.
We do not model mutations in the work presented here,
as practical exact expression are then no longer available.
However, the implementation allows for general mutation
models. Without (3), likelihood ratios could be infinite, i.e.,
not defined.

Expected likelihood ratio

The expectation of LR may be found by summing over all
possible genotypes G in the standard way:

E(LR) = Z P(G)LR(G), “)
G

where P(G) = P(G | kT) = iKl-TP(G | Ki). An exact
expression for E(LR) when kp = k7 was first derived in
[1] and extended in [2] to apply when kp # k7. For the
latter situation it was shown that, for a single marker with L
alleles,

E(LR) =kp - Ao~ (kT)', &)

where ¢ denotes the vector transpose, and

111
Ag= 1 2 LH |, (6)
| L+l LA+D
2 2

Importantly, the expected value depends only on the number
of alleles, not on the allele frequencies. Furthermore, the
expectation is symmetric in k p and k7, so that

E(LRypur) = E(LLRiy kp)- )
Variance of the likelihood ratio

To derive the variance of LR we apply the general formula
var(X) = E(X?)— E(X)?. Since the last term follows from

Eq. 5, all that remains is to find the first term. Some notation
is needed:

_ 1 Pa 4 Db
1= 16 (pﬂrpa)’
a<b

52 = Z 2papp’

a<b1
$3 =§p—a,
1 1 4, 1
4 = 4 Z (Pb Pa)’
a<1b
S5 =Y —=5.
;pﬁ

Furthermore, supplementing the matrix Ao given in Eq. 6,
we define matrices A and A, by

1 L+ Ltl
4 2
Ar= |82 LB gy LD 4oy ®)
Ll LUSD 405 53454
1 L41 L(L+1)
2
A= L KD 405 s34 ©)
L<L2+1) 83 + 54 §2 + 85

It was shown in [2] that

2
2 P
E(LR?) =) «lkpAiler)';
i=0
hence, the complete variance expression becomes

var(LR) =

2
2
Yo« rpAiGer)’ — (kpAoer)’)”. (10)
i=0
Contrary to the expected LR, the variance of the LR depends
on the allele frequencies.

Example: paternity testing

This example serves as an illustration of the above described
expected LR and the corresponding hypotheses. Consider a
paternity case, where a man is claimed to be the father of a
child (Hp). The truth is that a brother of the alleged father
is the true father of the child. The hypotheses and the true
relatedness are in terms of the IBD coefficients given as

=(0,1,0)
=(1,0,0) (11)
Kk =kr = (%, % 0).

Hp: k=«kp
Hp: k=kp
Truth :
Figure 3 illustrates the hypotheses in terms of pedigrees,
and as points in the IBD triangle. Equation (5), with IBD
coefficients as in Eq. 11, simplifies to

L+7
E(LR) = % (12)
The variance of LR becomes

s 2
var(LR) = —7L1g9 +5 = (%) .
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4 we now formulate our hypotheses using Jacquard
Hp Hp Truth o
coefficients,
Hp: A=Ap =(A],....AD
Hp: A=Ap =(AP,....,AD)=(.....0,1)
Truth: A=Ar =(A],..., AD).
KP KT KD . .
55 - ON Note that the defense hypothesis still corresponds to unre-

Fig.3 Pedigrees and location of IBD coefficients k p, k p, and k7 for
a paternity case when the true relationship is avuncular

In the special case L = 2, and allele frequencies ¢ and
1 — g, the variance expression reduces to

111 1=¢)72+4>
var(LR)=—+_ﬂ
64 32 qg(1-—gq)

This expression is minimal when ¢ = 0.5 and becomes
infinitely large when ¢ or 1 — g approaches 0. If no
assumption is made for L, but all alleles are assumed
equally frequent, the variance reduces to

L(L+12) 13
= — — —. 13

var(LR) o < (13)
Table 3 exemplifies these formulas for various realistic val-
ues of L, and compares the results with the corresponding

values if Hp was true.

Likelihood ratio for general pairwise
relationships

In this section we extend the results reviewed above to
relationships between any pairs of individuals. In particular
we now allow inbreeding. For this to work we must pass
from the IBD coefficients to the full set of Jacquard
coefficients. For details regarding derivations of the results
(see the Appendix).

Expected likelihood ratio

We use the same setup for kinship testing as introduced
previously, but in order to allow general inbreeding,

latedness. We are interested in the likelihood ratio compar-
ing Hp with Hp when the genotypes are generated by a
pedigree with the Jacquard coefficients Ar. Equation (1)
implies that

LR(G) = LG1Ap)

P9(G | AD; G 14)
=2 AL BT
As shown in the Appendix, the expected LR is
E(LRap,ar) = ApBo(Ar)', as)

where By is the symmetric 9 x 9 matrix given in Table 4,
whose elements are E(/.ZRJI.JJ.), for 1 < i,j < 9. As
opposed to the non-inbred case, we see that the expected
value in general depends on the allele frequencies.

Variance of the likelihood ratio

In the Appendix matrices By, ..., Bg are defined and it is

shown that

9
E(LR?) = ZAI-PApBi(AT)’. (16)
i=1

From this we obtain the variance formula

var(LR) =

9
> AP ApBi(Ar) — (ApBo(Ar))’. (17)

i=1
Pairwise relationships with inbred founders

As previously explained, a set of inbreeding coefficients
f can be assigned the founders of a pedigree to model
background inbreeding. The Jacquard coefficients of any
pair of pedigree members are then functions of f. It follows
that the formulas for expectation and variance of LR

Table 3 Expectation and variance of LR in the paternity example of Fig. 3, for loci with 2, 10, and 50 alleles

Truth Kp K7 E[LR] L=2 L=10 L =50
PO ©,1,0) (0,1,0) L 1.250 (0.188) 3.250 (1.686) 13.250 (9.188)
U ©,1,0) 4,10 L 1.125 (0.234) 2.125 (3.234) 7.125 (48.230)

The variances are computed assuming uniform allele frequencies. The bottom row (U) shows the values when the true pedigree is uncle-nephew,
as analyzed in the main text. For comparison, the top row shows the corresponding numbers when Hp is true
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Table 4 Elements of the symmetric matrix By, given as E(LR 7;)
Ji Jr J3 Ju Js Je J7 Jg Jo
Ji 3 # > > o L Yo L > o L 1
5 L? L L L L L 1 1
/3 RIS L L | L Ly 1
Jy L 1 1 1 1 1
Js FL+Y ) L L L 1
Je L 1 1 1
L(L+1) L+l
1 p 2 1
L+4
’s = 1
Jo 1

Each row represents J;, a Jacquard state assumed by Hp, while each column presents J;, the true Jacquard state

involving such pedigrees remain as in Eqs. 15 and 17, except
that the parameters A p and A7 must be updated.

Specifically, let fp be a vector of founder inbreeding
coefficients in the pedigree assumed by Hp, and fr
similarly in the true pedigree. The expectation and variance
of LR in this situation are then given by

E(LRAp(fp).Ar(f1) = Ap(f p)Bo(AT(f 7))

and

Var(LRAp(f ), Ar(f1))

9
— ZA;D(fP)AP(fp)Bi(AT(fT))t

i=1
—(Ap(f p)Bo(AT(f 1))’

Note that the matrices B; only depend on L and the
allele frequencies, and therefore are unchanged by founder
inbreeding.

Remark I It should be emphasized that the formulas (15)
and (17) are needed only when at least one of the tested
individuals are inbred in some of the involved pedigrees. If
both are non-inbred, the simpler expressions (5) and (10)
using IBD coefficients suffice. Importantly, this remains
true if other members of the pedigree are inbred, as long
as this does not lead to inbreeding in the tested individuals.
In particular, founder inbreeding may be accounted for in
Eqgs. 5 and 10 simply by replacing kp and k7 by kp(fp)
and k7 (fr) respectively.

Founder inbreeding and 0 correction

The conventional approach to background relatedness in
forensics is the so called 6 correction [12]. In an inbred
population, the composition of genotypes do not follow the
Hardy-Weinberg principle, implying that the frequencies
given in Table 1 no longer hold. The following approach

compensates for this by adjusting the allele frequencies.
Without loss of generality we can assume that alleles
observed are sampled sequentially. The probability that
allele i is sampled as the jth allele is given by the sampling
formula

; b6 +9_pi

I — 18
L WY (1%

where & = 1 — 6 and b; denotes the number of alleles of
type i among the j — 1 previously sampled. Note that for
pairwise cases, the likelihood can be written

9
LA(f) | G.0) =Y Ai(f)P(G | Ji.0). (19)

i=1

where P(G | J;, 0) is calculated using Eq. 18. The matrices
Bjq, ..., By then change with 6, modifying the expectation
and variance of the LR. This emphasises a fundamental
difference between founder inbreeding and 6 correction: f
modifies the relationship itself, while 6 only impacts the
genotype probabilities.

Example: 6 correction and founder inbreeding in a
paternity case

This example compares 6 correction to founder inbreeding.
Consider first the hypothesis Hp: A and B are unrelated.
Assume both individuals are homozygous a/a. Equation (18)
gives the likelihood

20 4+ 6p, 30 +0p,

Lo(Hp) = pa(6 +6 .
o(Hp) Pa(@ +0py) 1+06 1120

If rather than using 6 correction, we assign an inbreeding
coefficient f to A, the likelihood becomes

Ly(Hp) = (fpa + (1 — HIPHP?.
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Consider next the hypothesis Hpi: A is the father of B.

Equation (18) now gives

20 + 6 p,
1+6
and so the LR with 6 correction is
Lo(Hp1)  1+26
Lo(Hp) 30 +9_pa.

The inbreeding coefficient approach gives

Ly(Hp1) = (fpa+ (1= HHpHpa

and LRy = 1/p,. Note that the LR does not depend on f
and that this is true for all genotype combinations for A and
B. The LRs for other genotype combinations for A and B
with 6 correction are given in Table 10.8 in [13].

To illustrate (19) consider the hypothesis Hp,: A and B
are paternal half siblings whose father is inbred. Table 2 then
gives Ag = %(1 4+ f)and Ag = %(l — f), and by Egs. 18
and 19 we may write down the likelihood for any genotype
combinations. For instance, when A is homozygous a/a and
B homozygous b/b the likelihood is

0 pp 0+ 0 pb

1+6 1420

The LR comparing Hp, with A and B being unrelated
becomes %(l — f). If A and B share alleles, the LR will
depend also on 6.

Lo(Hp1) = pa(® + 0 pa)

LRy =

L(f.0) = —(1 — PPa@ +0pa) —

R implementation

Utilities to perform the computations in this paper are
provided in a R library named InbredLR, available from
the first author, building on several packages in the ped
suite, notably pedprobr and forrel [3]. The core of InbredLR
are functions that compute the expectation and variance
of the likelihood ratio for pairwise relationships. The user
can specify the parameters (k, f or A) or specify the
pedigrees, possibly with inbred founders. A function for
simulating marker data to estimate the distribution of LR is
also provided, as well as a function for visualizing pedigrees
Hp and Hp and the true pedigree and location of the
corresponding IBD coefficients in the IBD triangle.

Results

Paternity case for siblings with inbred founders
Consider two individuals who claim to be related as parent
and offspring. Their true relationship is siblings and their

parents coefficients of inbreeding are fr = (f1, f2)-
Figure 4 shows the case. This example can be relevant

@ Springer
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Fig.4 Hypotheses involved in “Paternity case for siblings with inbred
founders” and the location of the corresponding IBD coefficients k p,
K p, and k7 in the IBD triangle

for family reunion cases, where a parent-child relationship
would give right to residence permit, whereas a sibling
relationship would not. In [14] such a case is considered.
Hp and Hp and their true relationship are in terms of the
IBD coefficients given as

Hp: k=kp=1(0,1,0)
Hp: k=kp=(1,00) (20)
Truth: k=kr(fr),

where k7 (fr) = kr(f1, f2) are as in the first row of
Table 2. Keeping in mind Remark 1, we apply (5) to find the
expected LR:

L+3

L —
E(LR) = —(f1 + )+ 7 21

Figure 5 plots E(LR) as a function of the inbreeding level
(assuming f1 = f»), for a single locus with L = 2, 10 and
50 alleles.

Without founder inbreeding, E(LR) = (L + 3)/4.
Interestingly, this is the same as the expectation if Hp was
true, i.e., if the two individuals were in fact father and
son (see first row of Table 3). The variance of LR differs
between the two cases, however (not shown here).

As the background inbreeding of the true sibling pedigree

increases, E(LR) increases. The expected LR of the
304

201 e L

[i%

) 50

L -= 10
101 2
0 -

0.00 0.25 0.50 0.75 1.00

Fig. 5 E(LR) as function of background inbreeding level fr
(assuming f; = f3), for L = 2, 10, and 50 alleles, for the paternity
case in Fig. 4. The shaded area shows one standard deviation below
and above E(LR), for uniform allele frequencies
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paternity case (and hence the trust in Hp) is therefore
higher if the true relatedness is siblings with background
inbreeding, rather than the tested parent-child relationship.
The variance of LR decreases moderately for increasing
founder inbreeding. For increasing number of alleles L, the
slope of the expected LR increases.

The following calculation gives a simple approximation
of the inflation in the expected LR caused by background
inbreeding. Suppose fi = f» = f, and write (21) as
no + pyp, where po = %(L + 3) is the expected LR
without founder inbreeding, and py = ;11(L — 1) f is the
expected contribution caused by founder inbreeding. Note
that uo + uy = (1 + %)MO’ and that for L > 5 we have

’;—g = f—jré f= % f. This implies.that with N independent
markers, the total LR has expectation

[+ 5 Dp0lV = 1+ 3HV 0 = A+ 3FNuf.

This means that a background inbreeding level f will inflate
the expected LR by at least % fN. For example, if N = 20
and f = 0.05, the inflation rate is greater than 50%.

Siblings and half siblings with founder inbreeding

Distinguishing between siblings and half siblings can be
difficult based on unlinked markers. Mayor and Balding
address the problem in [15], with focus on the number of
loci needed. If the shared parent of the half siblings has
inbreeding coefficient fr > 0, the problem becomes even
more interesting.

Consider the situation shown in Fig. 6. The hypotheses
are

Hp: k=kp(fp)
Hp: k=kp=1(1,0,0) (22)
Truth: k =kr(fr),

where fp = (f1, f2) are the parental inbreeding
coefficients in the Hp pedigree and «p(fp) and k7 (fr)
are as in the first and second rows of Table 2, respectively.

MZ

Hp Hp Truth

Kp

Kt Kp
PO UN

Fig. 6 The hypotheses involved in “Siblings and half siblings with
founder inbreeding” and the location of the corresponding IBD
coefficients k p, k p, and k7 in the IBD triangle

6-
54
x4
L
3-
24
L=2
1 A T T T T T
0.00 0.25 0.50 0.75 1.00

Fig. 7 E(LR) for the case in Fig. 6 as functions of background
inbreeding level fr, for fp = 0 (dashed line) and fp = 0.2 (solid
line), and L = 2, 10, and 20

This setup facilitates for modeling background inbreeding
in both the true pedigree and in Hp. Equation (5) gives

E(LR) = L 8—1 ((fl +f2)2(fT +1) +fT>
L+7
8 (23)

In Fig. 7, the expectation of LR is shown as a function of
founder inbreeding fr of the true half sibling pedigree, for
Hp stating sibling pedigree with founder inbreeding fp = 0
and 0.2 (assuming f1 = f2), and L = 2, 10 and 20 alleles
at a locus. For increasing values of fr, E(LR) increases,
for all values of fp, and the evidence in favor of a sibling
relationship becomes stronger.

Consider next the situation when f; = fo, = 0. Hp
then assumes a sibling relationship without inbred founders.
Figure 8 shows E(LR) (dashed line) and L R computations
from 1000 sets of simulated data, as a function of fr.
The solid line gives the mean value of the simulated LR.
The expected LR increases slightly as founder inbreeding
increases. For Fig. 8a this seems to fit well with the mean
values of the LRs from simulated data. These simulation
assumes 13 loci, each of 3 alleles with allele frequencies
0.4, 0.3 and 0.3. In Fig. 8b, on the other hand, there
is a substantial difference between E(LR) and the mean
of the simulated LRs. These simulations use 13 CODIS
markers with allele frequencies ranging from 0.0003 to
0.5378 (allele frequencies are available as a part of the
R library InbredLR, see the “R implementation™ section).
Alleles with low frequencies will more seldom be present
in the simulations. The expected LR only depends on the
number of alleles at a locus, but because of the rare alleles,
the simulations give in practice a lower number of alleles at
these loci. The simulations in Fig. 8c use the same markers,
but with uniform allele frequencies for alleles at a locus.
The expectation of the LR is independent of the allele
frequencies and is therefore not changed, but now the mean
of the simulated L Rs is closer to the expected value. Even
though E(LR) is independent of the allele frequencies, the
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Fig. 8 Simulations of LR for the case in Fig. 6. Each figure shows
1000 LR values, for five values of fr, each calculated from a
simulation of a complete set of genotypes for 13 loci. Solid lines show
mean of simulated LR. Dashed lines show E(LR). a Loci with 3
alleles with frequencies 0.4, 0.3 and 0.3. b CODIS loci with realistic
allele frequencies. ¢ CODIS loci with uniform allele frequencies

variance is not, and small allele frequencies increase the
variance.

Finally, we offer an approximation of the inflation in the
expected LR due to background inbreeding. For simplicity,
we assume f; = fo = 0 so that Hp states a normal sibling
relationship. From Eq. 23 the expected LR is pg = %(L +7)
if f7 = 0. On the other hand, if fr > 0, the expected
contribution tothe LRis s = é(L — 1) fr.For L > 5 we

have ’;f >3 f T, and it follows that

(o + )™ =10+ 5D el = A+ 3N

A background inbreeding level of fr will inflate the
expected LR by at least % frN. For example, with N =
20 and fr = 0.05, the inflation rate is greater than
33%.

Paternity case with inbreeding
Consider a paternity case with hypotheses as shown in

Fig. 9. The alleged father is indeed the true father and has
inbreeding coefficient f. We will analyze the consequences

@ Springer
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w ]

Fig. 9 The hypotheses in a paternity case with inbreeding. To the
far right are the Jacquard states with nonzero probability in the true
relationship

Hp Hp

of ignoring the inbreeding in Hp. The hypotheses are

parameterized in the following way:

Hp: A =Ap=(0,0,0,00,0,0,1,0)
Hp: A =Ap=10,0,00,0,0,0,0,1)
Truth: A = Ar(fr)

= (0,0, fr,0,0,0,0,1 — fr,0).

The expression for the expected LR simplifies considerably
since most elements of Ap and A7(fr) are zero.
Equation (15) gives

L+1 L
2 fr+

3
E(LR) = + (1 - fr).

and we see that E(LR) increases linearly from (L + 3)/4
to (L +1)/2 as fr goes from Oto 1.

Consider next the variance. For brevity, we define
h(i, j. k) = E(LR 5 - LRy 1) 24)

Note that A (i, j, k) is invariant under permutations of 7, j, k.
Equation (16) gives

E(LR* = ATh(8,8,3) + ALh(8,8,8)
= frh(8,8,3) + (1 — fr)h(s,8,8).

Slooten and Egeland [1] derived the term not involving
inbreeding, i.e.,

h(8,8,8) = LB 4 sk

To derive the remaining term we condition on the zygosity
of the son. If he is homozygous a/a, the father must also
be a/a (recall that we are conditioning on Jacquard state
J3). Conversely, if the son is heterozygous a/b, the father is
equally likely to be a/a or b/b. This gives

s
h(8,8,3) = Zp2

" Pa Pa
2 _ _
+> pm( (5,0 +2<2p)>
a<b
3L+s
- L+- Zpb_ 3
a;éb
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Fig. 10 E(LR) as a function of f7 in the paternity case in Fig. 9, for
a single marker with L = 2, 10 and 50 alleles. Shaded area shows
one standard deviation below and above E(LR), for uniform allele
frequencies

In summary,
var(LR) =
3LI—S3 T+<5L8+3 +S31_6L>(1—fT)
—(L;IfT+LI3<1—fT)>2. 25)

This is a concave function with respect to fr. Figure 10
shows E(LR) and one standard deviation on each side as a
function of founder inbreeding fr, for different number of
alleles at a locus.

Discussion

In testing theory, the formulation of hypotheses is crucial.
Kinship problems, as considered in this paper, are no
exception. The convention of kinship testing is to compare
two specific relationships using the LR. In most applications
other than kinship problems, the hypotheses together span
many, if not all, alternatives. For instance, a common
example is testing of HWE against all possible deviations
from HWE. In forensic genetics, Hp: “paternity” is
typically tested only against Hp: “unrelated,” not all other
alternatives. For this reason, it becomes essential to study
what happens when the truth is neither of these hypotheses.

A pairwise non-inbred relationship can be presented by
a point in the IBD triangle (see Fig. 2), or in general by the
Jacquard coefficients (see Fig. 1). We have presented two
ways of expressing the hypotheses and the true relationship;
(i) through the Jacquard coefficients, and (ii) background
relatedness or founder inbreeding. These approaches let us
investigate the LR for a continuous range of relationships
and values of background relatedness. In both cases, the
impact on the LR has been studied by deriving exact

expressions for its mean and variance. In the latter case, the
required formula follows rather directly by extending results
in [1] and [2]. Explicit formulas for the expected LR has
been derived for several sets of relationships. In the case of
Jacquard coefficients, the explicit formulas are complicated
to derive, and they depend on allele frequencies. An
exact expression is given also for the variance. However,
as the variance depends on allele frequencies, simple
closed formulas can only be derived in special cases. For
general applications we rely instead on the exact numerical
implementation freely available in the R library InbredLR
accompanying this paper.

Equipped with the results of this paper, we can address
the following question when presented with a standard LR
comparing two completely specified hypotheses Hp and
Hp: What if the true relationship between the individuals
is not as stated by Hp? Or this slightly different question:
What if the true relationship is restricted to some particular
region of the IBD triangle. Obviously, the LR can be re-
evaluated to reflect the new specifications. However, the
exact expressions for expectation and variance of the LR
can in some cases directly allow for statements valid for
a continuous range of alternatives. For instance, regions
obtained by varying founder inbreeding have been displayed
in Fig. 2. Assume a LR has been reported in a paternity case
and that inbreeding in the father has been ignored. It is then
useful to know that accounting for inbreeding would imply
increase in the expected LR. This finding could be essential
as there may not be data available to estimate the inbreeding
coefficient for the father. Hence, exact LR calculation is not
feasible.

Because the definition of “common ancestor”” sometimes
differs, there is a slight difference in the definition of IBD in
the literature. The paper [16] gives three definitions of IBD:
ancient IBD, recent IBD, and familial IBD. Our definition of
IBD goes in the category of familial IBD, where “common
ancestor” is restricted to a given pedigree.

The conventional approach to background relatedness in
forensics is the so called theta (9) correction [12]. Typical
values are 6 € (0.01,0.03). The 6 parameter applies
on a population level. The genotype probabilities of all
founders in the pedigree are modified compared with what
HWE would give. Our approach does not model relatedness
between founders, but offers a richer model of inbreeding,
since individual inbreeding coefficients can be specified for
each founder.

Several authors (see, e.g., [2] and the references therein)
have discussed reporting the logarithm of the LR rather than
the LR. Nice expressions like the ones presented for the
expectation and the variance are then no longer available. In
most cases, the LR is reported on the original scale. In some
circumstances, as for paternity cases, the LR may be 0, and
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then, the logarithm is not defined. Many papers including
[17] study the distribution of Z = log(LR) by simulation.
Equipped with the exact expressions of this paper, Z could
be analyzed without resorting to simulation, since the mean
and variance of Z can be derived from the counterparts for
the LR. However, if some allele frequencies are close to 0,
Z is not well approximated by a normal distribution for a
realistic number of markers. The reason for this is the large
variance when allele frequencies are small. For instance,
(25) shows an example where the expression for the
variance include terms of the form 1/p, and these become
large whenever the allele frequency p, is small. A similar
problem related to small allele frequencies is discussed
in the result section. This demonstrates that the center of
the log(LR) distribution, calculated from the expectation
of LR, can be inaccurate. However, this criticism applies
to the use of LR instead of log(LR) in general, and not
specifically to the expectations. We maintain that results like
the ones presented for the expectation and variance have
considerable theoretical interest, but should be used with
caution in practice.

This paper has mainly addressed the likelihood ratio
and its properties. The exclusion probability (EP), the
probability that genotypes will be incompatible with a
claimed relationship, is also an important statistic. The
impact of founder inbreeding on EP is discussed in [3].

Figure 4 illustrates a case where the true inbred rela-
tionship is not known, and Fig. 5 shows the corresponding
expected LR for a single marker. Increasing the number of
markers will, in this paternity case, increase the inflation of
the expected LR. This means that adding more markers to
the LR computation will not solve the problem. In general,
with a sufficient number of markers, the Jacquard, IBD, or
inbreeding coefficients can be estimated accurately, and the
true relationship detected. If such additional marker data is
not available, the impact of inbreeding can be studied as
exemplified by a paternity case with unknown inbreeding
earlier in the discussion and as illustrated in, e.g., Fig. 5. As
addressed in the “Introduction” section, different scenarios
can be investigated and LR results can be evaluated in light
of the analyses of these scenarios.

The present paper does not consider linked markers.
For independent loci, the inbreeding coefficients contain
sufficient information to compute the Jacquard coefficients
needed in our formulas for LR. While a similar approach
is conceivable also for linked markers, this would involve
multi-locus coefficients, which is outside the scope of this
work.

Funding Open Access funding provided by Norwegian University of
Life Sciences.

@ Springer

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval None required as no data from humans are used.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

Appendix: Expectation and variance of LR

Below we derive the expressions for the expectation and
variance of LR in the general pairwise case. Let J; denote
Jacquard state i and AlP and AiT the probabilities of J;
according to the relationship stated by Hp and the true
relationship respectively. LR A, A, is then defined as the
likelihood ratio comparing Hp:A p with Hp:Ap when the
marker data comes from the relationship Ar. Similarly,
LR y;,j; denotes the likelihood ratio comparing Jacquard
state J; with unrelated, i.e., Jo when the marker data are
generated by J;.
Equation (15) follows by combining (1), (14), and (4)

9
E(LR) =Y (_Z ATP(G | J)) _Z AY ﬁfgff;)))

9
g Z AP AT (Z PEILP(G | J,~)> 26)
9

(ERJ j)

In the case of no inbreeding, i.e., Ay = --- = Ag = 0,
the above expression reduces to (5). The part of the 9 x 9
matrix Bg corresponding to (J7, Jg, Jg9) coincides with the
matrix given in Eq. 6. Since E(LR ;. 5;) = E(LRy;, ),
By is symmetric. The elements of Bg are found by direct
calculation. For instance, entry (1, 1) equals

Z pos

E(Ele,jl) = 4pa

a
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Since the expectation has been calculated, to derive the
variance it remains only to find

E(ch)
P(G | J;)
ATP(G | J, AP
Z Z r PG| )Z PG o)
9
PG
— "1 P(G | Jo)
9 9
= Y>> AP ATALE (CRy, 0 LRy.s)
i=1 j=1k=1

9
= Z AiP ApB; AIT.
i=1
The matrices B, ..., By are symmetric 9 x 9 matrices. The
simplest of these matrices is By, given in Table 4. In general,
B; consists of the elements {E(LRJJ,J, LRy, 0)}jk=1,...9-
The values for i, j, k = 7, 8,9 have been provided in the
“Review of previous results” section. Entry (j, k) of B; is

YRR EALICIEN

P(G | Jp). 27
P(G | Jo) P(G | Jo) @1 @0

All matrices can in principle be found from the above
expression, but exact calculations by hand become unprac-
tical and exact numerical calculation is more reasonable.
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