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Abstract
Clinical evidence demonstrates that treatment with 
immune checkpoint inhibitor immunotherapy agents 
can have considerable benefit across multiple tumours. 
However, there is a need for the development of 
predictive biomarkers that identify patients who are most 
likely to respond to immunotherapy. Comprehensive 
characterisation of tumours using genomic, transcriptomic, 
and proteomic approaches continues to lead the way 
in advancing precision medicine. Genetic correlates of 
response to therapy have been known for some time, but 
recent clinical evidence has strengthened the significance 
of high tumour mutational burden (TMB) as a biomarker of 
response and hence a rational target for immunotherapy. 
Concordantly, immune checkpoint inhibitors have changed 
clinical practice for lung cancer and melanoma, which are 
tumour types with some of the highest mutational burdens. 
TMB is an implementable approach for molecular biology 
and/or pathology laboratories that provides a quantitative 
measure of the total number of mutations in tumour 
tissue of patients and can be assessed by whole genome, 
whole exome, or large targeted gene panel sequencing 
of biopsied material. Currently, TMB assessment is 
not standardised across research and clinical studies. 
As a biomarker that affects treatment decisions, it is 
essential to unify TMB assessment approaches to allow 
for reliable, comparable results across studies. When 
implementing TMB measurement assays, it is important 
to consider factors that may impact the method workflow, 
the results of the assay, and the interpretation of the 
data. Such factors include biopsy sample type, sample 
quality and quantity, genome coverage, sequencing 
platform, bioinformatic pipeline, and the definitions of 
the final threshold that determines high TMB. This review 
outlines the factors for adoption of TMB measurement 
into clinical practice, providing an understanding of TMB 
assay considerations throughout the sample journey, and 
suggests principles to effectively implement TMB assays in 
a clinical setting to aid and optimise treatment decisions.

Background
Immunotherapy agents have demonstrated 
significant clinical benefit across multiple 
tumours; however, as with most therapeutic 
agents, there is a need for robust biomarkers 
that predict which patients are most likely to 

respond to immunotherapy.1 2 Programmed 
death ligand 1 (PD-L1) expression emerged 
as a biomarker for immunotherapy,3–5 
although challenges with PD-L1 testing exist. 
PD-L1 immunohistochemistry assays can use 
different reagents and platforms, and stand-
ardisation between them is required.5 There 
is also uncertainty about whether to assess 
PD-L1 expression on tumour cells and/or 
immune cells.6 Furthermore, PD-L1 expres-
sion alone is often insufficient for predicting 
response.7 Despite the challenges, PD-L1 
immunohistochemistry assays are approved 
for companion and complementary testing 
with immunotherapy.5

Clinical studies to dissect the genetic 
makeup of tumours revealed that patients 
with high TMB have increased response rates 
and improved outcomes to treatment with 
immunotherapy compared with patients 
with lower TMB (table 1). This concept was 
recently validated in a phase III trial with 
a coprimary endpoint of progression-free 
survival in patients with high TMB (≥10 muta-
tions/megabase (mut/Mb) measured by the 
FoundationOne CDx assay8 9).

TMB is defined as the total number of 
somatic mutations in a defined region of a 
tumour genome, but the precise definition 
varies with the sequenced region size and 
localisation, and the nature of the mutations 
included.10 11 Testing for genomic alterations, 
including TMB, is currently performed using 
next-generation sequencing (NGS). Several 
NGS approaches exist and the target region 
ranges from genome-wide analysis (whole 
genome sequencing (WGS)) to whole exome 
sequencing (WES, covering the entire coding 
regions of genes in the genome) and large 
targeted gene panels (table  1). Many initial 
clinical studies used WES for TMB assess-
ment, and WES of tumour versus germline 
DNA is currently considered a reference stan-
dard. However, there are many commercial 
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Table 1  Summary of clinical evidence demonstrating TMB as a biomarker for response to immunotherapy

Immunotherapy agent and tumour 
type Study/trial* TMB assay used Type of benefit

Nivolumab

 � NSCLC (1 L) CheckMate 02652 WES ORR, PFS

 � NSCLC Flatiron Health117 Foundation CGP panel OS

 � Melanoma (1 L or 2 L) CheckMate 03822 WES ORR, OS, PFS

 � Melanoma CheckMate 06423 WES ORR, OS

 � Bladder CheckMate 27583 WES ORR, OS, PFS

 � GBM Bouffet et al, 2016118 WES DRR

Ipilimumab

 � Melanoma Van Allen et al, 2015119 WES CBR

Snyder et al, 201486 WES CBR, OS

Nivolumab and ipilimumab in combination

 � NSCLC (1 L) CheckMate 01235 WES ORR, DCB, PFS

 � NSCLC (1 L) CheckMate 227†8 FoundationOne CDx ORR, PFS

 � NSCLC (1 L) CheckMate 5689 FoundationOne CDx ORR

 � SCLC (2 L) CheckMate 03284 WES ORR, OS, PFS

Pembrolizumab

 � NSCLC (1 L) KEYNOTE-00136 WES ORR, DCB, PFS

 � CRC Le et al, 201544 WES ORR, PFS

 � Multiple solid tumours KEYNOTE-012/KEYNOTE-028120 

121
WES ORR

Atezolizumab

 � NSCLC (2 L) POPLAR/OAK87 88 Foundation bTMB OS, PFS

 � NSCLC (2 L) POPLAR/FIR/BIRCH85 FoundationOne ORR, OS, PFS

 � NSCLC (1 L) BFAST and B-F1RST122–124 Foundation bTMB DOR, ORR, PFS, OS

 � NSCLC Rizvi et al, 201856 WES DCB, ORR, PFS

 � Bladder (1 L or 2 L) IMvigor 210125 126 Foundation CGP panel ORR, OS

FoundationOne ORR

 � Bladder (2 L) IMvigor 211127 FoundationOne OS

 � Bladder Snyder et al, 2017128 WES PFS

Multiple agents

 � NSCLC Rozenblum et al, 2017129 FoundationOne and 
Guardant360

ORR

 � Melanoma Johnson et al, 201653 FoundationOne ORR, OS, PFS

Hugo et al, 201645 WES OS

 � Multiple solid tumours Goodman et al, 2017130 FoundationOne ORR, OS, PFS

Yarchoan et al, 201725 Various (not reported) ORR

 � Multiple solid tumours (2 L) Bonta et al, 2017131 FoundationOne ORR

*Ongoing atezolizumab, durvalumab and avelumab trials have primary completion dates in 2019 and 2020.
†CheckMate 227 has monotherapy and combination therapy arms in the study design.
CBR, clinical benefit rate; CGP, comprehensive genomic profiling; CRC, colorectal cancer; DCB, durable clinical benefit; DOR, duration of 
response; DRR, durable response rate; GBM, glioblastoma multiforme; NSCLC, non-small cell lung cancer; ORR, objective response rate; 
OS, overall survival; PFS, progression-free survival; SCLC, small cell lung cancer; TMB, tumour mutational burden; WES, whole exome 
sequencing.

gene panel assays and laboratory-developed tests (LDTs) 
being used. The US Food and Drug Administration (FDA) 
recently approved the gene panel assay FoundationOne 

CDx12 and authorised MSK-IMPACT13 for profiling solid 
tumours for genomic alterations in a clinical setting, and 
many other assays are currently available for research use 
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only. As well as testing for actionable mutations, these 
assays can test for TMB in parallel.14 15 However, they can 
differ in their methodology (eg, enrichment approach, 
sequencing system, bioinformatic pipeline), the number 
of genes and types of mutations included (eg, synonymous 
and/or nonsynonymous), and the recommendations for 
interpretation of results. For example, TMB is defined in 
FoundationOne CDx as the number of somatic, coding, 
base substitutions (synonymous and nonsynonymous) 
and short insertions and deletions (indels) per megabase 
of tumour genome examined.11 14

With a variety of alternative approaches now available, 
standardisation is required as TMB assays move into clin-
ical practice. It is essential to raise awareness of all assay 
considerations to ensure that reliable and accurate TMB 
assessments can be achieved and compared across studies.

Rationale for TMB as a biomarker for response to 
immunotherapy
Evidence suggests that tumours with higher TMB also 
carry higher neoantigen loads.16 Tumour-specific somatic 
mutations can give rise to neoantigens, which are novel 
protein epitopes specific to tumours that may be presented 
on the tumour cell surface by major histocompatibility 
complex molecules.10 17 18 A subset of neoantigens can be 
recognised as ‘non-self’, leading to T-cell activation and a 
tumour-targeted immune response.19 20 The clonal nature 
of tumour evolution implies that T-cell-activating neoan-
tigens will be propagated.21 T-cell receptor sequencing 
shows that increased clonal neoantigen load may drive 
clonal T-cell expansion and a sustained antitumor immune 
response.4 10 22 23

Immune checkpoint molecules negatively regulate 
T-cell activation, leading to suppression of neoanti-
gen-driven immune responses and allowing tumours 
to escape immune surveillance.16 Immune checkpoint 
inhibitors, such as anti-PD-1, anti-PD-L1, and anti-cyto-
toxic T-lymphocyte antigen 4, restore the antitumour 
immune response,4 24 and neoantigen-driven activation of 
the antitumour immune response implies that tumours 
with high TMB are more likely to respond to immune 
checkpoint blockade.16 24–26 Moreover, clonal tumour 
evolution and the effects of increased T-cell activity on 
other tumour properties may further increase sensitivity 
to immunotherapy.10 21 27 28

TMB and neoantigen load vary considerably within and 
across tumour types, with melanomas, lung cancers, and 
bladder cancers being among those with the highest TMB 
compared with other tumour types (figure 1).11 29–33 The 
mutational landscape can also vary across the tumour and 
evolve during tumour development or following treat-
ment.22 34

Tumours with high TMB may exhibit specific genetic 
alterations associated with clinical benefit to immuno-
therapy.35 36 For example, high TMB can be caused by 
defects in mismatch repair (MMR) genes that are asso-
ciated with microsatellite instability (MSI).11 16 26 The 
MMR pathway is responsible for the correction of DNA 

replication errors; such errors frequently occur in micro-
satellites (short tandem DNA repeats found across the 
genome). Mutations in MMR genes can lead to increased 
mutational incidence within microsatellites; MSI can 
therefore be a surrogate marker for DNA repair disor-
ders, such as deficient mismatch repair (dMMR).37 Simi-
larly, DNA polymerase epsilon (POLE) is required for 
high-fidelity DNA replication, ensured by Watson–Crick 
base pairing and exonuclease (proofreading) activity. 
Mutations in the exonuclease domain of POLE can cause 
a hypermutator or ultramutator phenotype with TMB >10 
mut/Mb or >100 mut/Mb, respectively.38

While clonal tumour expansion may not increase TMB, 
POLE mutant, dMMR, and MSI-high tumours have been 
associated with high TMB. However, the reverse is not 
always true. For example, melanoma and lung tumours 
frequently have high TMB but <1% are MSI-high39 40 and 
POLE deficiency occurs in <3% of lung cancers,41 indi-
cating that other mechanisms, including pathogenic 
events such as UV exposure or smoking, contribute to 
increased TMB in these tumour types.11 15 38 42 Testing 
for driver mutations should therefore occur alongside 
TMB.35 43 Nevertheless, immunotherapy has demon-
strated clinical benefit for patients with dMMR and 
MSI-high tumours,30 44–48 further supporting that TMB, 
as a surrogate for genome instability as well as tumour 
neoantigens, is an appropriate biomarker for response to 
immunotherapy.

Overview of TMB assays and assay variations
NGS approaches
TMB assessment by NGS can involve WGS, WES, or large 
targeted gene panels, yet analytical and bioinformatic 
methods are not standardised across research or clin-
ical studies. Both coding and non-coding sequences are 
analysed in WGS, but because only coding sequences are 
relevant for TMB assessment, WES, covering the entire 
exome, and gene panels, covering selected regions, are 
each suitable.10 16 Gene panels differ in input sample 
requirement, gene number or identity, region covered, 
workflow, and bioinformatic algorithms used (table  2); 
variation in TMB can arise from one or more of these 
parameters.11

For most studies to date demonstrating an association 
between TMB and clinical benefit, TMB was measured by 
WES. However, it is challenging to routinely implement 
WES in a clinical setting because this method typically 
requires complex analysis and a matched normal sample 
for germline comparisons.11 47 49 50 Interoperability of data 
by WES is influenced by tumour heterogeneity, artefacts 
related to tissue preparation of formalin-fixed, paraf-
fin-embedded (FFPE) samples, and discrepancies across 
assays available from commercial vendors.51

Targeted gene panels have been developed as an 
alternative method to WES. Whereas WES provides 
sequence coverage across the entire exome, gene panels 
are focused on large numbers of cancer-related genes 
and coupled to bioinformatic algorithms that rapidly 



Open access

4 Büttner R, et al. ESMO Open 2019;4:e000442. doi:10.1136/esmoopen-2018-000442

Figure 1  Distribution of TMB and neoantigen load across tumour types. (A) TMB and corresponding predicted neoantigen 
variation across 14 different tumour types. Data derived from Chen et al.26 (B) TMB variation across 30 different tumour 
classes. Adapted with permission from Springer: Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational 
processes in human cancer. Nature 2013;500(7463):415–21;30 Copyright 2013. AD, adenocarcinoma; ALL, acute lymphocytic 
leukaemia; AML, acute myeloid leukaemia; CLL, chronic lymphocytic leukaemia; SCLC, small cell lung cancer; SQ, squamous 
cell carcinoma; TMB, tumour mutational burden.

report on cancer-targeted genomic alterations, such as 
copy number alterations (eg, human epidermal growth 
factor receptor 2 (ERBB2)), gene rearrangements (eg, 
anaplastic lymphoma kinase (ALK)), MSI, and TMB, 
along with identification of specific cancer-associ-
ated mutations (eg, epidermal growth factor receptor 
(EGFRT790M)).13 14 Therefore, comprehensive genomic 
profiling using gene panels can provide targeted infor-
mation that may not be immediately available in WES 
data. Three gene panel tests (FoundationOne, Foun-
dationOne CDx, and MSK-IMPACT) have documented 
good concordance with TMB assessment by WES 
using both empirical and in silico approaches.15 52–55 

Therefore, gene panels potentially provide an effec-
tive approach for TMB estimation in clinical prac-
tice.11 15 49 50 56

Further concordance studies are needed to bridge TMB 
data from WES to gene panels, and translation studies 
aim to create a framework to define common TMB assay 
parameters and harmonise data between different gene 
panels. Ongoing studies by the Quality Assurance Initia-
tive Pathology (QuIP) operated by the German Society 
of Pathology and the Federal Association of German 
Pathologists, The Friends of Cancer Research, and the 
International Quality Network for Pathology (IQN Path) 
together with the European Society of Medical Oncology 
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Table 2  Examples of NGS gene panels in development or currently available to assess TMB

Status Test name
Number 
of genes

Coverage 
(Mb)* Gene variants

Sample 
type

FDA-approved or 
authorised diagnostic 
assays†

MSK-IMPACT15 56 68 468 1.5 SNVs, indels, rearrangements/
fusions, CNAs, parallel analysis of 
genomic signatures (eg, TMB and 
dMMR/MSI)

FFPE

Foundation Medicine 
FoundationOne CDx14 49

324 0.8 SNVs, indels, CNAs, select 
rearrangements, parallel analysis 
of genomic signatures (eg, TMB 
and dMMR/MSI)

FFPE

Commercial assays for 
research use only

Caris Molecular Intelligence132 592 1.4 Somatic missense mutations FFPE

Illumina TruSight 500 gene 
panel133

500 2.0 SNVs and indels FFPE

Thermo Fisher Scientific 
Oncomine Tumor Mutation 
Load Assay77

409 1.7 SNVs FFPE

NEO New Oncology
NEOplus v2 RUO134

>340 1.1 SNVs, indels, fusions, CNAs, 
parallel analysis of TMB, MSI, and 
driver mutations

FFPE

Foundation Medicine 
FoundationOne50

315 1.1 SNVs, indels, CNAs, select 
gene rearrangements, genomic 
signatures for MSI and TMB

FFPE

Foundation Medicine bTMB 
assay88 122

394 1.1 SNVs Blood

TruSight Tumor 170135 170 0.5 Fusions, splice variants, SNVs, 
indels, amplifications

FFPE

QIAGEN GeneRead DNAseq 
Comprehensive Cancer 
Panel97

160 0.7 SNVs, CNAs, indels, and fusions FFPE

NEO New Oncology 
NEOplus105 136

94 SNVs, indels, CNAs, 
rearrangements, and fusions

FFPE

*Exonic breadth of coverage for the above assays is incomplete because public information may not be available for some assays.
†FoundationOne CDx has FDA premarket approval for mutations associated with several targeted therapies. In addition, FoundationOne CDx 
can provide tumour mutation profiling to be used by qualified healthcare professionals in accordance with professional guidelines in oncology 
for patients with solid malignant neoplasms.137 MSK-IMPACT is FDA-authorised to provide information on somatic mutations and MSI. TMB 
is captured as part of the enhanced report and is considered for investigational use only.13 15

CNA, copy number alteration; dMMR, mismatch repair deficiency; FFPE, formalin-fixed, paraffin-embedded; MSI, microsatellite instability; 
Mb, megabases; NGS, next-generation sequencing; SNV, single nucleotide variant; TMB, tumour mutational burden.

(ESMO), are essential for the standardisation of TMB 
assessment.57–60

TMB panel size
The size of the genome area sequenced differs across 
assays. WES covers the coding regions of all ~22 000 
genes (~180 000 exons, equivalent to 30 Mb), making 
up ~1% of the genome61 and encompassing most of the 
known disease-causing variants. FoundationOne CDx 
and MSK-IMPACT assays cover ~0.8 Mb over 324 genes 
and ~1.5 Mb over 468 genes, respectively.14 62 Some 
evidence suggests that smaller gene panels may be suffi-
cient for TMB assessment,63 but other evidence indi-
cates that they may only be sufficient to detect hyper-
mutated and ultramutated tumours and that larger 
gene panels may be more accurate overall.54 64 Tumours 
with high TMB may be effectively identified by targeted 

sequencing of several hundred genes, and accuracy may 
not increase significantly above this threshold.11 36 56 
However, variance increases significantly below 0.5 Mb, 
particularly in samples with low TMB.11 64 For clinical 
purposes, evidence suggests that gene panels of ≥0.8 Mb 
are needed.14 64

It is important to consider whether the specific gene 
sequences in a panel have an impact on the TMB 
result. Panels targeted to specific cancer-related genes 
may introduce unwanted bias into the area of genome 
covered, but if the panel is sufficiently large, then the 
function of specific genes within it should be negligible 
and not impact TMB assessment. There are, of course, 
driver mutations, such as BRCA1, TP53, and POLE, that 
are associated with large increases in TMB11 15 38 65 and 
these should be assessed alongside TMB.46 66
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Depth of coverage
Alongside sequencing breadth, sequencing depth (the 
average number of reads that align to a known reference 
base67) is also variable across NGS assays. The typical 
sequencing depth for WES is ~100×, and only mutations 
with allele frequencies of >15% can be detected with confi-
dence.51 The typical sequencing depth for a gene panel 
is greater at 500×, increasing the likelihood of detecting 
low-frequency variants at specific loci,68 69 although the 
minimum depth of coverage required for accurate TMB 
assessment may be closer to 200×.70 Together, breadth and 
depth of coverage may impact the sensitivity and speci-
ficity of TMB assessment, but strong evidence suggests 
that gene panels may be adequate to provide a reliable 
TMB measurement if sequencing quality thresholds are 
upheld.

Variant calling
A number of calculations and filters are employed down-
stream of sequencing to include or discard variants in 
the TMB estimation. The bioinformatic algorithms used 
are often not publicly reported, but may differ across 
assays and may impact TMB output.11 Understanding and 
harmonising these bioinformatic elements are essential.

One important consideration is the types of mutations 
included in the assessment, such as insertion and dele-
tion alterations (indels), and base substitutions/single 
nucleotide variants (which can include synonymous and 
nonsynonymous mutations).11 15 49 50 71 TMB assessment by 
WES or gene panels commonly includes nonsynonymous 
somatic tumour mutations, but these may be restricted to 
missense mutations only. Recent evidence suggests that 
outcomes following immunotherapy are more strongly 
associated with TMB that is defined as including nonsyn-
onymous mutations than with TMB that includes both 
synonymous and nonsynonymous mutations.35 However, 
some studies using smaller gene panels may also include 
synonymous mutations to ensure a representative TMB 
estimate.10 11 15 30 Another consideration is the variant 
allele frequency (VAF) cut-offs used to ensure that TMB 
is a reliable estimation of the number of mutations in the 
tumour, with minimal artefacts from sequencing errors, 
formalin-induced DNA damage, or sample contamina-
tion.72 73 Variant calling may be improved by capturing and 
sequencing both DNA strands in the target sequence.74 
In studies using WES, VAF can vary from 5% to 10%,75 76 
FoundationOne CDx and Oncomine assays call all vari-
ants with a VAF ≥5%,14 77 and MSK-IMPACT calls those 
≥2% for mutation hotspots and ≥5% for nonhotspots.13 
TMB reporting adds a further level of complexity when 
comparing TMB across studies, as most studies report 
TMB as mut/Mb, whereas others report TMB as total 
mutations per tumour.

Somatic variants
It is important to distinguish between tumour-specific 
acquired (somatic) mutations and those that are present 
in normal tissue (also known as germline mutations). For 

WES and MSK-IMPACT, paired sample mutation calling 
is typically performed on tumour samples and matched 
germline control (blood) samples.11 13 15 Using control 
samples for assessment of germline variants may not 
be feasible, practical, or even legal, because germline 
testing may have further-reaching implications outside 
cancer diagnosis.78–80 Somatic mutations can be inferred 
in tumours without matched controls in silico from data-
bases of known polymorphisms or variant data in tissue 
from different patients.11 14 54 81 Some assays filter poten-
tial germline mutations using a somatic-germline zygosity 
algorithm, which identifies the origin of the mutation 
by leveraging allele frequencies and genome-wide copy 
number.11 14 82 Although these approaches simplify the 
TMB assessment workflow, they may result in false posi-
tives and higher TMB, particularly in patients with ethnic 
backgrounds that are less well represented in reference 
databases.11 54 These effects may be negligible for TMB 
assessment by WES or large gene panels, but increased in 
smaller panels.54

Defining TMB thresholds
TMB thresholds were initially defined retrospectively in 
exploratory analyses of immunotherapy efficacy, with 
patients being grouped by TMB tertile or quartile35 52 83–85 
or by numeric cut-offs, such as 100 or 178 mutations per 
exome22 36 86 or 9–20 mut/Mb.11 87 88 To date, the TMB 
threshold of ≥10 mut/Mb, measured by FoundationOne 
CDx (equivalent to ~200 mutations by WES) in first-line 
patients with non-small cell lung cancer (NSCLC), is the 
only cut-off established for enhanced response to immu-
notherapy in one trial and clinically validated in a sepa-
rate study using a preplanned approach.8 9 55

Identifying a single, fixed TMB threshold that could 
be applicable across different tumours may be difficult, 
because the median number of somatic mutations differs 
across tumour types (figure  1).26 30 In silico analyses 
suggested that clinical response in NSCLC and melanoma 
may increase and then plateau at ~260 nonsynonymous 
mutations (measured by WES),31 but this prediction 
would need stringent validation to determine which 
types of mutations contributed to this number and how 
to translate this value into other patient groups. Further 
studies evaluating a clinically validated TMB cut-off will 
be instrumental in providing an agreed TMB cut-off 
within particular tumour types. Increased use of specific 
approved commercial assays will also assist in cross-trial 
comparisons.

Considerations for sample preparation and TMB assays
Samples used for TMB assessment may be cytology or 
liquid biopsies, or FFPE tumour tissue. Although some 
evidence exists for the feasibility of using cytology and fine-
needle aspiration for analysis by NGS,89 90 these samples 
can yield variable amounts of DNA that may not always 
be sufficient for in-depth molecular analysis.91 92 FFPE 
samples are the most commonly available patient samples 
for clinical testing. FFPE slides and extracted DNA are 
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Figure 2  Biopsy sample workflow for TMB testing. A proposed, optimised workflow is shown to streamline diagnostic testing 
for TMB alongside other genomic markers. ALK, anaplastic lymphoma kinase; CNA, copy number alteration; EGFR, epidermal 
growth factor receptor; MSI, microsatellite instability; NGS, next-generation sequencing; QC, quality control; ROS, ROS proto-
oncogene 1, receptor tyrosine kinase; TMB, tumour mutational burden.

reliable for TMB assessment for 6 months and likely 
beyond.14 However, FFPE samples present a risk for use 
with high-throughput genomic assays, because preanalyt-
ical factors common to NGS testing can affect the sample 
integrity or amount of DNA that can be extracted.72 73 93 94 
These factors include clinical sample availability; sample 
collection, preparation, and fixation (optimally 24 hours 
in neutral buffered formalin for surgical specimens and 
12 hours for biopsies95 96); neoplastic cell content in the 
sample; batch processing; and ensuring sufficient DNA 
quality and yield for assessment (10–100 ng for gene 
panels and around 250 ng for WES).14 62 97–100 Insufficient 
DNA is a common cause of sample attrition in clinical 
trials,52 101 so assays that require less DNA may be advan-
tageous.

In addition to variability in sample handling, technical 
processes and working practices employed by clinical labo-
ratories can vary extensively.102 Specifically, centralised 
and decentralised laboratories differ in infrastructure, 
equipment, and gene panels used, and different plat-
forms may vary in bioinformatic workflow, data integra-
tion, and/or how the data are reported.47 103 104

TMB from liquid biopsies
Interest in isolating cell-free DNA (cfDNA) from liquid 
biopsies for assessment of circulating tumour DNA 
(ctDNA) is increasing because of the less invasive nature 
of sample collection from patients and greater opportu-
nity for obtaining frequent samples. TMB measurements 
from cfDNA may have advantages over tissue biopsy in 
the follow-up of early responses to immunotherapy due 
to the ease and speed of obtaining them.105 TMB assays 
that use cfDNA have been developed and validated, 
with ongoing efforts for harmonisation with TMB data 
from tissue samples.87 106–109 Data for TMB concordance 
between tissue and cfDNA by gene panel assays are 
conflicting, with reports of both good concordance110 

and a lack of concordance.111 Some studies have 
demonstrated that the sensitivity of detecting mutations 
from cfDNA is decreased compared with solid tumour 
samples for both WES and gene panels, although the 
correlation between TMB assessed from tissue and 
cfDNA is greater by WES than a panel.75 105 107 Liquid 
biopsies may yield a variable mix of normal and tumour 
DNA, and the tumour DNA could reflect heterogeneity 
across different tumour sites. Thus, variable data exist 
for concordance between solid and liquid samples, and 
there is a need for further studies. Nevertheless, future 
clinical use of TMB assessment from liquid biopsies 
remains feasible.

Turnaround time
Alongside technical specifications of the tests, other 
regulatory, practical, and logistic factors are important, 
such as assay turnaround time, runtime, and cost. Turn-
around time is impacted by the time required for steps 
in the workflow and, therefore, the availability of key 
stakeholders to carry out their role in the generation of 
a reliable TMB result (figure 2). Given the comprehen-
sive nature of the assay, it is difficult to balance turna-
round time with cost, and microcosting analyses are 
urgently needed.112 The common turnaround time for 
TMB assessment by commercial assays is approximately 2 
weeks, including 4–5 days of library preparation time.14 69 
Moving forward, there is a need to establish acceptable 
TMB assay turnaround times, especially if the test is 
applied in the first-line cancer setting. A test for both 
actionable mutations and TMB is preferable for first-
line patients. Moreover, TMB is a surrogate marker for 
neoantigen load, which may impact immune response 
and response to therapy, and studies monitoring TMB 
suggest that follow-up testing could detect residual 
disease or recurrence.21 22 113
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Table 3  Key parameters for the harmonisation of TMB analysis and workflow

Parameter Principles

Sample ►► Sample must provide adequate quantity and quality of DNA
►► Most cancer NGS assays are performed on FFPE tissue (optimal fixation time, 24 hours for surgical 
specimens and 12 hours for biopsies). Cytology/FNA, plasma, and other types of samples may be 
acceptable for smaller targeted panels and are in development to be established for use in the future

Methodology ►► WES is considered the gold standard for measuring TMB because it offers high breadth of coverage 
compared with gene panels

►► Investigations of smaller gene panels are ongoing for TMB assessment
►► In general, larger panels have been shown to be more accurate than smaller panels. As more data become 
available, there may be a recommended number of genes to profile for optimised gene profiling/TMB; 
current recommendations indicate that the area of genome covered should be >0.8 Mb (preferably >1 Mb)

►► Screening for driver mutations (eg, EGFR, BRAF, KRAS) and TMB in one assay is recommended to 
avoid time delays or processing of multiple samples. Inclusion of driver mutations, rearrangements, etc 
on the panel can provide additional clinical utility for the assay beyond TMB, but may not necessarily be 
informative for the TMB calculation

►► Sequencing depth can affect detection of low-frequency variants. ≥200× is recommended

Platforms ►► Stakeholders should be aware of varying parameters such as runtime and throughput capacity of available 
sequencers

Germline ►► Experimental approaches by filtering germline variants with matched normal samples
►► In silico approaches by filtering against germline variant databases

Algorithm ►► Standardised and robust bioinformatic pipelines should be developed
►► There is a need for internationally available reference standards (ie, sets of tumours with WES data)
►► Variant allele frequency cut-offs should be reported. Cut-offs of ≥5% are recommended

Cut-off ►► Currently no standard cut-off to designate high TMB and there is a need for harmonisation of tests to 
establish set thresholds. More standardised cut-offs are anticipated as clinical utility is established for 
individual tumour types and TMB thresholds are studied in the context of response to immunotherapies

►► TMB thresholds of ≥13 mut/Mb and ≥10 mut/Mb, measured by FoundationOne CDx, have recently been 
associated with enhanced responses to immune checkpoint inhibitor monotherapy and combination 
therapy, respectively, in patients with non-small cell lung cancer. The value cut-off ≥10 mut/Mb was 
established in one study and clinically validated in a separate trial.8 9 In patients with small cell lung cancer, 
improved responses were seen with a cut-off of ≥248 missense mutations, as measured by WES84

Concordance ►► Recommendations on validation processes and concordance testing with WES for approved gene panels 
or other commercial panels without clinical data

►► Need for direct comparison between panels (especially for FDA-approved or authorised panels)

Reporting ►► Reporting standards for how TMB is defined and calculated, including gene panel number, capture region, 
control (germline subtraction), types of mutations called, variant calling threshold, and sequence depth

►► Recommend reporting results as mutations per megabase of targeted DNA
►► Recommend accurate reporting of TMB thresholds and highlight associated clinical outcomes
►► Quality assurance on data reporting is also required

BRAF, B-Raf proto-oncogene, serine/threonine kinase; EGFR, epidermal growth factor receptor; FFPE, formalin-fixed, paraffin-embedded; 
FNA, fine-needle aspiration; KRAS, KRAS proto-oncogene, GTPase; mut/Mb, mutations per megabase; NGS, next-generation sequencing; 
TMB, tumour mutational burden; WES, whole exome sequencing.

Quality assurance
Multidisciplinary teams are involved in oncology 
sampling and diagnostics, from sample collection by 
the surgeon through to TMB assay result interpretation 
(figure 2). There is a need for all to be coordinated and 
well informed on the necessary approaches to achieve 
a reliable assay result, and molecular tumour boards 
have been set up to ensure global harmonisation in 
tumour-sequencing practices.114 Recent NGS guidelines 
from pathologists emphasise the role of the laboratory 
director in using an error-based approach that can iden-
tify potential sources of errors that may occur throughout 
the analytical process.72

The robustness of a TMB assessment method, 
reflected by its approval status (FDA, CLIA, CE-IVD 
approved, or for research use only), is likely to influ-
ence the choice of assay used in clinical practice. Many 
steps within the TMB assessment pathway can vary and 
their impact should be assessed. For example, changing 
an extraction protocol may pose a minor risk if quality 
control is in place to verify sample purity and concentra-
tion; however, changes to which NGS platform is used 
are likely to require a new validation process.72 Appro-
priately trained personnel at each step of the workflow 
to carry out quality-control processes will minimise vari-
ance and impact.72
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As TMB becomes more established, an increase in the 
number of commercial or LDT panels is anticipated. 
Recommendations for how to implement TMB assays will 
be developed further with input from the international 
harmonisation efforts described above. It is therefore 
important to understand how LDTs can augment TMB 
testing. The identification of reference standards or 
external quality evaluation is a way to compare LDTs with 
other methods. It is likely that the clinical evidence for 
robust TMB assessment will be limited to a few key assays, 
with a need for calibration and concordance studies to 
facilitate the transition from clinical trials to the real-
world setting.

Challenges and solutions to adopting TMB assays in clinical 
practice
Because data have demonstrated that high TMB is a 
predictive marker for clinical benefit from immuno-
therapy, the ability to classify TMB as high or low is 
essential for predicting response. Defining cut-offs for 
TMB may directly lead to inclusion or exclusion of some 
patients from treatment. However, most published clin-
ical studies of TMB to date have been exploratory, using 
a number of different methods, and it is challenging to 
compare data across studies. The availability of preana-
lytic, sequencing, and bioinformatic protocols will help 
to harmonise TMB estimation with clinical outcomes.

Lessons can also be learnt from experiences with 
PD-L1 expression testing. The need for sample quality 
control, concordance studies across PD-L1 testing plat-
forms to determine the interchangeability of tests, and 
appropriate training for key personnel to interpret the 
data are all applicable for any biomarker. Even though 
TMB outputs are based on computational assessment, 
there is still a need for education and training on how 
these values are derived.

With PD-L1 expression and TMB as independent 
and potentially complementary predictive markers 
for response to immunotherapy,52 questions turn to 
the possible need for coordinated multiparameter or 
composite testing to continue to advance the field. 
Interplay between TMB, PD-L1, tumour-infiltrating 
lymphocytes, and cytolytic activity is emerging from 
comprehensive immunogenomic analyses,26 raising the 
possibility of composite biomarker testing within the 
tumour microenvironment.

Conclusions
Validated predictive biomarkers should accurately 
predict patient responses to immunotherapy. The use of 
TMB assessment has been actively addressed by ongoing 
studies, including those clinically validating TMB as a 
biomarker for response to immunotherapy. Using valu-
able lessons learnt from PD-L1 testing, including the 
need for concordance studies across testing platforms 
and the need for trained personnel to assess the assay 

results, the development of TMB as a clinical diagnostic 
tool is being defined.

As the field evolves, solutions emerge to ensure that 
reliable TMB assessments are carried out in clinical 
practice. However, definitive recommendations may not 
be possible until more data are available from prospec-
tive clinical trials. From the knowledge gained so far, 
key parameters can be highlighted throughout the 
TMB testing workflow, including collection of samples, 
methods, and analysis (table 3). These include current 
suggestions to use solid tissue samples, to use gene 
panels with a coverage >0.8 Mb (preferably >1 Mb), to 
ensure sufficient information is given when reporting 
TMB values (including number of genes, capture 
region, germline subtraction, types of mutations called, 
variant calling threshold, and sequence depth72 103), to 
participate in external quality-control schemes when 
available and to ensure trained stakeholders are avail-
able for efficient workflow and assay interpretation.

It will be necessary to accumulate larger datasets, 
set minimal tissue sample purity thresholds, and stan-
dardise sample processing and robust bioinformatic 
pipelines such that TMB can be calculated in a reliable 
manner.1 11 99 115 116 Further analyses will also be required 
to understand how biomarkers, such as TMB, PD-L1, and 
other genetic/immune markers, interact.

Despite method variability, scoring the number of 
somatic mutations in tumour DNA is relatively simple, 
and exhaustive characterisation of tumours will increase 
understanding of their characteristics. As momentum 
for TMB as a biomarker of immunotherapy response 
increases and standardised approaches begin to emerge 
to allow for clinical implementation, it is likely that TMB 
assessment, with or without additional biomarkers, will be 
at the forefront of precision medicine in the foreseeable 
future.
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