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Abstract. Our previous study demonstrated that intranasal 
administration of histone deacetylase inhibitor sodium 
butyrate (NaB) exhibits therapeutic effects on a mouse model 
of allergic rhinitis (AR). However, whether NaB is effective on 
AR when administered orally and prophylactically, as well as 
its potential effects on gene expression, remained unknown. 
The present study aimed to investigate the preventive effect 
of NaB on AR when added to the diet of newly weaned mice 
and to evaluate the changes in long non-coding (lnc)RNA and 
mRNA expression profiles in the nasal mucosa. Mice were 
randomly divided into three groups as follows: i) control (c) 
group, (no treatment); ii) AR group [treated with ovalbumin 
(OVA)]; and iii) NaB + AR group (treated with OVA and 
NaB). The NaB + AR group was administered NaB in their 
feed (30 g/kg chow), whereas the other two groups were fed 
normal feed between 3 and 6 weeks of age. At 7 weeks of 
age, OVA administration was initiated to induce AR in the 
AR and NaB + AR groups. Following model establishment, 
behavioral assessments, western blotting and gene expression 
analysis were performed. NaB exhibited a preventive effect 
in the murine AR model, diminished the increases in histone 
deacetylase 1 (HdAc1) and HdAc8 expression and increased 
OVA-induced acetylation of histone H3 at lysine 9. In addi-
tion, NaB increased the AR-associated low expression of 
interleukin 2 (IL-2), interferon γ and IL-17 and decreased the 

expression of IL-4, IL-5 and transforming growth factor β1. 
Gene Ontology and pathway analyses revealed the top 10 
pathways among the groups. Octamer-binding transcription 
factor 1, ecotropic viral integration site 1 and paired box 4 were 
predicted to be target genes of lncRNA (NONMMUT057309). 
Thus, NaB may exhibit a preventive effect on AR. Additionally, 
the lncRNA and mRNA expression profiles in the nasal 
mucosa of mice with AR differed significantly following NaB 
treatment. These results may provide insights into the patho-
genesis of AR and suggest new treatment targets.

Introduction

Allergic rhinitis (AR), a non-infectious disease of the nasal 
mucosa, is primarily mediated by immunoglobulin E (IgE) 
following contact with allergens (1). The self-reported preva-
lence of AR in 11 cities across Mainland china had wide 
variations in 2005, ranging between <10 and >20% (2); in 2011, 
the standardized prevalence of adult AR in the 18 major cities 
was 17.6%, with the highest prevalence of 23% in Shanghai 
and the lowest prevalence of 9.8% in chengdu (3). The number 
of patients with AR in china has increased by 100 million 
between 2005 and 2011 (4). AR has traditionally been consid-
ered to originate from a T helper (Th)1/Th2 immune response 
imbalance, leading to allergic inflammation dominated by the 
Th2 immune response within the nasal mucosa (5). Following 
further study, the pathogenesis of AR has been extended from 
the Thl/Th2 model to a Thl/Th2/Thl7 and T regulatory cell 
(Treg) model (6). However, as AR is a multi-factor disease 
induced by gene-environment interactions, its exact pathogen-
esis has not been elucidated.

Lysine acetylation is a reversible post-transcriptional 
modification that regulates changes in gene expression 
profiles (7). Two opposing enzymes function intracellularly to 
determine protein acetylation levels; specifically, histone acet-
yltransferase (HAT) catalyzes the addition of an acetyl group 
to lysine residues, whereas histone deacetylase (HdAc) cata-
lyzes the removal of an acetyl group from lysine residues (7). 
The HAT/HdAc balance maintains histone acetylation 
levels and regulates gene transcription (8). Redox signaling, 
which is mediated by HAT-induced inactivation of histone 
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acetylation, decisively contributes to the activation phase of 
the inflammatory cascade (9). Targeting HAT Tip60 inhibits 
intestinal allergies in a mouse model (10). The expression of 
HdAc1, HdAc5, HdAc6 and HdAc8 increases in asthmatic 
mice (11); HdAc11 (12) and HdAc1 (13) expression levels are 
increased in patients with AR, and HdAc1 also participates in 
the pathogenesis of childhood asthma (14).

Sodium butyrate (NaB) is an aliphatic acid and a nonspe-
cific HDAC inhibitor (15). The results of our previous study 
indicated that NaB nasal drops decreased the expression of 
HdAc1 and HdAc3 and increased histone H3 acetylation at 
lysine 9 (H3‑AcK9) (16). Butyrate is the final product of the 
anaerobic fermentation of dietary fiber by intestinal micro-
organisms (17), and butyrate levels in stool samples from 
patients with atopic dermatitis have been demonstrated to be 
decreased (18). Oral NaB may modulate brain metabolism (19) 
and attenuate experimental murine colitis in an IL-10 indepen-
dent manner (20).

The objective of the present study was to investigate the 
preventive effect of NaB on AR by adding it to the diet of 
newly weaned mice at 3 weeks of age and to determine the 
changes in lncRNA and mRNA expression profiles in the 
nasal mucosa following NaB treatment.

Materials and methods

Animals and trials. BALB/c mice (3 weeks old; 6-8 g) were 
purchased from the Air Force Military Medical University 
(Xi'an, china). Mice were maintained in a pathogen-free 
environment under a 12/12-h light/dark cycle at 22˚C with 
free access to food and water. All animal experiments were 
conducted in accordance with the National Institutes of 
Health guidelines and approved by the committee on Animal 
Research of the Air Force Military Medical University 
(approval no. KJ-2016-XJB5436).

Mice were randomly divided into three groups (n=30 
mice/group) as follows: i) control (c) group (no treat-
ment); ii) AR group [treated with ovalbumin (OVA)]; and 
iii) NaB + AR group (treated with OVA and NaB). Mice began 
to feed after weaning at 3 weeks of age. The mouse feed was 
premixed, 30 g/kg NaB (Sigma-Aldrich; Merck KGaA) was 
added, and granules were produced. Normal feed and NaB 
feed were provided by the Animal center of the Air Force 
Medical University. Each mouse in the NaB + AR group 
consumed an average of 5 g feed/day, which contained 0.15 g 
NaB. The other 2 groups were provided with normal feed 
throughout the study period. At 7 weeks of age, mice in the 
AR and NaB + AR groups received intraperitoneal injections 
of mixed OVA solution (20 mg) and aluminum (2 mg) in 
0.5 ml PBS on days 1, 3, 6 and 8, whereas the control mice 
received injections of aluminum (2 mg) in 0.5 ml PBS under 
the same schedule. Mice in the AR and NaB + AR groups 
were also treated with 10% OVA (20 µl) via intranasal instil-
lation once daily between days 15 and 24. Mice in the control 
group were treated with 20 µl PBS via intranasal instillation 
once daily during the same period. Fig. 1 demonstrates the 
experimental design. One hour after the last challenge, mice 
were anesthetized (4% chloral hydrate, 400 mg/kg) and venous 
blood was obtained for use in ELISA [mouse ELISA kits: IL-2 
(cat. no. 223588), IL-4 (cat. no. 221833), IL-5 (cat. no. 204523), 

IL-17 (cat. no. 100702), interferon γ (IFN-γ; cat. no. 46107) 
and transforming growth factor-β1 (TGF-β1; cat. no. 119557); 
all from Abcam]. Following blood sample collection, the mice 
were sacrificed by cervical dislocation, and the nasal mucosa 
was preserved in liquid nitrogen for further analysis.

Behavioral assessment. Allergy symptoms were assessed 
using the following scoring criteria: 1 point for sneezing 1-3 
times during a 30‑min observation, clear nasal flow to the ante-
rior nostril and occasional scratching of the nose with a single 
front limb; 2 points for sneezing 4‑10 times, clear nasal flow 
beyond the nostril and scratching of the nose with both front 
limbs; and 3 points for sneezing >10 times, clear nasal flow to 
the face and continuous scratching. After the last stimulation, 
each animal was observed for 30 min, and the three parameters 
were recorded and quantified. A total score >5 points indicated 
that the model was successfully established (21).

Histological observation. The muscle tissue of the nose was 
removed, and the nasal cavity was fixed in 4% formaldehyde 
for 24 h at 37˚C. Following 10% EDTA decalcification for 24 h 
at 37˚C, the nose was embedded in paraffin, and 4‑µm sections 
were cut. The sections (4-µm) were dewaxed, stained with 
hematoxylin (cat. no. 245880; Abcam) for 10 min, differenti-
ated with 1% hydrochloric acid ethanol for 1 min, stained with 
eosin for 1 min, dehydrated with a series of ethanol concentra-
tions (70, 80, 90 and 100%) ethanol for 10 sec, incubated with 
xylene for 1 min and sealed. In addition, other sections were 
dewaxed, soaked with 3% acetic acid for 3 min, stained with 
1% Alcian blue (cat. no. 150680; Abcam) for 30 min, soaked 
with 3% acetic acid for 3 min, washed with water, oxidized 
with 0.5% periodate for 10 min, soaked in Schiff's solution for 
20 min and sealed.

Western blotting. Proteins were obtained from the nasal 
mucosa tissues of each mouse 1 h after the final intranasal 
administration of OVA or PBS. Proteins were extracted 
using a Protein Extraction kit (Applygen Technologies, Inc.), 
and total protein concentrations were measured using the 
Bio-Rad protein assay kit (Bio-Rad Laboratories, Inc.). A 
total of 20 µg protein/lane was isolated by 12.5% sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis and trans-
ferred to a nitrocellulose membrane (Bio-Rad Laboratories, 
Inc.). The membranes were blocked with 2.5% nonfat milk 
at 37˚C for 1 h and incubated with anti‑HDAC1 (mouse; 
1:1,000; cat. no. 5356), anti-H3 (rabbit; 1:1,000; cat. no. 4499), 
anti-H3-AcK9 (rabbit; 1:1,000; cat. no. 9649S; all from cell 
Signaling Technology, Inc.), anti-HdAc8 (rabbit; 1:1,000; cat. 
no. 187139; Abcam) and anti-GAPdH (mouse; 1:1,000; cat. 
no. 686613; R&D Systems, Inc.) antibodies overnight at 4˚C. 

Figure 1. Experimental design. NaB, sodium butyrate; OVA, ovalbumin; ip, 
intraperitoneal injection; w, week.
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Following exposure to horseradish peroxidase-conjugated 
anti-mouse and anti-rabbit IgG secondary antibodies (1:200; 
Sigma‑Aldrich; Merck KGaA) for 1 h at 37˚C, immunoreactive 
bands were detected using an enhanced chemiluminescence 
western blotting system (Thermo Fisher Scientific, Inc.).

RNA microarray. The capitalBio Technology Mouse LncRNA 
Array v1 was designed with four identical arrays per slide 
(4X180K format), with each array containing probes for 58,809 
mouse lncRNAs and 39,027 mouse mRNAs. The lncRNA and 
mRNA target sequences were obtained by merging the results 
from multiple databases, including NcBI RefSeq (https://www.
ncbi.nlm.nih.gov/), Ensembl (http://asia.ensembl.org/index.
html), UcSc (http://www.genome.ucsc.edu/), FANTOM 
(https://fantom.org/), LncRNAdb (http://live.dbpedia.
org/page/LncRNAdb/), NO NcOdE V4.0 (http://www.
noncode.org/), UcR (https://www.ucr.edu/), LncRNA disease 
(http://www.cuilab.cn/lncrnadisease) and LncRNA.org 
(https://lncipedia.org/). Each RNA was detected by probes 

based on ≥2 replicates. The array also contained 4,974 Agilent 
control probes.

RNA extraction, amplification, labeling and hybridization. 
The microarray assay was performed by capital Biotech 
corporation (Beijing, china) with the Agilent mouse 
lncRNA + mRNA Array V4.0 (4X180K) (Agilent Technologies, 
Inc.) according to the manufacturer's instructions. Total RNA 
was extracted using TRIzol® reagent (Invitrogen; Thermo 
Fisher Scientific, Inc.) according to the manufacturer's instruc-
tions. Briefly, 200 ng purified RNA from each sample was 
amplified and reverse‑transcribed into cDNA. The cDNAs 
were transcribed into cRNAs at 70˚C for 5 min, 25˚C for 5 min 
and 4˚C for 2 min, and the cRNAs were transcribed into cDNAs 
using the WT Expression Kit (cat. no. 4411973; Thermo Fisher 
Scientific, Inc.) at 70˚C for 5 min, 25˚C for 5 min and 4˚C for 
2 min, labeled with a fluorescent dye (cy3-dcTP, Agilent 
Technologies, Inc.), denatured at 95˚C for 3 min and incubated 
in an ice bath for 5 min. Labeled cdNAs were hybridized onto 

Figure 2. NaB improves symptoms of allergic rhinitis in a mouse model. (A) In the AR group, the behavioral scores were higher compared with the c group. 
NaB treatment decreased the behavioral scores in the NaB + AR group compared with those in the AR group, although significant differences in behavioral 
scores were present between the C and NaB + AR groups. (B) The average bodyweight in the AR group was significantly lower compared with the C and 
NaB + AR groups. No significant differences were observed between the bodyweights in the C and NaB + AR groups. (C) Hematoxylin and eosin staining 
of epithelial cells of the nasal mucosa in the AR group revealed loss of cilia, edema of sub‑mucosal tissue, proliferation of small vessels and infiltration of 
eosinophils. (d) Alcian blue staining demonstrated exuberant secretion by goblet cells. The NaB + AR group exhibited less cilia loss, edema of sub-mucosal 
tissue, proliferation of small vessels, infiltration of eosinophils and secretion of goblet cells compared with the AR group. Data are presented as the mean ± SD. 
*P<0.05. NaB, sodium butyrate; c, control group; AR, rats treated with ovalbumin; NaB + AR, rats treated with NaB and ovalbumin.
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a crystal core human lncRNA chip V4.0. The microarray data 
analyzed in the present study have been deposited in the NcBI 
GEO database under the accession number GSE140454.

Microarray imaging and data analysis. The lncRNA and 
mRNA array data were analyzed for data summariza-
tion, normalization and quality control using Gene Spring 
software V12.0 (Agilent Technologies, Inc.). To identify 
the differentially expressed genes, the threshold values of 
fold‑change ≥2 and ≤‑2 and a Benjamini‑Hochberg corrected 
P-value <0.05 were used. The data were log2-transformed and 
median-centered on genes using the ‘Adjust data’ function 
of cLUSTER 3.0 software (Michiel de Hoon, University 
of Tokyo, Human Genome center) prior to further analysis 
via hierarchical clustering with average linkage. Tree visu-
alization was performed using Java Treeview 3.0 (Stanford 
University School of Medicine).

RNA isolation and reverse transcription‑quantitative PCR 
(RT‑qPCR). Total RNA was extracted using TRIzol® reagent 
(Invitrogen; Thermo Fisher Scientific, Inc.) according to the 
manufacturer's instructions. The concentration, quality and 
purity of RNA were assessed using the RNA 6000 Nano assay 
on the Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.). 
No samples exhibited RNA degradation (ratio of 28S:18S 
ribosomal RNA ≥2) or contamination with DNA. For reverse 

transcription, samples were incubated in an Eppendorf PcR 
system at 42˚C for 30 min, 90˚C for 5 min and 5˚C for 5 min. 
The samples were subjected to qPCR with specific primers 
(Table SI). qPcR was performed in a 10 µl total volume 
containing 1 µl cdNA, 5 µl SYBR® Green Real-time PcR 
Master Mix (Toyobo Life Science) and 1 µl of each primer 
under the following conditions: 95˚C for 10 sec at; 40 cycles 
of 60˚C for 5 sec and 72˚C for 10 sec; and 65˚C for 30 sec. 
Melting analysis of PcR products was conducted to validate 
the amplification of a specific product, and the relative 
fold-change was calculated using the 2‑∆∆Cq method normalized 
to GAPdH (22).

LncRNA‑mRNA co‑expression and construction of the 
coding‑non‑coding gene co‑expression network. differentially 
expressed mRNAs were used to construct a co-expression 
network to explore specific lncRNAs involved in the patho-
genesis of AR. Pearson correlation coefficients (PCCs) were 
calculated between selected mRNAs and all differentially 
expressed lncRNAs. A PCC ≥0.99 indicated that the selected 
lncRNA and mRNA formed a significantly correlated pair.

The coding-non-coding gene co-expression network 
was constructed based on the correlation analysis between 
differentially expressed lncRNAs and mRNAs. Significantly 
correlated pairs (based on Pcc) were selected to construct 
the network. LncRNAs and mRNAs with PCCs ≥0.99 were 

Figure 3. Serum ELISA results of IL-2, IFN-γ, TGF-β1, IL-4, IL-5 and IL-17. The expression levels of IL-2, IFN-γ and TGF-β1 were lower, whereas those 
of IL-4, IL-5 and IL-17 were higher in the AR group compared with the c group. NaB treatment increased the expression of IL-2, IFN-γ and TGF-β1 and 
decreased the expression of IL‑4, IL‑5 and IL‑17 compared with the AR group, although significant differences in ELISA results were present between the 
C and NaB + AR groups. Data are presented as the mean ± SD. *P<0.05. IL, interleukin; INF-γ, interferon γ; TGF-β1, transforming growth factor β1; NaB, 
sodium butyrate; c, control group; AR, rats treated with ovalbumin; NaB + AR, rats treated with NaB and ovalbumin.
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selected to draw the network using the open-source bioinfor-
matics software cytoscape 3.7.2 (https://cytoscape.org/). For 
network analysis, a degree of centrality was defined as the 
number of links that one node had to others.

Prediction of cis‑acting and trans‑acting lncRNA. The 
prediction of cis-acting lncRNA was performed based on 
a strong correlation between the lncRNA and a group of 
expressed protein‑coding genes (PCC ≥0.99). The lncRNAs 
were only selected if they resided at the genomic loci where 
a protein-coding gene and an lncRNA gene were within 
10 kb of each other along the genome; ‘cis’ therefore refers 
to the same locus (not necessarily the same allele) regulatory 
mechanism, which included the antisense-mediated regula-
tion of protein-coding genes by lncRNAs that in the same 
locus.

The trans-prediction was conducted using a Standalone 
BLAT v. 35 x 1 fast sequence search command line tool 
(http://hgdownload.cse.ucsc.edu/admin/exe/) to compare the 
full sequence of the lncRNA to the 3'-untranslated region of its 
co-expressed mRNAs using default parameter settings.

Analysis of Gene Ontology (GO) and PANTHER pathways. 
The functions of biological processes differentially expressed 
geneswere identified by GO analysis (http://geneontology.
org/). The differentially expressed mRNAs were analyzed 
using PANTHER analysis (http://pantherdb.org/).

Statistical analysis. Data are presented as the means ± SD. 
Analyses were performed using SPSS version 13.0 (SPSS, 
Inc.). Unpaired Student's t-test was used to identify differences 
between two groups. One-way ANOVA followed by the least 
significant difference test was used to compare multiple groups. 
Analysis of mRNA, lncRNA and RT-qPcR fold-change data 
were performed by Student's t-test using Microsoft Excel 15.17 
(Microsoft corporation). P<0.05 was considered to indicate a 
statistically significant difference.

Results

Oral NaB decreases the AR‑related behavioral score 
and improves nasal mucosal morphology. NaB treatment 
decreased the behavioral scores of mice with AR (Fig. 2A). In 

Figure 4. The protein levels of HdAc1, HdAc8 and H3-AcK9 in mouse nasal mucosa detected by western blot analysis. The expression of HdAc1 and 
HdAc8 increased, whereas that of H3-AcK9 decreased in the AR group compared with the c group. NaB treatment decreased the expression of HdAc1 
and HDAC8 and increased the expression of H3‑ACK9, although significant differences were still present in the western blot analysis results between the C 
and NaB + AR groups. Data are presented as the mean ± SD. *P<0.05. HdAc, histone deacetylase; H3-AcK9, histone H3 acetylated at lysine 9; NaB, sodium 
butyrate; c, control group; AR, rats treated with ovalbumin; NaB + AR, rats treated with NaB and ovalbumin.
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addition, mice fed NaB for 7 weeks did not experience diarrhea 
or other adverse effects and gained weight normally (Fig. 2B). 
Epithelial cells of the nasal mucosa in the AR group exhibited 
loss of cilia, edema of the sub-mucosal tissue, small vessel 
proliferation, infiltration of eosinophils (Fig. 2C) and exuberant 
secretion of goblet cells (Fig. 2d). NaB treatment reduced nasal 
mucosal inflammation in AR mice (Fig. 2c and d). These 
results indicated that NaB could prevent AR, and that 7 weeks 
of NaB feeding did not affect mouse growth.

NaB rebalances Th1/Th2/Thl7 and Treg ratios in AR mouse 
mucosa. Following treatment of AR mice with NaB, serum 
ELISA demonstrated that the expression of IL-2 (a marker of 
Th1), IFN-γ (a marker of Th1) and TGF-β1 (a marker of Treg) 
was higher, whereas the levels of IL-4 (a marker of Th2), IL-5 
(a marker of Th2) and IL-17 (a marker of Th17) were lower 
in the NaB + AR group compared with that in the AR group. 
These results indicated that NaB could restore Thl/Th2/Thl7 
and Treg balance in AR mice (Fig. 3).

NaB normalizes the AR‑induced downregulation of H3‑AcK9 
and upregulation of HDAC1 and HDAC8 expression in 
mouse mucosa. NaB partially reversed the downregulation of 
H3-AcK9 and upregulation of HdAc1 and HdAc8 expression 
induced by AR in the nasal mucosa of mice (Fig. 4). These 
results suggested that NaB could restore the HdAc/HAT 
balance.

Differences in lncRNA and mRNA expression profiles in the 
nasal mucosa among the three groups. A scatter function was 
used to identify the differences in lncRNA and mRNA expres-
sion (log2 expression value) among the three groups. LncRNA 
analysis demonstrated that compared with the expression 
levels in the c group, 254 genes were upregulated and 109 were 
downregulated in the AR group, and 18 genes were upregu-
lated and 47 were downregulated in the NaB + AR group. 
compared with the AR group, 32 genes were upregulated and 
230 were downregulated in the NaB + AR group (Fig. 5A). 
mRNA analysis revealed that compared with the expression 
levels in the c group, 319 genes were upregulated and 524 were 
downregulated in the AR group, and 159 genes were upregu-
lated and 218 were downregulated in the NaB + AR group. 
compared with the AR group, 114 genes were upregulated and 
45 were downregulated in the NaB + AR group (Fig. 5B).

L n c R N A  ( N O N M M U T 0 5 7 3 0 9 ) ,  l n c R N A 
(NONMMUT016103) (Table I) and 33 mRNAs (Table II) were 
identified to be co‑expressed, and expression trends for these 
markers were consistent among the c, AR and NaB + AR 
groups. The 33 mRNAs encoded immunoglobulins, suggesting 
that lncRNA may regulate the expression of immunoglobulins 
during AR inflammation.

RT‑qPCR validation of microarray data. Statistically signifi-
cant differences were identified at four mRNA (A‑65‑P07626, 
A-52-P50284, A-66-P10323 and A-55-P21872) and two 

Figure 5. Transcriptomic analysis of expression differences among the treatment groups. (A) Long non-coding RNA analysis. (B) mRNA analysis. Red 
indicates upregulated genes; green indicates downregulated genes. c, control group; AR, rats treated with ovalbumin; NaB + AR, rats treated with sodium 
butyrate and ovalbumin.
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lncRNA (NONMMUT016103 and NONMMUT057309) 
loci between c vs. AR, NaB + AR vs. AR and NaB + AR 
vs. c groups in the microarray results. RT-qPcR validation 
results in the three groups were consistent with the micro-
array analysis results, with the exception of the lncRNA 
(NUNMMUT016103) locus (Fig. 6).

LncRNA (NONMMUT057309)‑mRNA co‑expression 
analysis. LncRNA (NONMMUT057309) co-expression 
analysis of mRNA (data not shown) and target gene predic-
tion (Fig. 7) revealed that only three target genes of lncRNA 
(NONMMUT057309) [octamer-binding transcription factor 1 
(Oct-1), ecotropic viral integration site 1 (Evi-1) and paired 
box 4 (Pax-4)] were predicted between NaB + AR vs. AR, 
NaB + AR vs. c and AR vs. c groups.

GO and PANTHER pathway analyses. GO analysis was 
conducted to determine the enrichment of the differentially 
expressed mRNAs between the different groups in the 
categories of biological processes. The top 10 significantly 
enriched GO terms between each pair of groups are presented 
in Fig. 8.

Pathway analysis was conducted to determine the 
biological pathways represented by the significantly differ-
entially expressed mRNAs between the groups. The top 10 
significantly enriched PANTHER pathway terms among the 
three groups are presented in Fig. 9. Based on these results, 
inflammation mediated by chemokine and cytokine signaling 
pathways and T-cell activation were suggested to be involved 
in AR pathogenesis.

Discussion

HdAc inhibitors can be divided into four categories, 
including hydroxamates, cyclic peptides, aliphatic acids and 
benzamides. Suberoylanilide hydroxamic acid (SAHA) has 
been approved by the US Food and drug Administration 
for the treatment of cutaneous T-cell lymphoma (7). HdAc 
inhibitors have also been demonstrated to exhibit therapeutic 
effects in cancer, arthritis, hearing loss and asthma (23-27). 
Since epigenetic modifications, which contribute to disease 
development, are neither permanent nor transient, iden-
tifying disease-specific epigenetic alterations may help 
identify novel therapeutic interventions (28,29). NaB can 
be dissolved without dimethyl sulfoxide, which is a solvent 
that also inhibits HdAc, thus enabling the sole evaluation 
of NaB and its effects (30,31). The results of our previous 
study demonstrated that NaB exhibited a therapeutic effect 
in an OVA-induced murine AR model when administered 
intranasally (16). The present study demonstrated that oral 
NaB for 7 weeks did not result in any adverse effects, and 
animals gained weight normally. In addition, a previous 
study revealed that NaB enhanced intestinal integrity in 
weaned pigs (32). Adding NaB increased the food intake of 
lactating sows and improved the growth of piglets (33). In 
the present study, NaB prophylactically reduced AR-related 
behavioral scores, improved nasal mucosal morphology and 
restored Th1/Th2/Thl7 and Treg cell balance. Thus, NaB 
may exhibit a preventive effect on AR. The present study 
demonstrated that NaB increased H3-AcK9 expression and 
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decreased of HdAc1 and HdAc8 expression in mice with 
AR. Accordingly, high HdAc1 and HdAc8 expression 
levels have been observed in OVA-sensitized asthmatic 
mice (11). In addition, an HdAc8-specific inhibitor was 
demonstrated to reduce the eosinophil‑mediated inflamma-
tory response and reduce the sensitivity of the airway in an 
asthma model (34). Therefore, blocking HdAc activity may 
be a novel therapeutic target in patients with AR (7).

LncRNA regulates gene expression at the transcrip-
tional, RNA processing and translational levels (35). In 
addition, lncRNA dysregulation underlies certain human 
diseases caused by chromosome deletion and transloca-
tion (36). LncRNAs are also involved in the development, 
plasticity, disease and evolution of the mammalian nervous 
system (37). LncRNAs can promote the differentiation 
and activation of dendritic cells, B lymphocytes and T 

Table II. co-expressed mRNAs encoding immunoglobulins (n=33) among the c, AR, and NaB + AR groups. 

mRNA description Id

A_52_P382676 Immunoglobulin heavy variable 6-6 [Source:MGI Symbol;Acc:MGI:4439619] ENSMUST00000103489
A_55_P2001269 Immunoglobulin heavy variable 1-52 [Source:MGI Symbol;Acc:MGI:4439752] ENSMUST00000103522
A_55_P2046653 Immunoglobulin heavy variable 2-9 [Source:MGI Symbol;Acc:MGI:4439624] ENSMUST00000103451
A_55_P2060897 Immunoglobulin kappa constant [Source:MGI Symbol;Acc:MGI:96495] ENSMUST00000103410
A_66_P114582 Immunoglobulin heavy variable V1-54 [Source:MGI Symbol;Acc:MGI:3647133] ENSMUST00000103525
A_55_P2001274 Immunoglobulin heavy variable 1-62-3 [Source:MGI Symbol;Acc:MGI:3648544] ENSMUST00000103532
A_55_P2130497 Immunoglobulin heavy variable V1-67 [Source:MGI Symbol;Acc:MGI:3645228] ENSMUST00000103538
A_55_P2030299 Immunoglobulin heavy variable V14-3 [Source:MGI Symbol;Acc:MGI:4439764] ENSMUST00000103469
A_55_P1993001 Immunoglobulin heavy variable 1-55 [Source:MGI Symbol;Acc:MGI:4439716] ENSMUST00000103526
A_55_P2058621 Mus musculus clone J558.2 immunoglobulin heavy chain variable region mRNA, AF303833
 partial cds 
A_52_P15966 Immunoglobulin heavy variable 1-84 [Source:MGI Symbol;Acc:MGI:3644235] ENSMUST00000103551
A_65_P07626 Immunoglobulin kappa variable 3-2 [Source:MGI Symbol;Acc:MGI:1330850] ENSMUST00000103403
A_55_P2187234 Immunoglobulin heavy variable 2-2 [Source:MGI Symbol;Acc:MGI:4439894] ENSMUST00000103443
A_55_P2052913 Immunoglobulin heavy variable 5-9 [Source:MGI Symbol;Acc:MGI:4439873] ENSMUST00000103448
A_55_P1979364 Immunoglobulin heavy variable 1-83 [Source:MGI Symbol;Acc:MGI:3648939] ENSMUST00000103550
A_55_P2159911 Immunoglobulin heavy variable 2-3 [Source:MGI Symbol;Acc:MGI:4439872] ENSMUST00000178229
A_52_P320761 Immunoglobulin heavy variable 1-31 [Source:MGI Symbol;Acc:MGI:4439889] ENSMUST00000103511
A_55_P2026268 Immunoglobulin kappa chain variable 5-43 [Source:MGI Symbol;Acc: ENSMUST00000103368
 MGI:4943320]
A_52_P213483 Immunoglobulin heavy variable 1-77 [Source:MGI Symbol;Acc:MGI:4439670] ENSMUST00000170551
A_55_P1969901 Immunoglobulin heavy variable 1-80 [Source:MGI Symbol;Acc:MGI:4439738] ENSMUST00000103547
A_52_P502849 Immunoglobulin kappa variable 3-4 [Source:MGI Symbol;Acc:MGI:1330855] ENSMUST00000103401
A_51_P461067 Immunoglobulin heavy constant gamma 1 [Source:MGI Symbol;Acc: ENSMUST00000103420
 MGI:96446]
A_55_P1970464 Immunoglobulin heavy variable 1-22 [Source:MGI Symbol;Acc:MGI:4439784] ENSMUST00000103507
A_55_P2155560 Immunoglobulin heavy variable V1-5 [Source:MGI Symbol;Acc:MGI:3704121] ENSMUST00000103494
A_55_P2134277 Immunoglobulin heavy variable V1-18 [Source:MGI Symbol;Acc:MGI:4439780] ENSMUST00000103504
A_66_P103232 Immunoglobulin kappa chain variable 5-45 [Source:MGI Symbol;Acc: ENSMUST00000103366
 MGI:4439774]
A_55_P2065506 Immunoglobulin heavy variable 1-36 [Source:MGI Symbol;Acc:MGI:4439639] ENSMUST00000103513
A_55_P2129334 Mus musculus clone L2MZB-13.3 immunoglobulin heavy chain variable AY171990
 region mRNA, partial cds
A_55_P2138627 Immunoglobulin heavy variable 6-3 [Source:MGI Symbol;Acc:MGI:4439854] ENSMUST00000103486
A_55_P2164784 Immunoglobulin heavy variable 2-5 [Source:MGI Symbol;-Acc:MGI:4439517] ENSMUST00000103449
A_66_P104923 Immunoglobulin heavy variable 1-81 [Source:MGI Symbol;Acc:MGI:4439635] ENSMUST00000103548
A_51_P390937 Immunoglobulin kappa variable 14-111 [Source:MGI Symbol;Acc:MGI:4439863]  ENSMUST00000103320
A_55_P2187235 Immunoglobulin heavy variable 2-2 [Source:MGI Symbol;Acc:MGI:4439894] ENSMUST00000103443

MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate 
the study of human health and disease. c, control group; AR, rats treated with ovalbumin; NaB + AR, rats treated with both ovalbumin and 
sodium butyrate.
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lymphocytes (38). Accordingly, a number of specific 
lncRNAs have been identified in Th1 and Th2 cells (39‑42) 
and in the nasal mucosa of mice with AR (3). The results 
of the present study confirmed the differential expres-
sion of lncRNAs and mRNAs in the nasal mucosa of AR 
mice treated with NaB. A degree is the simplest and most 
important measure of gene centrality within a network 
that determines the relative importance of that gene (43). 
LncRNA (NONMMUT057309), which is 306 nt long and 
located on chromosome 6, is mainly expressed in the hippo-
campus, liver, and lung (44); however, to the best of our 
knowledge, no published studies on the mechanism associ-
ated with its function are currently available.

NaB, a pan-HdAc inhibitor, not only decreased the expres-
sion of HdAc1 and HdAc8, but also downregulated the 
expression of lncRNA (NONMMUT057309) and altered the 
expression of immunoglobulins in the present study. Previous 
studies have demonstrated that HdAc and lnc-H19 could be 

Figure 7. LncRNA (NONMMUT057309) target gene prediction. Oct-1, Evi-1, 
and Pax-4 were predicted between NaB+AR vs. AR, NaB + AR vs. c and AR 
vs. c groups of lncRNA (NONMMUT057309). LncRNA, long non-coding 
RNA; Oct-1, octamer-binding transcription factor 1; Evi-1, ecotropic viral 
integration site 1; Pax-4, paired box 4.

Figure 6. comparison of lncRNA and mRNA fold-change measured by microarray and RT-qPcR. RT-qPcR validation results among the three groups were 
consistent with the microarray analysis results, with the exception of the lncRNA (NUNMMUT016103) locus. Microarray results are represented by blue bars; 
RT-qPcR results are represented by red bars. *P<0.05, **P<0.01. LncRNA, long non-coding RNA; RT-qPcR, reverse transcription-quantitative PcR; c, control 
group; AR, rats treated with ovalbumin; NaB + AR, rats treated with sodium butyrate and ovalbumin.
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bidirectionally regulated (45), and the pan-HdAc inhibitors 
panobinostat and SAHA upregulated lnc-GAS5 expression 
in non-small cell lung cancer (46). Thus, it may be speculated 
that NaB could influence the nasal mucosa allergic response 
through lncRNA (NONMMUT057309) expression. LncRNA 
(NONMMUT057309) may act on its target genes to regulate the 
expression of immunoglobulin in the nasal mucosa to prevent AR.

Three target genes (Oct-1, Evi-1 and Pax-4) were predicted 
for lncRNA (NONMMUT057309). Oct-1 can co-regulate Th2 
cytokine gene expression through Rhs-related transmembrane 
protein (47) and regulate the expression of IL-17 (48). Evi-1 
participates in the pathogenesis of colorectal cancer through 
TGF-β signaling (49). The duodenum of functional dyspepsia 
rats displayed increased expressions of PAX4 (50).

Among the top 10 significantly enriched GO terms in 
c vs. AR groups, ‘extracellular matrix organization’ has 
been determined to exert effects on airway epithelial cells 
and fibroblast structure (51). The regulation of the immune 
system in early life by the microbiota may be associated with 
allergy development (52). The pathology of bronchial asthma 
demonstrates a multicellular process (53). AR rats exhibit 

microvascular remodeling of the nasal mucosa (54). In the 
top 10 significantly enriched GO terms in NaB + AR vs. AR 
groups, salmon cartilage proteoglycan attenuates allergic 
responses in mice (55). Inhibiting platelet activating factor can 
treat AR (56). Among top 10 significantly enriched GO terms 
in NaB+AR vs. c groups, immunoglobulin E (lgε) receptor 
on lymphocyte γ chain can mediate the receptor activator for 
NF-κB ligand, which is the primary cytokine required for 
osteoclastogenesis (57). ROS likely originates from inflamma-
tory cells (eosinophils, neutrophils and macrophages), and their 
deleterious activity can result in oxidative dNA damage (58). 
Maternal exposure to any type of stressor is associated with an 
increased risk of an atopic offspring (59). There are important 
connections between hemopoiesis and allergy/asthma (60). 
Immunotherapy decreases antigen-induced eosinophil cell 
migration into the nasal cavity (61). In patients with asthma, 
serum endotoxin concentrations significantly correlate with 
sputum chemokine motif ligand 2 concentrations (62).

The present study also determined the top 10 PANTHER 
pathways represented by the differentially expressed genes. 
‘T-cell activation’, ‘B cell activation’, ‘Interleukin signaling 

Figure 8. Top 10 significantly enriched GO terms in each of the compared groups. GO, Gene Ontology; C, control group; AR, rats treated with ovalbumin; 
NaB + AR, rats treated with sodium butyrate and ovalbumin.
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pathway’, ‘Inf lammation mediated by chemokine and 
cytokine signaling pathway’ and ‘Histamine H2 receptor 
mediated signaling pathway’ participate in allergic inflam-
mation (4,63-64). ‘Apoptosis signaling pathway’ (65) and 
‘Toll receptor signaling pathway’ (66) are also involved in the 
pathology of AR. The expression of endotherin 2 is increased 
in cigarette-exposed asthmatic mice (67). Heme oxygenase-1 
protects airway epithelium against apoptosis by targeting 
the proinflammatory NLRP3-RXR axis in asthma (68). 
Fibroblast‑specific integrin‑α V differentially regulates type 17 
and type 2 driven inflammation and fibrosis (69). The p38 
MAP-kinase pathway is involved in the production of chloride 
voltage-gated channel 3 in nasal epithelial AR cells induced by 
IL-4 (70). The Wnt signaling pathway has also been demon-
strated to be differentially regulated in patients with AR (71). 
TGF-β/Smad signaling is involved in allergic diseases (72-74). 
At present, to the best of our knowledge, no reports are available 
on the gonadotropin-releasing hormone receptor, succinate to 
proportionate conversion or angiotensin H-stimulated signaling 
through G proteins and β-arrestin involvement in allergic 
inflammation pathogenesis, which is worth further study.

Together, previous findings along with the results of the 
present study may provide new options for the treatment of 

AR. However, in the present study, the gene sample was small, 
and further in vitro experiments are needed to further verify 
the role of lncRNA (NONMMUT057309), as well as the 
target genes (Oct-1, Evi-1, Pax-4) and signaling pathways, in 
the prevention of AR in the nasal mucosa of NaB-treated mice.
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