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Multiple physical aspects during the 
flow and heat transfer analysis of 
Carreau fluid with nanoparticles
Hashim1, Abdul Hafeez1, Ali Saleh Alshomrani2 & Masood Khan1

The current work is concerned with the two-dimensional boundary layer flow of a non-Newtonian 
fluid in the presence of nanoparticles. The heat and mass transfer mechanism for Carreau nanofluid 
flow due to a radially stretching/shrinking sheet is further investigated in this article. The governing 
physical situation is modelled in the form of partial differential equations and are simplified to a 
system of non-linear ordinary differential equations by employing dimensionless variables. Numerical 
simulations for non-dimensional velocity, temperature and concentration fields has been performed 
with the assistance of built-in Matlab solver bvp4c routine. One significant computational outcome 
of this study is the existence of multiple numerical solutions for the flow fields. The impacts of various 
developing parameters, for instance, Weissenberg number, power-law index, shrinking parameter, 
suction parameter, Prandtl number, Schmidt number, Brownian motion and thermophoresis parameter 
on the velocity, temperature and nanoparticles concentration are visualized through tables and 
graphical experiment. The numerical results demonstrate that the rates of heat and mass transfer 
are raised by higher Weissenberg number for first solution and an inverse is seen for second solution. 
Moreover, an increasing trend is seen in nanofluids temperature for both solutions with greater values 
of thermophoresis parameter. In addition, the numerical results obtained by the applied technique are 
validated with existing literature and found to be in an excellent agreement.

In the field of fluid dynamics, the study of nanofluids has attracted the attention of many investigators because of 
many important technological processes and applications. In recent few decades, an attractive technique for heat 
transfer improvement in industrial systems is the usage of nanoparticles in the base fluids. Therefore, nanofluids 
are assumed to be a mixture of base fluid and nanoparticles (1–100 nm) which are uniformly dispersed in a base 
fluid. These disseminated nanoparticles, generally a metal or metal oxide enormously improve the thermal con-
ductivity of the nanofluid, increases convection and conduction coefficients, permitting for more heat transfer. 
The situation transmuted when Choi and Eastman1 in Argonne National Laboratory revisited this field with their 
nanoscale metallic particle and carbon nanotube suspensions Eastman et al.2. Choi and Eastman have endeav-
oured to suspend different metal and metal oxides nanoparticles in numerous distinct fluids and their outcomes 
are encouraging, moreover, many stuff remain elusive about these suspensions of nano-organized materials, 
which have been named nanofluids by Choi and Eastman. Nanofluid is basically the mixture of base fluid and 
nanoparticle. It substantially contributes in nanotechnology in the invention of functional devices, material and 
system by controlling the nanoscale level. Firstly, the concept of nanoparticles was given by Choi and Eastman1, 
many research workers are adopted to formulate the heat and transfer characteristics of nanofluid flows. Later, in 
2006, Buongiorno3 presented a complete and thorough study about the heat transport in nanofluids. In his work 
he found an amazing elevate in the thermal conductivity of nanofluids. He proposed a model which disregards 
the restrictions of dispersion and homogeneous models. He exhibited the seven slip mechanisms that produce 
a parallel velocity between the nanoparticles and base fluid. These incorporate inertia, Magnus effect, Brownian 
diffusion, thermophoresis, fluid drainage and gravity, etc. He inferred that the thermophoresis and Brownian 
diffusion in nanofluids are two essential slip mechanisms. From these characteristics, many researchers have been 
worked the investigations on nanofluids. The investigation on boundary layer flow of a nanofluid over a stretching 
surface was studied by Khan and Pop4. This was the first attempt to study on boundary layer flow over a stretch-
ing surface via the use of a model in which thermophoresis and Brownian motion effects have been taken into 
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consideration. A numerical and analytical study for the axisymmetric flow of nanofluid was reported by Mustafa 
et al.5. They see that increment in Schmidt number causes to a thinner nanoparticle boundary layer. Moreover, 
Hashim et al.6 numerically investigated the analysis of heat and mass transfer in the Carreau fluid model using 
Runge-Kutta technique in MATLAB. Ellahi et al.7 studied the impact of particle shape on Marangoni convection 
boundary layer flow of nanofluid. They enforced the nanoparticles mass flux and convective boundary conditions 
in this study. Sheikholeslami8 presented the effect of variable magnetic field on the flow of Fe3O4-H2O nanofluid 
in a cavity with circular hot cylinder. Innovative numerical method, namely CVFEM is selected to perform the 
numerical computations. Recently, the transport of nanofluids are investigated by many researchers, see 9–12.

It is prominent fact that studies about boundary layer flow on stretching/shrinking sheet have gained a great 
importance because of its ever-incrementing to do with industry applications in some technology-based cognitive 
process. Many cases are trans actioned with stretching/shrinking surface appearing in manufacturing of rubber 
and plastic sheet, polymer-industries, spinning of fibres etc. Scientists are fascinated to develop different methods 
acting to increment their heat transfer exhibition. The boundary layer flow over a stretching surface was firstly 
studied by Crane13. Later in 2010, Khan and Pop4 have disciplined the boundary layer rate of flow over a linear 
stretching sheet. Moreover, Wang14 was discussed the study for unsteady film solution on the boundary layer flow 
over a shrinking surface. After that, Rana et al.15 put into use finite element model for nonlinear stretching sheet 
to discuss the behaviour of flow and heat transfer. Specifically, flow over a stretching sheet with quadratic16, expo-
nential17, nonlinear18 and oscillatory19 were discussed by different authors. For the case of exponentially stretch-
ing sheet, the skin friction at the wall detailed by Elbashbeshy17 is higher than that processed by Vajravelu18 for the 
nonlinear stretching sheet even with uw = cx5. Then again, the skin friction at the wall has oscillatory conduct in 
the position of oscillatory stretching sheet as visualized by Abbas et al.19. The classical problem of axisymmetric 
flow because of radially stretching plat was discussed via Ariel20. Later, Sajid et al.21 who discussed about series 
solution for axisymmetric flow over a nonlinear stretching sheet. Similarly, Khan and Shehzad22 are performed 
the exact solution for steady axisymmetric flow due to nonlinear stretching sheet.

The notable investigation within the sight of the dual solutions for flow and heat transfer characteristics have 
been presented by several researchers. In this regard, Lio23 investigated the problem of boundary layer flows 
caused by a stretching surface. He employed the analytic method known as homotopy analysis technique to get the 
two branches of solutions. After that, Fang24 numerically studied the flow and heat transfer features for Newtonian 
fluid past a stretching sheet. He utilized the Runge-Kutta numerical integration scheme to get the dual solutions 
for flow fields. Dual solutions for stagnation-point flow in the presence of chemical reaction past a stretching/
shrinking cylinder has been deliberated by Najib et al.25. Additionally, the flow and heat transfer characteristics in 
the presence of nanoparticles over a nonlinearly stretching/shrinking sheet has been examined by Zaimi et al.26. 
They observed that multiple solutions exist for a specific range of shrinking parameter. Recently, Naganthran27 
bestowed a numerical review for the unsteady flow of third grade fluid past a stretching/shrinking sheet. The 
multiple branches of solution have been derived using bvp4c routine in MATLAB. Recently, Khan et al.28  
also carried out a numerical simulation for slip-flow and heat transfer features of nanofluid past a permeable 
shrinking sheet in the presence of non-linear thermal radiation.

According to the literature review, a limited amount of research has been linked to evaluating flow and heat 
transfer characteristics for non-Newtonian fluids due to a radially shrinking sheet in the presence of nanopar-
ticles. However, to the best knowledge of the authors, only few researchers have ever attempted to obtain the 
multiple solutions for the flow of a non-Newtonian Carreau nanofluids caused by a radially shrinking surface. 
Additionally, keeping in mind the engineering applications of nanofluids and flow caused by a radially shrinking 
surface, the main objectives and novelty of this article is:

	 i.	 To investigate the flow of Carreau nanofluids by employing Buongiorno’s model of nanfluid.
	 ii.	 The mathematical formulation is presented in the company of Brownian motion and thermophoresis.
	 iii.	 The flow analysis is examined in the neighbourhood of stagnation-point.
	 iv.	 The impacts of uniform suction are addressed in view of its physical features.
	 v.	 For numerical treatment, the use of a MATLAB routine bvp4c based on finite difference scheme to acquire 

the multiple solutions for current governing problem.
	 vi.	 The set of critical values obtained for different values of controlling parameter are explored graphically.

However, the thermo-physical aspects during the flow of non-Newtonian fluids generated by a stretching sur-
face using nanofluid has various applications in manufacturing processes where the raw material passes through 
the die for the extrusion in a liquefied state under high temperature with densities gradient. Moreover, the phe-
nomenon of stretching surface into a cooling medium is a mathematical tool for the process of heat treatment in 
the fields of engineering technology noticed in mechanical, civil, architectural engineering. After modelling the 
problem, the solution of nonlinear differential equations governing the flow problem has been carried out.

Mathematical Model
Steady incompressible two-dimensional flow of a non-Newtonian Carreau nanofluid driven by a radially stretch-
ing/shrinking sheet is considered. Further, in this study heat and mass transfer in the presence of Brownian 
motion and thermophoresis are investigated. A locally orthogonal set of coordinates (r, z) is chosen in such a way 
that the origin O is kept in the plane of stretching/shrinking sheet. The velocity of the stretching/shrinking sheet 
is denoted as uw = arm in which a and m are constants. The geometry of the physical problem is shown in Fig. 1. 
The sheet is kept at a constant temperature Tw. Here, T∞ and C∞ are the ambient temperature and nanoparticle 
concentration, respectively. Moreover, the free stream velocity is ue(r) = brm for which b is a constant.

The differential equations that model this problem consist of four categories of conservation of mass, momen-
tum, energy and nanoparticle concentration equations, which are expressed as3,4:
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The corresponding boundary conditions for the stretching/shrinking sheet is

= = = = = =u u ar w w T T C C z, , , at 0, (5)w
m

w w0

= = → → → ∞.∞ ∞u u br T T C C z, , as (6)e
m

Here, u and w denotes the velocity components along r− and z− directions, respectively, ν, α, DB, DT, C, T are 
the kinematic viscosity, thermal diffusivity, Brownian motion coefficient, thermophoresis diffusion coefficient, 
nanoparticles concentration, fluid temperature. Furthermore, τ refers for the ratio of nanoparticle heat capacity 
and nanofluid heat capacity, n and Γ denotes the power-law index and the material parameter also known as 
relaxation time. It is important to note that the Newtonian case is achieved for n = 1 or Γ = 0.

The non-dimensional variables for the governing Eqs (1–4) with boundary conditions (5) and (6) are written 
as follows:
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Employing Eqs (7 and 8) into governing Eqs (2–4), we get:
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Figure 1.  A Schematic of the physical problem and coordinates configuration.
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The transformed boundary conditions are:

χ θ φ η= ′ = = = =f s f, , 1, (0) 1, at 0, (12)

θ φ η′ = = = → ∞f 1, 0, 0, at , (13)

where, primes represent the differentiation with respect to η.
The different flow parameters appearing in Eqs (9–13) are characterized by:
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The parameters of physical and engineering importance are the skin friction, local Nusselt number and local 
Sherwood number. In mathematical form, these are expressed as:

Skin-friction coefficient: The skin friction coefficient (wall shear stress) Cf is given as:
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Upon using Eqs (7 and 8), the dimensionless form of skin friction becomes
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Local Nusselt number: The local Nusselt number (rate of heat transfer) Nu is given as:
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In view of non-dimensional variables (7), the reduced form of local Nusselt number is

θ= − ′ .− NuRe (0) (17)1/2

Local-Sherwood number: The local Sherwood number (rate of mass transfer) Sh is written as:
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Making use of Eq (7), local Sherwood number  reduces to

φ= − ′ .− ShRe (0) (19)1/2

Numerical approach.  The set of governing Eqs (9–11) are non-linear in nature and their exact solutions are 
not feasible. Therefore, the transformed set of ordinary differential Eqs (9–11) alongside the boundary conditions 
(12) and (13) are numerically integrated via the boundary value problem solver bvp4c in MATLAB. The main 
theme of this package utilized the finite difference technique. In this method, the system of partially coupled 
differential equations is altered to a set of first order ordinary differential equations. To do this, let us define the 
new variables
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with the associated initial conditions as

χ= = = =y s y y y(0) , (0) , (0) 1, (0) 1, (24)1 2 4 7
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∞ = ∞ = ∞ = .y y y( ) 1, ( ) 0, ( ) 0 (25)3 4 6

The above system of seven first order differential Eqs (21–23) with initial conditions (24) and (25) can be solved 
with the bvp4c function in MATLAB. The maximum residual error is considered here is 10−5. In this scheme, the 
dual solutions are collected by adjusting different initial guesses for y3(∞) and y4(∞) i.e., f″(0) and θ′(0) according 
to the different physical parameters. Moreover, the far field conditions (25) has to be satisfied asymptotically by 
all the profiles. In this analysis, the boundary conditions (25) are implemented for some finite value of similarity 
variable η denoted by ηmax. We did our computations for ηmax = 7, 10 and 15 to achieve asymptotic behaviour of 
parameters on velocity, temperature and concentration profiles.

Validation of numerical scheme.  To establish the accuracy of our computational scheme, a comparison 
is made for the numeric data of local skin friction coefficient and local Nusselt number in limiting cases with that 
of Wang and Ng29, Rosca et al.30, Soid et al.31 and Wang et al.32. These comparisons are depicted in Tables 1 and 2.  
These tables demonstrate an outstanding agreement between the present numerical results and the existing 
works. This gives us reliance of our numerical outcomes.

Results and Discussion
In the accompanying segment, our fundamental objective is to comprehend the physics of the numerical model 
through tables and graphic structures. To dissect the effects the different flow parameters likewise the Weissenberg 
number We, the suction parameter s, the stretching/shrinking parameter χ, Prandtl number Pr, the Lewis number 
Le, the Brownian motion Nb and the thermophoresis parameters Nt on skin friction coefficient, local Nusselt 
number and local Sherwood number. Moreover, we apportioned sensible numerical values to the supervising 
parameters with a true objective to get a comprehension into the velocity, temperature and concentration profiles. 
We set default values of supervising parameters as We = 0.5, m = 1.0, n = 0.5, χ = −2, s = 0.8, Pr = 1.0 Nb = 0.1, 
Nt = 0.1, Le = 1.0. The skin friction coefficient CRe ,f

1/2  Nusselt number −θ′(0), Sherwood number −φ′(0), veloc-
ity f′(η), temperature θ(η) and concentration φ(η) profiles are given through Figs 2–20. Solid line stands for the 
first solution and dash line for the second solution.

Physically concerned quantities.  The impact of sundry supervising flow parameters on skin friction coef-
ficient, the rate of heat transfer and the local Sherwood number are respectively discussed through several graphs. 
The focus of this dissection is to captured dual solution. solid line represents for the First solution (upper branch 
solution) and dash lines for the second (lower branch solution). Dual solution exists in some cases. One of them is 
that when flow flows over a moving surface. As expressed by a few authors for instance by Lio23, Fang24 and Khan 
et al.28 who explicated the nature of dual solution occurrence. Furthermore, it uncovers a fascinating actuality that 
both branches solution arrive at an end at a specific value of suction parameter s and stretching/shrinking param-
eter χ are known as critical value (critical point) (sc) and (χc) respectively. At that critical point only one solution 
can be found for both branches. It should be realized that dual solution exists in the range s ≤ sc and χ ≤ χc in the 
beyond of critical value i.e., s < sc and χ < χc, no solution exists. Many researchers33–36 performed the stability 
solution for the both branches. It may be concluded that first branch of the solution is stable and physically relia-
ble while the lower branch is unstable and not physically meaningful.

Figures 2 to 4 shows the impact of Weissenberg number We on skin friction coefficient CRe f
1/2  Nusselt num-

ber −θ′(0) and Sherwood number −φ′(0) by keeping the other parameters fixed. It is seen that dual solution 
exists in all the graphs and both solutions are separated by a critical value. For increasing values of Weissenberg 
number We, the skin friction coefficient increases in upper branch solution and a converse pattern is noted in the 
lower branch solution, as seen in Fig. 2. The critical values reduces with respect to mass suction parameter with 
an enlargement in Weissenberg number We. It can be visually perceived that dual solution exists in the range 

Re1/2Cf

Re−1/2Nu

Pr = 0.7 Pr = 7

Wang and Ng29 1.31194 −0.6654 −1.5458

Rosca et al.30 1.311937 — —

Soid et al.31 1.311938 — —

Present Study 1.3119374 −0.66537722 −1.5457923

Table 1.  A comparison of the skin friction Re1/2Cf  and Nusselt number Re−1/2Nu, when s = 0.0 = We = χ and 
n = 1.0.

χ −0.25 −0.5 −0.75 −0.95

Wang et al.32 1.45664 1.49001 1.35284 0.94690

Present Study 1.4566387 1.4900101 1.3528388 0.94690336

Table 2.  A comparison of the skin friction Re1/2Cf  for various values of shrinking parameter χ, when 
s = 0.0 = We and n = 1.0.
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sc(=−4.162, −4.386, −4.4425) ≤ s when We = 2.0, 3.0, 4.0. Figure 3 shows that a similar behaviour is observed 
for local Nusselt number for varying values of Weissenberg number We. The dual profiles for local Sherwood 
number −φ′(0) are depicted in Fig. 4. An enhancement is noted in upper branch solution for higher values of 
Weissenberg number. While, in case of lower branch solution, the rate of mass transfer −φ′(0) reduces with 
increasing values of We. It is important to highlight that the critical values remain unchanged for the friction, heat 
and mass transfer coefficients for similar values of mass transfer parameter s.

The profiles of skin friction coefficient, local Nusselt number and local Sherwood number for varying values 
of m are plotted in Figs 5 to 7 against the suction parameter s. These Figs render that the dual solution for skin 
friction coefficient, local Nusselt number and local Sherwood number are significantly influenced by m. These 
Figs tell us that dual nature of solutions occurs for fixed values of m i.e., m = 1.0, 1.3, 1.6. The critical value of mass 
transfer parameter sc varies from 0.7385 to 0.7819, as m changes from 1.0 to 1.6. We clarify that the both (first and 
second) solutions of both skin friction and local Nusselt number increases by higher m. To discuss the influence 
of m on local Sherwood number −φ′(0), we plotted Fig. 5 for different values of m(=1.0, 1.3 and 1.6) with regard 
to the suction parametric s. We observe that increasing values of m causes a reduction in local Sherwood number 
for both upper and lower branch solutions. It is seen that no solution exists in the range s < ss.

We sketched Figs 8 and 9 to illustrate the effect of shrinking parameter χ on skin friction coefficient and local 
Nusselt number. As expected, multiple solution exists in the range sc(=0.6581, 0.7385, 0.8058) ≤ s when χ = −1.8, 
−2.0 and −2.2. In Fig. 8 both solutions give a reducing behaviour for skin friction when shrinking parameter χ 
changes from −1.8 to −2.2. The impact of shrinking parameter χ on −θ′(0) is seen in Fig. 9. It can be derived that 
the local Nusselt number decreases with an increment in χ for upper branch solution. While, in case of lower 
branch solution, Nusselt number increases with higher χ. To analyse the skin friction at the control surface for 
different values of n parameter and Weissenberg number We of the shrinking case (χ = −2.0), results are sketched 
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in Figs 10 and 11. The behaviour of skin friction CRe f
1/2  boosted down with the increment of n(=0.8, 1.0, 1.2) and 

We(=2.0, 3.0, 4.0) respectively for the first solution. Additionally, the greater rate of n and We parameters give the 
decreasing rate of critical point as shown in these Figs.

Boundary layer flow profiles.  Figures 12 to 14 unveil the influence of mass suction parameter s on velocity 
f′(η), temperature θ(η) and concentration φ(η) distributions, respectively using other parameters fixed. For the 
case of flow over shrinking surface, the velocity profile rises with the increment of suction parameter s in the 
first branch of solution. For lower branch, it is diminishing. Moreover, the momentum boundary layer thickness 
reduces in the upper branch and enhances for the lower branch solution (see Fig. 12). Figure 13 is pictured to see 
the impact of mass transfer parameter s on temperature distribution θ(η). It gives reduction behaviour in the first 
solution with increase in s while a quite different behaviour can be viewed for the second solution. Additionally, 
larger rate of suction causes to be reduced the thickness of momentum boundary in the first solution. But it 
increases with s for the second solution. The concentration of nanoparticle φ(η) gives a lesser behaviour in the 
first branch of solution with s = 3.0, 4.0 and 5.0. It can be observed that for second branch of solution, concentra-
tion boundary layer thickness enlarges with suction s.

The effect of Weissenberg number We on velocity and temperature profiles are drawn in Figs 15 and 16. With 
the increment in Weissenberg number We, the fluid velocity boosts up in both solutions which is expounded in 
Fig. 15. The temperature profile θ(η) is sketched to see the impact of We. Both solutions are depressed with higher 
We. In both sketches, it is concluded that both the momentum and thermal boundary layer thickness reduces to 
the lagging value of Weissenberg number (We = 2.0, 3.0, 4.0).

Figures 17 to 19 are sketched to watch the variance in temperature and concentration profiles against η under 
the action of nanofluids parameters. From Fig. 17, the temperature improves for large value of Brownian motion 
parameter Nb in both solutions. Additionally, at this encroachment, the thermal boundary layer thickness 
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enhances. A quite different trend can be noted for concentration profile in Fig. 18. The thermophoretic effect can 
be discern in Fig. 19. With the development in thermophoresis Nt shows the increment in fluid temperature θ(η) 
and the thermal boundary layer thickness elevates with advancement of Nt in both solutions. The influence of 
Prandtl number Pr on temperature profiles is described through Fig. 20. Dual solution occurs with respect to η. 
With the advancement in Pr, the concentration of nanoparticle declines in both solution in the case of shrinking 
surface (χ = −2.0). Also, it can be conducted that thickness of concentration boundary layer diminishes in both 
solution.

Main Findings
This study work presents a numerical-based survey for the subsistence of dual homogeneous attribute solutions 
for flow on a moving crustal surface in nanofluids. Two-dimensional axisymmetric flow of Carreau fluid model is 
utilized and bvp4c function in MATLAB is used to gain with effort the dual solutions. In the end, there are some 
paramount outcomes for this discourse got as:

	(1)	 Dual solution exists in the case of moving surface.
	(2)	 At the sheet, the local Nusselt number and local Sherwood number is, respectively greater for higher values 

of Weissenberg number in the upper solution while decline in the lower solution.
	(3)	 The skin friction coefficient is diminishing deportment for the escalating value of stretching parametric 

quantity.
	(4)	 The parameter foresee the escalating impact in the upper branch solution.
	(5)	 It is uncovering that heightening value of Weissenberg number foresee the decline of momentum and 

thermal boundary layer thickness.
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