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Abstract: Erwinia mallotivora, the causal agent of papaya dieback disease, is a devastating pathogen
that has caused a tremendous decrease in Malaysian papaya export and affected papaya crops in
neighbouring countries. A few studies on bacterial species capable of suppressing E. mallotivora have
been reported, but the availability of antagonistic fungi remains unknown. In this study, mycelial
suspensions from five rhizospheric Trichoderma isolates of Malaysian origin were found to exhibit
notable antagonisms against E. mallotivora during co-cultivation. We further characterised three
isolates, Trichoderma koningiopsis UKM-M-UW RA5, UKM-M-UW RA6, and UKM-M-UW RA3a, that
showed significant growth inhibition zones on plate-based inhibition assays. A study of the genomes
of the three strains through a combination of Oxford nanopore and Illumina sequencing technolo-
gies highlighted potential secondary metabolite pathways that might underpin their antimicrobial
properties. Based on these findings, the fungal isolates are proven to be useful as potential biological
control agents against E. mallotivora, and the genomic data opens possibilities to further explore
the underlying molecular mechanisms behind their antimicrobial activity, with potential synthetic
biology applications.

Keywords: biocontrol; fungus; Trichoderma; Gram-negative; Erwinia

1. Introduction

Papaya dieback disease (PDD), or bacterial crown rot (BCR), is a bacterial-caused
disease that has negatively affected papaya crops (Carica papaya L.) in Malaysia, reducing
the national papaya export up to 70% [1]. Initially, Erwinia papayae was reported to be the
causal agent of PDD [2], though later Mat Amin et al. [3] molecularly validated the pathogen
to have the closest match to E. mallotivora Goto strain DSM 4565 and this was further
supported through genome sequencing [4]. Most of the Malaysian papaya cultivated
varieties (cultivars) such as ‘Eksotika’, ‘Sekaki’, and ‘Setiawan’ are highly susceptible to this
Gram-negative pathogen [5]. Once infected, water soak symptoms become prevalent on
papaya petioles, leaves, and the apical stem, and the tree can succumb to the disease within
one to two weeks [5–7]. In addition to physical diagnosis, Mohd Said et al. [8] developed a
DNA-based detection method for E. mallotivora to further assist in early detection of the
disease and Ramachandran et al. [9] conducted a repetitive element PCR fingerprinting
(rep-PCR) study to provide an accurate and rapid identification method on various local
E. mallotivora isolates. Currently, there is no effective cure for PDD from the moment the
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symptoms appear on the trees. Hence, farmers rely on preventive measures and good
management practices to contain and minimise the spread of the disease to neighbouring
trees and plots [5,10,11]. Recently, E. mallotivora was reported to be affecting papaya in the
Philippines and Indonesia, making this species a pathogen of concern that could affect the
papaya industry in the entire Southeast Asia region [7,12]. A similar disease termed as
papaya black rot has been recently detected in Japan and the pathogen was characterised
to be from the genus Erwinia [13].

Numerous studies have been conducted in recent years to understand the pathogen-
esis of E. mallotivora and find solutions to curb the disease. About four years after the
identification of the pathogen, the draft genome sequence of E. mallotivora was published
and this has initiated more research [4]. Wee et al. [14], Hamid et al. [15], Juri et al. [16,17],
Abu-Bakar et al. [18], Abu Bakar et al. [19], and Tamizi et al. [20] have conducted in-depth
studies to understand the host–pathogen interactions and pathogenicity of E. mallotivora at
the molecular level, while Noor Shahida et al. [6] described the infection from a physiologi-
cal perspective. The use of conventional breeding and genetic engineering to develop new
papaya lines that would be resistant to E. mallotivora is still in the research pipelines [21–25].
Nevertheless, the effort to combat the disease should be augmented with other approaches,
including the use of effective microorganisms and native microbial biocontrol.

Mat Amin et al. [26,27] discovered several Bacillus spp. from soil to be antagonistic
towards E. mallotivora, and this effort has pioneered the search for potential antagonistic
microbes against E. mallotivora that have been ravaging papaya trees. Later, a biocontrol
inoculant containing an undisclosed species of Bacillus sp. known as ‘Dieback Buster
95′ was launched and claimed to be highly efficient in the prevention of PDD [28,29]. In
addition to these, native endophytic bacteria (NEB) isolated from papaya were reported to
be capable of suppressing the growth of E. mallotivora [30,31].

While these potential biocontrols have been isolated from the kingdom of bacteria,
fungal species possessing antagonistic effects against E. mallotivora remain unexplored.
Fungi of the genus Trichoderma have been widely studied for their biological control prop-
erties against pathogenic fungi and other bacterial species [32–35]. They are known plant
growth-promoting fungi (PGPF), abundant in soil and easily culturable [36,37]. According
to Guo et al. [37] and Khan et al. [38], Trichoderma species produced diverse compounds and
active metabolites during their interaction with competitors. This makes an effort to single
out a potential antimicrobial compound from a particular Trichoderma species relatively
challenging. Rush et al. [39] produced a systemic review on Trichoderma bioprospecting
which discussed the application of genome technology in screening for natural products
and biocontrol compounds. In the present study, we have discovered five Trichoderma
isolates that showed antimicrobial activity against the E. mallotivora strain BT-MARDI,
of which three were further characterised through genome sequencing to investigate the
possible mechanisms behind their antimicrobial properties.

2. Materials and Methods
2.1. Preparation of Pathogen

The papaya dieback pathogen, E. mallotivora strain BT-MARDI, was obtained from
the Biotechnology and Nanotechnology Research Centre, at the Malaysian Agricultural
Research and Development Institute (MARDI) in Serdang, Selangor, Malaysia. A stock
culture of E. mallotivora was maintained in 15% (w/v) glycerol at −80 ◦C. Working cultures
were established by streaking the glycerol stock onto Luria Bertani (LB) agar plates (10 g/L
tryptone, 5 g/L yeast extract, 10 g/L sodium chloride, 15 g/L agar) and incubating at 30 ◦C
for 48 h. Fresh single colonies were then picked and cultured in 50 mL LB medium (10 g/L
tryptone, 5 g/L yeast extract, 10 g/L sodium chloride) in a 250 mL flask, shaking at 180 rpm
for 24 h.
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2.2. Isolation of Antagonist Fungi

The rhizosphere soil samples were randomly collected from healthy papaya plants
(wild and cultivated) at five different locations (Table 1) in Peninsular Malaysia. Then,
soil dilution was performed and used to grow culturable fungi, particularly Trichoderma,
on potato dextrose agar (PDA) supplemented with selective agents. Briefly, 50 g of soil
sample were diluted in 50 mL of sterile distilled water. Serial dilution was performed at
1/10, 1/100, 1/1000, and 1/10,000. Four hundred microliters of the diluted soil suspension
were spread on modified PDA (PDA; 20 g/L glucose, 4 g/L potato extract, 20 g/L agar)
medium containing 0.3 g/L chloramphenicol, 0.1 g/L streptomycin, and 0.02 g/L Rose
Bengal dye [40]. The plates were incubated at 25 ◦C for 3 to 14 days to allow fast and
medium–fast growing fungi to appear. The emerging fungal colonies were then purified
by single spore isolation [41] and maintained on PDA slants at 4 ◦C. Long-term storage of
fungi was achieved by cutting a 5 mm2 of mycelial agar plug from freshly growing cultures,
which was stored in 30% (w/v) glycerol at −80 ◦C.

Table 1. Origin of the soil samples used for the isolation of the fungi identified in this study. The
soil samples were collected from wild and cultivated healthy papaya populations in different states
(Selangor, Negeri Sembilan, Pahang, and Kedah) of Peninsular Malaysia.

Soil Sample ID Location Site, State Coordinates

Mardi-2018-TK Tanjong Karang, Selangor 3◦26′27.8′′ N 101◦08′50.1′′ E
Mardi-2018-R Rembau, Negeri Sembilan 2◦34′26.0′′ N 102◦05′48.5′′ E
Mardi-2018-P Raub, Pahang 3◦49′19.3′′ N 101◦50′38.4′′ E
Mardi-2018-C Mardi Serdang, Selangor 2◦59′24.9′′ N 101◦41′49.5′′ E

Mardi-2018-BK Baling, Kedah 5◦40′05.6′′ N 100◦49′47.5′′ E

2.3. Antagonistic Activity of Fungal Isolates against E. mallotivora Strain BT-MARDI

The antagonistic activity of fungal isolates against E. mallotivora was screened in vitro
using the agar well diffusion method on PDA plates [31,42,43]. An agar plug (5 mm2) from
each five-day old fungal culture was inoculated into 100 mL potato dextrose broth (PDB;
20 g/L glucose, 4 g/L potato extract) in 500 mL flasks and grown for seven days at 25 ◦C
with agitation at 180 rpm. A lawn of E. mallotivora was prepared by spreading 100 µL of
the E. mallotivora inoculum over the entire agar surface. A hole with a diameter of 6 mm
was punched aseptically with a sterile cork borer and 100 µL of the fungal suspension were
dispensed into the well. A kanamycin solution (100 µg/mL) and PDB, 100 µL of each, were
used as the positive and negative controls, respectively. After overnight incubation at 28 ◦C,
the plates were observed for zone of inhibition formation on the E. mallotivora lawn. The
experiment was repeated in triplicate for each isolate to record the average diameter of the
inhibition zone. The data for fungal isolates exhibiting significant antagonism compared to
the positive control was analysed using IBM SPSS Statistics version 28.0.1.1 (14).

2.4. Genomic DNA Extraction

Cultures of the three selected fungal isolates, UKM-M-UW RA3a, UKM-M-UW RA5,
and UKM-M-UW RA6 (hereafter referred to as RA3a, RA5, and RA6), were set up in 25 mL
of PDB from PDA plates and placed in 250 mL conical flasks. The fungal cultures were
incubated at 25 ◦C for 72 h, shaking at 200 rpm. The mycelia from the broth were pelleted
by centrifugation at 8000× g for 5 min, and subsequently washed twice with sterile distilled
water to remove any residual medium. High molecular weight (HMW) genomic DNA
extraction was carried out via cryogenic grinding using a sterile mortar and pestle. Fungal
mycelia were ground into a fine powder in liquid nitrogen; thereafter, 200 mg of the powder
were transferred aseptically into a microcentrifuge tube for immediate use. A GenElute
Plant Genomic DNA miniprep kit (Sigma-Aldrich, Burlington, MA, USA) was used for
DNA extraction, following the manufacturer’s instructions. HMW genomic DNA was
concentrated using ethanol precipitation. Briefly, 1/10 volume of 3 M sodium acetate,
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pH 5.2, was added, followed by three volumes of 100% ethanol. Samples were inverted,
incubated at −20 ◦C overnight, then spun at 13,000× g for 30 min at 4 ◦C. Supernatant
was decanted, the DNA pellet was air dried, and then resuspended in nuclease-free water
(Thermo Fisher, Waltham, MA, USA). Gel electrophoresis (1% w/v agarose gel with 1X
GelRed), a Nanodrop ND1000 (Thermo Fisher, USA), and a Qubit (dsDNA Broad range,
Invitrogen, Waltham, MA, USA) were used to assess the concentration (Table S1) and
quality of the HMW genomic DNA extracted from the fungal strains.

2.5. Identification of Fungi Based on Mycelia Morphology, PCR Amplification, and Sanger Sequencing

Mycelial morphology was originally used to identify the class/genus of the fungal
isolates based on the colour of the mycelia and spore characteristics. Subsequently, PCR
amplification of target sequences was carried out using purified genomic DNA as a tem-
plate to identify the fungal isolates of interest, RA3a, RA5, and RA6. PCR was carried
out using Q5 High-Fidelity 2X Master Mix (NEB, Ipswich, MA, USA) according to the
manufacturer’s instructions, using the primers listed in Table S2. The amplicons were
purified upon gel electrophoresis (1% w/v agarose gel with 1X GelRed) using the Gene-
JET PCR purification kit (Thermo Fisher, USA) following the manufacturer’s instructions.
One hundred nanograms of the purified PCR product was used for Sanger sequencing
through Eurofins-GATC, which enabled for the phylogenetic confirmation of the strains.
The sequences were trimmed to obtain diagnostic fragments for molecular identification as
detailed in Kopchinskiy et al. [44] prior to submission to BLASTN [45].

2.6. DNA Library Preparation and Sequencing through Oxford Nanopore Technology (ONT)

Utilising the extracted HMW genomic DNA, preparation of the library was performed
using the native barcoding expansion kit (EXP-NBD104 and EXP-NBD114) and the ligation
sequencing kit (SQK-LSK109) for multiplex genomic DNA sequencing of the fungal isolates
RA3a, RA5, and RA6. NBD01 was used to tag RA3a, NBD02 for RA6, and NBD03 for RA5.
The manufacturer’s protocol was followed with minor modifications introduced for both
DNA repair and end-prep stages, by increasing the incubation time and temperature after
washing with ethanol to 15 min at 37 ◦C. Furthermore, at the native barcode ligation step,
the incubation time and temperature were increased to 30 min at 37 ◦C. To enrich DNA
fragments of 3kb or longer, the Long Fragment Buffer was used for the DNA clean-up. An
amount of 1.2 µg of each genomic DNA were used for the library preparation, resulting in
a final amount of 350 ng of DNA at the end of the adapter ligation and clean-up step. The
resulting DNA library containing the sequencing buffer and loading beads were loaded on
the primed SpotON flow cell. Nanopore sequencing was performed on MinION (ONT)
with a FLO-MIN-106 R9.4 flow-cell (ONT). The MinION (ONT) multiplex sequencing
reaction was run for 18 h.

2.7. Genome Assembly and Error Corrections

A de novo strategy was employed for sequencing each of the three genomes. The
raw data produced by nanopore was base-called and simultaneously demultiplexed using
Guppy version 4.4.1 available to ONT users via https://community.nanoporetech.com (ac-
cessed on 23 January 2022). The config file used in Guppy was dna_r9.4.1_450bps_hac.cfg,
the remaining parameters used were the default settings. Guppy was also used to trim
the barcodes from the reads during the base-calling, depositing each genome’s reads in
a directory as .fastq files. The .fastq files for each read were merged into one .fastq file
and used as the input for Flye version 2.8.2 with the nano-raw mode selected, which was
used to assemble the draft genomes [46]. The draft assembly was then polished multiple
times, by aligning the base-called raw reads in the merged file against the draft genome
using Minimap2 version 2.11 [47] before correcting errors using Racon version 1.4.20 [48],
where matching bases were assigned a score of 8 and mismatches a score of −6, with a gap
penalty of −8 and a window size of 500. The output from Racon was aligned to the raw

https://community.nanoporetech.com
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reads again and the process was repeated three times for each assembly. Further corrections
were made using Medaka version 1.2.1 utilising model r941_min_high_g360.

Polishing the genome continued by using Illumina short-read data generated through
Apical Scientific Sdn. Bhd. (Seri Kembangan, Selangor, Malaysia). This was done by
aligning the Illumina data to the output from Medaka using Bowtie2 version 2.4.2 [49].
Bowtie2 was run with the following settings, -D (number of attempts at extension before
skipping to the next task) 20, -R (number of seeds looked at before moving to the next task)
3, -N (maximum number of mismatches in alignments) 1, -L (length of seed substrings) 20,
and -i (interval between seed substrings) S,1,0.50, all other settings were left at the default
parameters. Polishing was performed with Pilon version 1.23 [50], the output from Pilon
was then re-aligned to the Illumina reads and the draft genome polished again; after Pilon
had been run four times, the final output was analysed using BUSCO version 5.0.0 [51],
comparing the three genomes against the Hypocreales_odb10 database. Unless specified
above, parameters within programs were left at their default setting.

2.8. Genome Annotations

Functional annotation was performed using the Funannotate version 1.8.3 pipeline [52].
Funannotate was also able to clean (remove small repetitive contigs by using minimap2
or mummer) and perform mask repeats (softmasking of low complexity and short period
tandem repeats using tantan). The prediction of functional elements was done using a seed
species of Verticillium longisporum and the BUSCO Sordariomycetes database; the minimum
number of training models required was dropped to 100, and the Optimize Augustus
setting was turned on. Funannotate predict uses AUGUSTUS, snap, GlimmerHMM, and
tRNAscan-SE in order to predict genes for proteins and tRNAs, as well as other programs
to generate the inputs for those mentioned above and the final outputs. The predictions
were then run through Phobius [53] and AntiSMASH [54], contained within Funannotate.
Finally, the annotation function was used to create the final genomes. BUSCO was run
again to look at the predicted proteins generated, once again using the Hypocreales_odb10
database. All parameters not mentioned above were left on their default setting within the
software package.

CMscan [55] was used with StructRNAfinder [56] for screening the presence of po-
tential non-coding RNA. The Rfam database [57] was used as the input database for
StructRNAfinder with the default parameters.

2.9. Comparative Genomics and Phylogenomic Analysis

Pairwise genomic similarities between our isolates with addition of nine additional
genomes from other Trichoderma spp. (obtained from the NCBI database) were calculated
using FastANI, with assembled genomic sequences as input [58]. The pairwise genomic
similarities were then visualised using the Intervene Shiny package [59]. Next, to recon-
struct the phylogenomic association between several strains of Trichoderma spp., single-copy
orthologous proteins were first identified from the predicted proteome sequence via Or-
thoFinder v2.2.7 with default settings [60]. Then, amino acid sequences from single-copy
orthologous proteins identified were aligned using MAFFT [61]. This alignment was then
used for maximum likelihood phylogenomic tree reconstruction via the IQ-TREE program,
using the JTT+F+G4 model and 1000 ultrafast bootstrap replications [62]. iTOL was used
for phylogenomic tree visualisation [63]. Finally, OrthoVenn2 web server was used for
comparison of orthologous proteins from our isolates with the predicted proteome as
input [64].

3. Results
3.1. Antagonism of Fungal Isolates against E. mallotivora Strain BT-MARDI

In this study, a total of 128 filamentous fungal and yeast isolates were cultured from
five soil samples collected in various locations in Peninsular Malaysia (Table 1). Out of
these, only 17 fungal isolates that grew mycelia in less than 14 days on PDA plates—
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species putatively belonging mainly to the genera Trichoderma, Fusarium, Aspergillus, and
Penicillium based on morphological identification—were observed to have antagonistic
activity against E. mallotivora strain BT-MARDI. According to plate-based inhibition assays,
five fast-growing fungal isolates that required less than seven days to form a full mycelial
lawn on PDA plates were confirmed to exhibit visible antagonism (Figure 1) and selected
for further analysis. The taxonomic affiliation of these isolates was originally deduced
based on mycelium morphology, with all five strains, or isolates, putatively assigned to the
genus Trichoderma (Figure 2). All isolates exhibited inhibition of the growth of E. mallotivora
(Table 2). Based on the Tukey’s test, RA5, RA6, and RA3a had a significant antagonistic
activity when compared to the positive control (kanamycin) (Figure 3).
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All fungal isolates displayed notable growth inhibition zones. Potato dextrose broth (PDB) and
kanamycin were used as the negative and positive controls, respectively.

Table 2. Antagonistic potential of the Trichoderma isolates against E. mallotivora. The negative (−)
control consists of 100 µL of PDB, the positive (+) control of 100 µL of kanamycin (100 µg/mL).

Treatment

Diameter of Inhibition Zone (mm) Fungal Genus
(Based on

Morphology)

Origin of the
Fungal IsolateReplicate

Mean
Standard
Deviation1 2 3

− control 0 0 0 0 0 - -
+ control 17 17 17 17.0 0 - -
Isolate
UKM-M-UW RA5 42 39 42 41.0 1.73 Trichoderma Rembau, Negeri

Sembilan
Isolate
UKM-M-UW RA6 33 26 34 31.0 4.36 Trichoderma Rembau, Negeri

Sembilan
Isolate
UKM-M-UW RA3a 34 28 27 29.7 3.79 Trichoderma Rembau, Negeri

Sembilan
Isolate
UKM-M-UW RA1 20 23 26 23.0 3.0 Trichoderma Rembau, Negeri

Sembilan
Isolate
UKM-M-UW C2 15 22 23 20.0 4.36 Trichoderma Serdang, Selangor
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Figure 3. In vitro screening for antagonism of five fast-growing fungal isolates (Trichoderma spp.)
against E. mallotivora ‘BT-MARDI’ using the agar well diffusion method. Values are means of
triplicates and the standard deviations are indicated by the error bars. Isolates with significant
antagonism (compared to kanamycin) were determined using the Tukey’s test (N = 18, p < 0.05) and
are marked with an asterisk (*).
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3.2. Genomic DNA Extraction

High molecular weight (HMW) genomic DNA extraction was performed on the three
fungal isolates, RA3a, RA5, and RA6, that showed significant inhibition on E. mallotivora.
To improve the genomic DNA yield and quality, the extracted fungal DNA was subjected
to ethanol precipitation and resuspended in 35 µL of nuclease-free water. The purity and
concentration of the DNA was assessed with a Nanodrop ND1000 (Thermo Fisher, Boston,
MA, USA) and Qubit (dsDNA Broad range, Invitrogen, Boston, MA, USA), with all prepa-
rations yielding more than 100 ng/µL HMW DNA according to Qubit readings (Table S1).
The HMW DNA was further visualised via agarose gel electrophoresis (Figure S1). Overall,
these analyses proved that the HMW DNA extracted from the three isolates was suitable to
be sequenced through Oxford nanopore and Illumina whole-genome sequencing.

3.3. Molecular Identification of Strains

The three fungal isolates RA3a, RA5, and RA6 were identified through PCR ampli-
fication and Sanger sequencing of three DNA barcodes [65]: internal transcribed spacer
(ITS) [66], translation elongation factor 1 alpha (tef1) gene [67] and RNA polymerase B
subunit II (rpb2) gene [68]. Amplification of each sample yielded a single DNA fragment,
the sequence of which was analysed through BLASTN [45]. The sequencing of the ITS
marker allowed us to confidently assign all three fungal isolates to the Trichoderma genus.
Further sequencing of the tef1 and rpb2 genes enabled us to identify all three fungal strains
to be from a single species, T. koningiopsis (Table 3).

Table 3. Molecular identification of the three fungal isolates RA3a, RA5 and RA6 based on Sanger
sequencing of the three DNA barcodes ITS, Tef1 and Rpb2.

Isolate Locus Closest Match
Organism

NCBI Accession
Number Coverage (%) Identity (%)

UKM-M-UW RA3a

ITS Trichoderma sp. strain
ZMQRS9 MT446202.1 100 99.83

Tef1 Trichoderma koningiopsis
strain LESF360 KT278986.1 100 99.65

Rpb2 Trichoderma koningiopsis
isolate Tkois1 MT081443.1 100 99.77

UKM-M-UW RA5

ITS Trichoderma koningiopsis
strain 18ASMA001 MT520621.1 100 100

Tef1 Trichoderma koningiopsis
strain VSL155 MT058870.1 100 99.33

Rpb2 Trichoderma koningiopsis
isolate Tkois1 MT081443.1 100 99.60

UKM-M-UW RA6

ITS Trichoderma koningiopsis
strain 18ASMA001 MT520621.1 100 100

Tef1 Trichoderma koningiopsis
strain LESF360 KT278986.1 100 100

Rpb2 Trichoderma koningiopsis
isolate Tkois1 MT081443.1 100 100

3.4. Genome Sequencing

The genomic DNA of the three fungal isolates, RA3a, RA5, and RA6, were sequenced
using a combination of Oxford nanopore and Illumina whole-genome sequencing. This
generated a significant quantity of both long-read and short-read data which gave a high
degree of coverage for each of the three genomes. From the nanopore data, after barcodes
had been separated and trimmed, we had generated an estimated 3,176,623,257 bases
for strain RA3a, 3,973,025,475 bases for RA5, and 2,406,065,838 bases for RA6. This was
complemented by the Illumina sequencing which produced 3,352,912,241 bases for RA3a,
and 3,365,209,722 and 2,697,750,185 for RA5 and RA6, respectively. The final draft genome
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sizes for each organism were as follows: RA3a 36.53 Mb, RA5 36.48 Mb, and RA6 36.47 Mb.
This is consistent with the size of other Trichoderma genome assemblies which tend to be
31–40 Mb in size [69]. As shown in Table 4, the genomes contain 14 (RA3a), 11 (RA5),
and 13 (RA6) contigs, the majority of these contigs may be putatively assembled at the
chromosome level. Closely related species of Trichoderma have seven chromosomes [70],
and our assemblies also included the mitochondrial DNA.

Table 4. Details of genome assembly statistics of the three Trichoderma isolates RA3a, RA5, and RA6.

Parameter RA3a RA5 RA6

Number of contigs 14 11 13
Total contigs length 36,531,570 36,477,170 36,470,223
Mean contig size 2,609,397.86 3,316,106.36 2,805,401.77
Contig size first quartile 1,043,387 3,650,583 981,951
Median contig size 2,049,512 3,895,316 3,855,011
Contig size third quartile 5,555,030 6,876,866 5,268,312
Longest contig 6,903,293 6,995,056 6,877,006
Shortest contig 6075 6406 5219
Contigs > 500 nt 14 (100%) 11 (100%) 13 (100%)
Contigs > 1K nt 14 (100%) 11 (100%) 13 (100%)
Contigs > 10K nt 13 (92.86%) 10 (90.91%) 12 (92.31%)
Contigs > 100K nt 11 (78.57%) 8 (72.73%) 10 (76.92%)
Contigs > 1M nt 10 (71.43%) 7 (63.64%) 8 (61.54)
N50 5,555,030 5,554,967 3,979,290
L50 3 3 4
N80 2,447,863 3,862,469 3,855,011
L80 6 6 6

Using BUSCO [71] to assess the genome assemblies for core conserved genes across
the order Hypocreales, we were able to generate the results presented in Tables 5 and 6.
Table 5 shows the conserved genes identified within the scaffold of our assemblies and
Table 6 shows the conserved proteins identified in the predicted proteome of the annotated
genomes of each species. An outline of the predicted non-coding RNA is shown in Table S3,
the full set of results from StructRNAfinder are publicly available at https://osf.io/vsbc2/
(Accessed on 17 February 2022).

Table 5. Scaffold BUSCO: dataset Hypocreales odb10 for the genomes of the fungal isolates RA3a,
RA5, and RA6.

BUSCO Scaffold Stat RA3a RA5 RA6

Percentage BUSCO 97.7% 97.7% 97.8%
Complete BUSCO’s 4392 4391 4394
Complete and single copy BUSCO’s 4378 4379 4381
Complete and duplicate BUSCO’s 14 12 13
Fragmented BUSCO’s 20 20 20
Missing BUSCO’s 82 83 80
Total BUSCO groups searched 4494

https://osf.io/vsbc2/
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Table 6. Proteins BUSCO: dataset Hypocreales_odb10 for the predicted proteomes of the fungal
isolates RA3a, RA5, and RA6.

BUSCO Scaffold Stat RA3a RA5 RA6

Percentage BUSCO 92.3% 88.0% 87.4%
Complete BUSCO’s 4146 3955 3927
Complete and single copy BUSCO’s 4137 3946 3922
Complete and duplicate BUSCO’s 9 9 5
Fragmented BUSCO’s 108 219 245
Missing BUSCO’s 240 320 322
Total BUSCO groups searched 4494

3.5. Genome Analysis

While the gene function of the predicted genes in each of the three genomes was
assigned using Funannotate, the predicted proteome of each strain was run again through
Eggnog-mapper v2.1.4-2. This yielded the following results, where for strain RA3a of
the 8,951 predicted proteins, 86.7% could have a COG (Clusters of Orthologous Groups)
category assigned; similarly, of the 8964 proteins predicted in strain RA5, 86.7% could have
COG categories assigned, and 86.2% of the 9124 predicted proteins from RA6 could be too.

The distribution of these predicted proteins across the COG categories is shown in
Figure 4. Distribution of proteins across the categories did not differ significantly across
any of the three genomes, and while the most frequently mapped category was “Func-
tion Unknown”, of those that could be placed into a category of known function, the
five most common in order of decreasing predicted protein count within the categories
were “Intracellular trafficking, secretion, and vesicular transport”, “Amino acid transport
and metabolism”, “Secondary metabolite biosynthesis, transport and catabolism”, “Post-
translational modification, protein turnover, chaperones”, and “Carbohydrate transport
and metabolism”. The presence of over 475 proteins associated with secondary metabo-
lites in each genome is promising and these deserve further examinations, particularly
in the context of the antagonistic activity of the fungal isolates against E. mallotivora and,
potentially, other microorganisms. It is also interesting that no mobilome elements associ-
ated with transposons and prophages were detected, and less than 100 predicted proteins
were identified in each genome that were associated with any of the following categories:
“Extracellular structures”, “Cell motility”, “Nuclear structure”, and “Defence mechanisms”.

Figure 5 shows that the eggnog mapper was also able to assign gene ontology terms;
often multiple terms are assigned to individual proteins, as well as enzyme commission
numbers, a variety of matches to multiple KEGG databases, and also to BRITE hierarchies.
A limited number of predicted proteins (no more than 2% in any genomes) were also
associated with matches to the CAZy database of carbohydrate active enzymes, as well as
matches to BiGG IDs. More promising was that around 85% of genes in each genome were
matched to proteins in the pfam database. There was considerable overlap between these
categories, however; most genes are close to identical across each of the three genomes. All
data generated using eggnog mapper are included in the Dataset S1.
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Figure 4. Distribution of predicted proteins in the three fungal isolates RA3a, RA5, and RA6 across
the different COG categories. A: RNA processing and modification. B: Chromatin structure and
dynamics. C: Energy production and conversion. D: Cell cycle control, cell division, chromosome
partitioning. E: Amino acid transport and metabolism. F: Nucleotide transport and metabolism.
G: Carbohydrate transport and metabolism. H: Coenzyme transport and metabolism. I: Lipid
transport and metabolism. J: Translation, ribosomal structure. and biogenesis. K: Transcription.
L: Replication, recombination. and repair. M: Cell wall/membrane/envelope biogenesis. N: Cell
motility. O: Posttranslational modification, protein turnover, chaperones. P: Inorganic ion transport
and metabolism. Q: Secondary metabolites biosynthesis, transport. and catabolism. S: Function
unknown. T: Signal transduction mechanisms. U: Intracellular trafficking, secretion, and vesicular
transport. V: Defense mechanisms. W: Extracellular structures. Y: Nuclear structure. Z: Cytoskeleton.
The following returned no hits: R: General function prediction only; X: Mobilome- prophages,
transposons.
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3.6. Comparative Genomics and Phylogenomic Analysis

Pairwise comparison of genomic similarities between our isolates was performed by
calculating the average nucleotide identity (ANI) values. The three isolates, RA3a, RA5,
and RA6, showed high genomic similarities between each other (ANI value of 99%) in
addition to the T. koningiopsis POS7 isolate, which shared an ANI value of 96% (Figure 6).
Conversely, the three isolates showed lower genomic similarities with other Trichoderma
spp. (79–89% of ANI value). These results further confirm the identity of our isolates as
belonging to the T. koningiopsis species.
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Further analysis using OrthoFinder suggested that there is a total of 12,270 orthogroups
present among the predicted proteomes used in our analysis. Among that, a total of 3392 of
the orthologous proteins exist as single-copy and alignment of their amino acids sequence
was used for phylogenomic tree construction. The phylogenomic tree generated shows
that the three isolates formed a distinct monophyletic group and shared a recent common
ancestor within T. atroviride IMI206040 (Figure S2). The robustness of the phylogenomic
tree generated was confirmed as all the branches showed 100% bootstrap values.

Next, the predicted protein sequences from our isolates were compared with each
other using the OrthoVenn2 web server. All the predicted protein sequences extracted from
our genomes were further grouped into 9225 orthologous proteins. Among these, a total of
8245 protein groups were shared by all isolates. These proteins accounted for 86.64 (RA3a),
89.09 (RA5), and 89.00% (RA6) of the total orthologous protein group encoded in each
genome (Figure S3). Therefore, OrthoVenn2 analysis confirmed that most of the proteins
encoded for by the three isolates are shared.
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3.7. Secondary Metabolite Clusters

The whole genome sequences of the Trichoderma isolates RA3a, RA5, and RA6 were
mined for putative biosynthetic gene clusters (BGCs) using AntiSMASH [54]. A total
number of 124 clusters were identified across the three genomes; 43 BGCs were identified
in isolate RA3a, 40 in isolate RA5, and 41 BGCs in isolate RA6. The strains varied in the
putative classes they encode (Table 7 and Dataset S2). Non-ribosomal peptide synthetase
(NRPS) clusters are the most dominant across the isolates followed by polyketide synthase
(PKS) clusters, and Terpene and hybrid NRPS-PKS clusters. The number of BGCs from the
sequenced fungal strains (RA3a, RA5, and RA6) was compared to the number of BGCs
from other members of the Trichoderma genus (Figure 7), as predicted by AntiSMASH. This
revealed that the fungal strains isolated in this study have the potential to be talented
producers of polyketides and non-ribosomal peptide synthases, in line with other members
of the Trichoderma genus.

Table 7. Biosynthetic gene clusters predicted through AntiSMASH analysis for the genomes of the
Trichoderma isolates RA3a, RA5, and RA6.

Fungal Strain Total Clusters NRPS-Like PKS Terpene Hybrid
NRPS/PKS

Hybrid
PKS/Terpene

UKM-M-UW
RA3a 43 17 14 7 4 1

UKM-M-UW
RA5 40 16 11 8 4 1

UKM-M-UW
RA6 41 17 12 7 4 1
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Figure 7. Comparison of the BGCs found in the genomes of the fungal strains RA3a, RA5, and RA6
with other members of the Trichoderma genus. BGC prediction was performed through AntiSMASH.

We then screened for clusters that were consistently present across the three strains,
which could be indicative of their shared bioactivity against E. mallotivora. As predicted by
AntiSMASH, we could find BGCs with low-to-high similarity to those for known bioactive
metabolites, namely fusaric acid, naphthopyrone, neurosporin A, ascochlorin, and clavaric
acid (Table S4 and Dataset S3). Further manual BlastP analysis of the putative neurosporin
A BGC, revealed that this cluster may in fact code for the biosynthesis of a salicylaldehyde-
related compound. This observation is based on the identification within the BGC of a
hr-PKS megasynthase and tailoring enzymes, all showing high homology with genes of
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the vir gene cluster, which is involved in the biosynthesis of the antimicrobial compounds
trichoxide and virensols from the biocontrol fungus T. virens [72] (Table S5 and Figure S4).

4. Discussion

Trichoderma spp. are easily culturable and generally considered to be harmless to
humans and animals—except for T. longibrachiatum [73,74]. Members of this genus have
been used extensively in agriculture as eco-friendly biological control agents as they are
capable to control (or suppress) other microorganisms directly or indirectly [37,38,75,76].
It is reported that various Trichoderma spp. are effective biocontrol means against many
fungal pathogens and some bacterial pathogens [77]. Previous works explored and applied
the idea of using microbial species to control E. mallotivora [26–31]; nevertheless, the use
of Trichoderma as a fungal antagonist against the PDD pathogen has not been reported.
In this study, we demonstrated the potential of five Trichoderma strains to cause growth
inhibition of E. mallotivora strain BT-MARDI. Trichoderma offers an advantage over many
other microbes (especially bacteria) in terms of fast rhizosphere colonisation, involvement in
the soil nutrient cycle, and excellent viability after an extended storage period (>12 months),
thus making the fungus more efficient and appealing to the farmers [78,79]. In addition to
their antagonistic features against pathogens, some species of Trichoderma are even capable
of inducing plant defence mechanisms, which could be another important advantage [80].

To further gain insights on the antagonism of our isolates, we performed whole-
genome sequencing on three fast-growing Trichoderma strains that showed significant
inhibition of E. mallotivora to aid in the elucidation of the metabolites that might play
a role in this interaction. From the sequencing results, we believe that the annotated
draft genomes we produced can be treated as full open reading frames. Mutations and
evolutionary divergence can explain some of the fragmented BUSCO scores, and even
well-conserved genes can still be lost in some lineages [81]. The large coverage of the
long read nanopore sequencing allowed for a robust first draft genome to be created,
with few fragments. However, nanopore read base calling remains less accurate than
Illumina, around 95% [82], and while modern base calling software harnessing neural
networks are improving this, it is still necessary to polish, with higher accuracy, short
read Illumina sequencing data to create a robust genome assembly, in order to remove the
indels and miscalled bases present in nanopore reads that otherwise lead to frameshifts
and fragmentation of genes.

The genus Trichoderma is a well-recognised group of filamentous fungi known for
their production of secondary metabolites, especially as talented producers of bioactive
peptides, polyketides, plant growth regulators, enzymes, siderophores, and other an-
tibiotics [38,81,83], and has been credited for its biocontrol activity as antifungal and
antibacterial. For example, peptaibols are a well-studied class of peptide natural products
from Trichoderma, synthesised by NRPS modules, producing a linear peptide consisting of
dialkylated amino acids, isovaline, amino isobutyric acid (Aib), an acetylated N-terminus,
and a C-terminal amino alcohol [38]. They are credited for their antimicrobial properties,
as well as their ability to induce systemic resistance in plants against microbial invasion.
Another major class of Trichoderma natural products with biocontrol activity are koninginins.
This family of compounds were first isolated from T. koningii and exhibited antifungal
activity [38,84]. Interestingly, koninginins have also been isolated from T. koningiopsis
in other studies and are reported to exhibit antifungal properties against Fusarium spp.,
Plectosphaerella cucumerina, and Alternaria panax [85]. Prominent examples of polyketides
isolated from Trichoderma spp. include pyrones and pyridines [38,86]. Considering the
diversity of bioactive molecules isolated from the genus—for a report about Trichoderma
natural products we refer the reader to the review by Shenouda and Cox [86]—and given
the vast biosynthetic potential emerged from AntiSMASH analysis conducted in our study,
the three Trichoderma strains (RA3a, RA5, and RA6) have high potential to produce bioac-
tive molecules that will warrant their use as biocontrol agents against plant pathogens.
Noteworthy, we have identified BGCs conserved across the three fungal isolates, including
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one for the biosynthesis of putative salicylaldehyde-related compounds, which are known
for their antimicrobial properties, such as those that have been isolated from T. virens [72]
and T. citrinum [87]. Heterologous expression and/or knockout of the salicylaldehyde
BGC homologues from RA3a, RA5, and RA6 will be needed to reveal the structure of the
corresponding metabolites and their potential role in the bioactivity of the fungal isolates.

The dogma of biosynthetic studies remains that many fungal biosynthetic clusters are
silent under standard laboratory conditions, which makes their full exploitation challeng-
ing [88,89]. Advances in synthetic biology via heterologous expression or genome editing
may help us uncover the biosynthetic potential of the gene clusters [90,91].

5. Conclusions

In this study, we have isolated fungal strains from soil samples collected in the rhizo-
sphere of healthy papaya trees from different locations in Peninsular Malaysia, with the
aim to identify a potential biological control agent capable of suppressing E. mallotivora,
the pathogen that is responsible for the ongoing PDD outbreak in Malaysia and surround-
ing countries. The three Trichoderma isolates, UKM-M-UW RA3a, UKM-M-UW RA5, and
UKM-M-UW RA6, have shown significant inhibition of the growth of E. mallotivora from
plate-based bioassays, and molecular identification allowed us to assign them to the T.
koningiopsis species. Whole-genome sequencing was performed, thereby providing a plat-
form for their biosynthetic exploitation, with the goal of linking secondary metabolites
to biosynthetic gene clusters. Biosynthetic gene clusters homologous to those for known
bioactive metabolites were identified and found to be conserved across the three isolates,
opening the way for future exploration of the biosynthetic potential of these fungi. With
the growing need for greener alternatives to chemical pesticides, the biosynthetic studies
on natural products from Trichoderma spp. is expected to grow, which may give rise to a
new generation of biocontrol agents with an enormous impact in the agrochemical sector.
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