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Genome-wide transcriptomics of aging in
the rotifer Brachionus manjavacas, an
emerging model system
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Abstract

Background: Understanding gene expression changes over lifespan in diverse animal species will lead to insights
to conserved processes in the biology of aging and allow development of interventions to improve health. Rotifers
are small aquatic invertebrates that have been used in aging studies for nearly 100 years and are now re-emerging
as a modern model system. To provide a baseline to evaluate genetic responses to interventions that change
health throughout lifespan and a framework for new hypotheses about the molecular genetic mechanisms of
aging, we examined the transcriptome of an asexual female lineage of the rotifer Brachionus manjavacas at five life
stages: eggs, neonates, and early-, late-, and post-reproductive adults.

Results: There are widespread shifts in gene expression over the lifespan of B. manjavacas; the largest change
occurs between neonates and early reproductive adults and is characterized by down-regulation of developmental
genes and up-regulation of genes involved in reproduction. The expression profile of post-reproductive adults was
distinct from that of other life stages. While few genes were significantly differentially expressed in the late- to post-
reproductive transition, gene set enrichment analysis revealed multiple down-regulated pathways in metabolism,
maintenance and repair, and proteostasis, united by genes involved in mitochondrial function and oxidative
phosphorylation.

Conclusions: This study provides the first examination of changes in gene expression over lifespan in rotifers. We
detected differential expression of many genes with human orthologs that are absent in Drosophila and C. elegans,
highlighting the potential of the rotifer model in aging studies. Our findings suggest that small but coordinated
changes in expression of many genes in pathways that integrate diverse functions drive the aging process. The
observation of simultaneous declines in expression of genes in multiple pathways may have consequences for
health and longevity not detected by single- or multi-gene knockdown in otherwise healthy animals. Investigation
of subtle but genome-wide change in these pathways during aging is an important area for future study.
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Background
Aging is a complex process characterized by the pro-
gressive degeneration of a healthy phenotype and cor-
related with a decline in the ability to withstand
cellular stress and damage. The subject of investiga-
tion for decades, the underlying molecular genetic
causes of and responses to aging remain an area of
active study. Research from model systems has

characterized a range of physiological and molecular
phenotypes associated with aging. These include genomic
instability caused by accumulation of DNA damage,
dysregulation of repair mechanisms, and telomere attri-
tion; epigenetic alterations; dysregulation of transcription;
loss of proteostasis; cellular senescence; and deregulated
nutrient sensing, metabolic pathways, and energy use
(reviewed in [1]). Separating causation from correlation
between these phenotypes and aging remains a challenge,
however.
Many of the genes and gene networks that modulate

aging are conserved across animal phyla. For this reason,
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the highly tractable model systems Drosophila and Cae-
norhabditis have provided fundamental advances in our
understanding of the genetic control of cellular pro-
cesses that affect aging. There is a growing realization
that increasing the evolutionary breadth in animal sys-
tems used in aging studies will lead to discovery of ef-
fects and mechanisms that are more likely to be robust
and reveal fundamental principles of aging. The use of
diverse models may also reveal previously unknown gen-
etic factors involved in healthy aging in humans. The
lineages leading to Drosophila melanogaster and Caenor-
habditis elegans have each undergone significant genome
reduction, and these standard model systems lack many
vertebrate gene homologs that are present in other in-
vertebrates [2–9]. In addition, arthropods and nema-
todes are more closely related to each other than
originally thought [10, 11], limiting the evolutionary
range in comparative studies of aging [12] and thus the
degree to which conclusions can be reliably generalized
from these models to humans.
Rotifers are small aquatic invertebrates that have been

used in aging studies for nearly 100 years but have only
recently been developed as a modern model system for
the study of aging [13, 14]. They are early-branching tri-
ploblast animals that have not undergone extensive gen-
ome reduction, but instead share many genes with
vertebrates that are missing in flies and worms [15, 16].
This suggests that the rotifer genome may contain genes
and pathways that modulate aging in vertebrates but are
not present in other invertebrate model systems.
Rotifers develop directly without a larval stage and are

eutelic, without cell division after hatching except in the
germline [17]. Many species can be easily cultured in
water on a simple diet of bacteria or single-celled algae,
and even a large experiment can be conducted in a small
number of tissue culture dishes. Most have an asexual
stage to their life cycle, and can be cultured asexually in-
definitely, maintaining genetic identity across genera-
tions and between test conditions.
The rotifer Brachionus manjavacas has a well-

characterized life cycle and aging phenotype. Under
standard laboratory conditions, asexual B. manjavacas
neonates increase in size quickly after hatching and pro-
duce their first offspring within 48 h. Reproduction in-
creases to a maximum of 6 offspring/day around day 5,
then declines to the end of the reproductive period on
approximately day 8; the post-reproductive (senescent)
period last for another 2–4 days. As a B. manjavacas
female ages, her color changes from translucent to
opaque, her foot begins to drag instead of being tucked
up against the body, she cannot attach as firmly to a
substrate, and swimming speed declines dramatically
[14, 18]. Median lifespan is approximately 10 days; death
is characterized by a lack of motion of cilia, appendages,

or internal organs and is frequently accompanied by a
loss of membrane integrity.
Brachionus rotifers have recently been used to study

the effects on healthspan and aging of stress [18–21];
temperature [22]; and dietary restriction and metabol-
ism, including maternal effects [23–28]. To define the
transcriptional changes associated with normal aging in
this emerging model system, we conducted RNA-Seq at
five timepoints over the lifespan of B. manjavacas, from
eggs to senescence (Fig. 1). This study provides the first
insights into genome-wide changes in gene expression
over the lifespan of a rotifer, and continues development
of this model system to study the biology of aging.

Methods
Culture
We maintained the monogonont rotifer Brachionus
manjavacas in batch culture in 15 ppt Instant Ocean on
a diet of the chlorophyte alga Tetraselmis sueccica. We
grew T. sueccica in bubbled f/2 medium [29] prepared in
15 ppt Instant Ocean. We maintained both B. manjava-
cas and T. suecica at 21 °C on a light:dark cycle of
12 h:12 h.

Sample preparation and sequencing
One week prior to beginning the experiments, we inocu-
lated a new batch culture of B. manjavacas at approxi-
mately 1 rotifer/25 mL. To prevent induction of sexual
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Fig. 1 Representative survivorship curve of asexual Brachionus
manjavacas females. The life stages collected for analysis are shown:
a eggs; b neonates, 3 hrs old; c early reproduction, 36 h old; d late
reproduction, 5–7 days old; e post-reproductive, 8–9 days old.
Median rotifer lifespan is 9–11 days. Reproduction begins at 36 h
and peaks by day 5; rotifers are post-reproductive after 8–9 days,
with a post-reproductive period of 2–4 days
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reproduction due to crowding, we maintained the
culture at a density below 1 rotifer/2 ml by daily sieving
and transfer into new T. suecica and medium. Concen-
trations of T. suecica were always above 6 x 105 cells/ml,
which we previously demonstrated allows feeding ad
libitum [28].
We collected samples at five time points over the life-

span of amictic B. manjavacas females (Fig. 1): eggs, ne-
onates 1–3 h old, 36 h old early reproductive females,
reproductive females of mixed ages from 3 to 6 d old,
and post-reproductive females between 6 and 9 days old.
Reproductive females carry one or more eggs, which we
removed prior to harvesting by vortexing. For each time
point, we harvested 100–200 rotifers into a 1.5 ml cen-
trifuge tube, immobilized them using distilled water and
centrifuged to a pellet. We resuspended the pellet in
150 μl TriZOL reagent (Invitrogen, Waltham MA),
mashed it with a pestle, brought the sample up to 1 mL
with TriZOL reagent, and froze at − 80 °C until RNA
extraction.
We constructed RNA-Seq libraries starting with total

RNA extracted using the TriZOL reagent protocol,
followed by removal of residual DNA using Turbo
DNA-free (Ambion, Waltham, MA). We used the Ova-
tion 3’-DGE kit (NuGEN, San Carlos, CA) to create
cDNA from mRNA using linear amplification to prevent
PCR bias, sheared to 400–500 bp with Covaris, end-
repaired fragments (S1 Nuclease, Promega, Madison, WI
and Quick Blunting Kit, New England Biolabs, Ipswich,
MA), and adenylated 5’ ends using Taq (New England
Biolabs). We ligated unique TruSeq compatible indexed
adapters to each library and size selected to 400–600 bp
using Pippin Prep (Sage Science, Beverly, MA). Illumina
HiSeq sequencing generated an average of 40 million
2x100base read pairs.
We repeated the entire procedure from inoculation

through sequencing for a biological replicate set of li-
braries, which generated an average of 34 million pairs
of 100 base reads.

Transcriptome assembly and annotation
We filtered reads according to Minoche [30] and
mapped high quality read pairs to our published B. man-
javacas transcriptome assembled from 454 data
(SRR801079; [31]) using CLC Genomics Workbench 7
(https://www.qiagenbioinformatics.com/). We then as-
sembled the unmapped reads and unassembled 454
reads and added these contigs to the assembly. To re-
move transcripts from media contaminants and T. sue-
cica, we eliminated contigs that had a top BLAST hit in
the NCBI refseq protein database to a non-Metazoan
with an E value less than 10−6, or that had no hit with
an E value less than 101; 43,149 contigs remained. We
annotated these contigs by BLAST to the KEGG,

Swissprot, and Human Protein Reference databases at
an E value cutoff of 10−10; we used the top hits to
HPRDv9 to assign HGNC gene symbols for gene set
enrichment analysis, described below. We refer to genes
by HGNC gene symbol whenever possible. We used
reciprocal best blastx scores to assign orthology between
each transcript and all peptides from Homo sapiens
(assembly GRCh38.p7), Drosophila melanogaster (assem-
bly BDGP5), and Caenorhabditis elegans (assembly
WBcel235) downloaded from www.ensembl.org. We
considered a gene to be present in humans and B. man-
javacas and absent in flies and worms if the E value
between human and rotifer was less than 10−20 and
greater than 10−10 to flies or worms.

Differential gene expression and pathway analysis
We mapped quality filtered reads separately from each
library to the assembly using CLC. To prevent bias
toward transcripts with very low levels of expression, we
confined our differential expression analysis to the
22,064 contigs with an average FPKM ≥ 1 across all five
ages and two replicates. The mean length of these con-
tigs was 906 bp, with an N50 of 1231 bp. We determined
significantly differently expressed transcripts between
each life stage using baySeq [32], with an FDR cutoff of
0.05 (see Additional file 1 for baySeq R scripts). These
composed the test set to find enriched Gene Ontology
(GO) terms using Blast2GO. Refseq annotation was
imported for the entire transcriptome of 22,064 contigs,
and additional annotation with GO IDs and InterPro
identifiers was conducted in Blast2GO with a permissive
evalue cutoff of 10−3. Up- and down-regulated tran-
scripts for each life stage transition were analyzed separ-
ately with all 22,064 contigs as the reference set for the
Fisher’s exact test (FDR ≤ 0.05, two-tailed analysis). Sig-
nificantly differently expressed GO terms were reduced
to specific terms for analysis.
We conducted gene set enrichment analysis (GSEA;

[33, 34]) on pairwise consecutive time points. For input
to GSEA, we annotated the B. manjavacas transcrip-
tome with HGNC gene names as described above [35].
Transcripts with the same HUGO annotation were
summed for analysis, and a constant of ten was added to
all FPKM values to avoid bias toward genes with low ex-
pression when converting to log2. We searched for en-
richment of KEGG pathways gene sets using our entire
expression dataset, with 1000 permutations by gene set.
The metric chosen for ranking genes was the log2 ratio
of classes; significant enrichment, either up or down,
was designated as FDR ≤ 0.25. The normalized enrich-
ment statistic was used to create a heat map of KEGG
pathways. Leading edge analysis in GSEA was used to
identify genes shared among more than one enriched
gene set; genes that are differentially expressed at a given
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age and are found in several pathways are more likely to
have an impact on multiple functions than are those
found in only a single pathway.
For a detailed look at gene expression in pathways of

interest, KEGG pathway annotation was used to select
relevant transcripts, and these were clustered according
to expression level with the hierarchical cluster module
of GenePattern [36] using Pearson correlation of log2
transformed FPKM values.

Results and discussion
Aging in B. manjavacas is characterized by large shifts
in transcript abundance between major life stages
(Table 1, Figs 2, 3 and 4), which we take as a first-order
proxy for gene expression. Among the 22,064 contigs
representing genes with an average FPKM > 1, 15,826
genes had significant differential expression in one or
more pairwise comparisons of life stages (FDR < 0.05).
Expression profiles were similar between eggs and neo-
nates, and between early and late reproductive stages;
these stages broadly represent developmental and repro-
ductive periods, respectively. The expression profile of
the post-reproductive or senescent stage was distinct
from the four other life stages.
Analysis of these genes in Blast2GO revealed numer-

ous gene ontology terms that were enriched in each life
stage transition (Additional file 2). Using GSEA on all
genes, we found 86 KEGG pathways enriched in at least
one transition (Fig. 5) and 53 pathways enriched in two
or more transitions. Results largely agreed with those
found in Blast2GO, even though these methods rely on
different annotation, analysis, and tests for significance.
Because GSEA uses only those transcripts that can be
annotated to HGNC and combines expression of tran-
script variants to show gene-level transcription, we also
examined aging-related KEGG-defined pathways using
annotation defined by refseq and swissprot.
There were 6251 genes with significant differential ex-

pression in one or more sequential life stages. Here we
summarize our analyses of each life stage transition, with
emphasis on gene expression changes involved in spe-
cific processes related to aging, in particular the shift
from young, reproductive females to aged, senescent,
post-reproductive females.

Table 1 The number of genes significantly differentially
expressed between each life stage (baySeq, FDR < 0.05)

Eggs Neonates Early Late

Up Down Up Down Up Down Up Down

Neonates 1152 876 - - - - - -

Early 3505 3469 2786 2718 - - - -

Late 6945 5814 4895 3740 1140 236 - -

Post 5266 4557 657 844 550 350 25 53
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Fig. 2 Relative expression profiles between life stages in Brachionus
manjavacas. Heatmap of genes significantly differentially expressed
between at least two life stages with hierarchical clustering of
average FPKM across two biological replicates performed by average
linkage 1- Pearson’s correlation. Data are row-normalized, with red
indicating highest expression and blue indicating lowest expression
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Eggs to neonates
Almost 10% of the transcriptome (2028 genes) is differ-
entially expressed in the transition from egg to neonate
(Figs 2, 3 and 4). Enriched GO terms and KEGG path-
ways are characteristic of a switch from a developing
embryo to a swimming, feeding animal.

Nearly two thirds (715/1152) of genes that significantly
decrease expression in this transition, many by more than
25 (5 fold), do not increase expression at any later stage,
indicating that they are highly expressed only in eggs and
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Fig. 3 Differential expression at life stage transitions in Brachionus
manjavacas. Bars indicate the number of significantly differentially
expressed genes is indicated for each transition, with color
indicating fold-change (3-fold change = 23 difference in transcript
abundance). Note that the late- to post-reproductive transition uses
the right y-axis

Fig. 4 Shared differential expression between life stage transitions in
Brachionus manjavacas. Venn diagram showing number and
percentage of significantly differentially expressed genes (both up
and down-regulated), in each transition and the overlap of genes
shared between transitions
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Fig. 5 Heatmap of KEGG pathways significantly enriched between
life stages in Brachionus manjavacas. Pathways that were significantly
up-regulated or down-regulated are shaded red to blue, respectively,
and scaled per row (GSEA, FDR < 0.25). Grey indicates no significant
enrichment (GSEA, FDR≥ 0.25)
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suggesting that they are specific to embryonic develop-
ment. Consistent with this interpretation, these genes are
involved in development, reflected in the down-regulation
of GO terms including embryonic morphogenesis, organ
morphogenesis, junction assembly, axon guidance,
chemotaxis, and epithelium morphogenesis. The chitin-
containing lorica and mastax of the rotifer are formed in
the egg, and mastax size does not change after hatching,
leading to the down-regulation of chitin catabolic pro-
cesses after development (Additional file 2) [37].
Among all differentially expressed genes in this transi-

tion, 47% (413/876) of those that are up-regulated are
later down-regulated, and 38% (434/1152) of those that
are down-regulated are up-regulated after the neonate
stage, suggesting that these genes are specifically in-
volved in development of the neonate. These genes are
enriched in a relatively small number of GO terms and
KEGG pathways, and are primarily integral membrane
proteins including ABC transporters, solute carriers, and
cytochrome P450s, as well as notch1, and phospholipase
B1, glutathione synthetase, and alkaline phosphatase
(Additional file 2, Fig. 5).
More than half of genes with increased expression

(455/876) do not decrease expression at any later stage
and thus are specific to hatched animals rather than
eggs. These genes are involved in metabolism, digestion,
processing and excretion of waste, respiration, and sens-
ing of the external environment.

Neonates to early reproduction
The transition from the neonate to early reproductive stage
is accompanied by the greatest change in the transcriptome,
with 25% (5504) of examined genes significantly up- or
down-regulated and 30% of up-regulated genes increasing
by more than 2–5 fold (Figs 2, 3 and 4). However, only 15%
of up-regulated genes (386/2718) and even fewer down-
regulated genes (77/2786) are down-regulated or up-
regulated in later stages, respectively, indicating that rela-
tively few of these genes are specific to early reproduction
and are instead likely responsible for the transition from
developmental to reproductive stages. Environmental inter-
ventions or genetic changes that modify expression of these
genes may alter the timing of entry into adulthood and thus
impact both healthspan and lifespan.
Pathways down-regulated in the transition from neo-

nates to early reproduction include those involved in sig-
naling and nervous system function, including ABC
transporters, GnRH signaling, long-term potentiation,
and neuroactive ligand receptor interaction (Fig. 5).
There is additional down-regulation of pathways involved
in calcium-mediated muscle contraction and relaxation,
including a decrease in expression of ATP2A2, tropomy-
osin and subunits of the troponin complex, actin, tintin,
myosin light chain kinase, and voltage-dependent calcium

channels. Other GO terms enriched in down-regulated
genes include cell signaling and cell transport-neuro pep-
tide Y receptor, G-protein coupled amine receptor, potas-
sium channel, transmembrane transport and transport of
organic anions, monamines, and sodium ions; macropino-
cytosis, an endocytic process, and monamine transport
(Additional file 2). Taken together, these suggest develop-
mental processes necessary for interaction with the envir-
onment, including gravitaxis, phagocytosis, and detection
of abiotic or external stimuli, are completed during the
neonatal stage.
The suite of genes up-regulated in the transition from

neonates to early reproductive females appears to be driven
largely by the onset of reproduction (Fig. 5, Additional file
2). Enriched pathways are dominated by the cell cycle
(including positive and negative regulation of ubiquitin-
protein ligase activity, cell cycle checkpoint, and regula-
tion of mitosis); DNA replication (positive and negative
regulation, leading and lagging stand elongation), recom-
bination, and repair (ligase activity, DSB processing, hom-
ologous recombination, BER, NER, MMR); oogenesis; and
maturation and cell division. Up-regulation of RNA poly-
merase, the spliceosome, and basal transcription factors
suggest a general increase in transcription, while increases
in cell cycle pathways, p53, and TGF-beta are expected to
control cell growth, differentiation, apoptosis, and cellular
homeostasis during growth and embryonic development.

Early to late reproduction
There are only 236 genes up-regulated in the transition
to late reproduction; of these 104 are not differentially
expressed in earlier transitions, and nearly all (224) are
not differentially expressed in the transition to repro-
ductive senescence (Figs 2, 3 and 4). Most of those path-
ways up-regulated in the early to late reproductive
transition—primarily those involved in metabolism—were
also up-regulated in either or both of the earlier transi-
tions. An exception is carbohydrate metabolic processes,
up-regulated only in this transition (Additional file 2). In
contrast, 1140 genes are down-regulated, 504 of which are
not differentially expressed at any other stage. GO terms
associated with reproduction, development, cell migration
and organ morphogenesis all declined (Additional file 2),
but only the leukocyte transendothelial migration pathway
was significantly down-regulated in GSEA (Fig. 5). This
down-regulation was due to the decreased expression of
Ras family genes, including ROCK1, RAC2, RAC1,
RAP1B, and RHOA MYL9, ITK, and PRKCs. These genes
are involved in cell growth, differentiation, and survival.
As rotifers are eutelic, one would expect these cell division
and differentiation genes to be down-regulated after
development and with the decline in reproduction during
this period. Decreases in subunits of cytochrome B-245,
a component of the microbicidal oxidase system of
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phagocytes and of ITK may signal a decreased capacity to
fight off infection with increasing age. Declines in the
expression of MYL9, MYL12B, ACTB, ACTG and PRKCs
suggest a breakdown in cell regulation.

Late reproduction to post reproduction
The transition to post-reproductive senescence has
the smallest number of significantly differentially
expressed transcripts (Figs 2, 3, and 4). Of the 53 up-
regulated and 25 down-regulated genes, 35 and nine,
respectively, are not differentially expressed in any
other transition. Of these, 21 transcripts are unanno-
tated, and are targets for further investigation.
Annotated transcripts are involved in aerobic respir-
ation, signaling, and transport (Additional file 3).
In order to understand how more subtle changes in

transcription level of individual genes could result in
significant changes in genetic pathways, we focused on
pathways identified as enriched by GSEA. Examining the
core genes in pathways and whether they are differen-
tially expressed in multiple related pathways can reveal
genes likely to have a disproportionate impact on aging.
Consistent with clustering of transcriptional profiles

(Fig. 2) we identified multiple pathways differentially
expressed only in the late- to post-reproductive transi-
tion. Pathways down-regulated in this transition but not
enriched in any other include biosynthesis of unsatur-
ated fatty acids, tubule reclamation, glutathione metab-
olism, insulin signaling, inositol phosphate metabolism,
and purine metabolism (Fig. 5).
Pathways up regulated in one or more of the first three

transitions and down-regulated in the transition to repro-
ductive senescence were primarily in metabolism, main-
tenance and repair, and proteostasis (Fig. 5). Many of
these seemingly distinct pathways, including those impli-
cated in the age-related diseases of Parkinson’s, Hunting-
ton’s, and Alzheimer’s, were united by genes involved in
mitochondrial function and oxidative phosphorylation,
including NDUFA, UQCRC, COX genes, CYC1, SDHA,
VDAC2 and SLC25A31, all components of the respiratory
chain (Fig. 6). Declines in expression in these same path-
ways with aging appear to be evolutionarily conserved
across a range of taxa [1, 38–40].

Metabolism
GSEA revealed a suite of metabolic pathways down-
regulated in aged rotifers, including fatty acid, pentose
phosphate, porphyrin and ether lipid metabolism, glycoly-
sis, and the TCA cycle (Fig. 5). Multiple dehydrogenases
were among the genes with the largest decreases in expres-
sion, including aldehyde dehydrogenases, hydroxyacyl-CoA
dehydrogenase (HADH), malate dehydrogenases (MDH2,
MDH1), and pyruvate dehydrogenase (PDHA1, PDHB).
Phospholypases (PLAG2E, PLA2G3), aldolases (ALDOA,
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Fig. 6 Relative expression of oxidative phosphorylation pathway genes
between life stages in Brachionus manjavacas. Heatmap shows two
biological replicates for each life stage. Data are row-normalized, with
red indicating highest expression and blue indicating lowest expression
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ALDOC), phosphoenolpyruvate carboxykinase 1 (PCK1),
and pyruvate kinase (PKM2) also all decreased in the tran-
sition from late- to post reproduction (Additional file 4).
Important signaling pathways with roles in metabol-

ism, nutrient sensing, and oxidative phosphorylation
were also down-regulated in post reproduction, most
notably insulin, tor, and adipocytokine signaling.
These pathways are known to play an important role
in aging, and are effectors in increases in longevity in
response to metabolism-related therapies, including
caloric restriction [38, 41]. Expression of key aging-
related genes, including JNK, INSR, IGF, IGFALS, and
TOR—RNAi knockdown of which is known to in-
crease lifespan in rotifers and other animal models
[25, 42–45]—all increase slightly in senescence (Fig. 7).
Other components of the insulin signaling and TOR
pathways, particularly calcium-signaling genes, exhibit
decreases in expression late in life. Together, these
data suggest a synchronized breakdown in metabolic
function and capacity late in life.

Proteostasis
A decline in protein homeostasis is considered one of
the hallmarks of aging across taxa [1], and our results
suggest such a decline in late life in B. manjavacas. Ex-
pression of nearly all proteasome-related genes increases
steadily over life until the transition to reproductive sen-
escence, when expression of 31 out of 38 annotated
structural proteasome subunit and catalytic co-factor
genes decreased by up to 2.4-fold (Fig. 8); GSEA results
capture the late-life decline in proteasome expression
(Fig. 5). The proteasome degrades damaged or short-
lived endogenous proteins, particularly cyclins and tran-
scription factors, and recycles amino acids to be used in
synthesis of new proteins. Proteasome function is thus
essential for many cellular processes, including the regu-
lation of gene expression, the cell cycle, and the re-
sponse to cellular stress. A decline in the proteasome
leads to an accumulation of mis-folded and aggregated
proteins resulting in proteotoxic stress. A loss in pro-
teostasis, aggregation of proteins, and widespread
changes in the proteome are associated with aging in C.
elegans [46, 47]. Interestingly, expression of the ubiqui-
nated proteolysis pathway, which targets damaged pro-
teins for removal via the proteasome, did not change
significantly over lifespan in rotifers, suggesting that glo-
bally, ubiquitination is not the rate-limiting step in pro-
teasomal degradation in late age, though declines in
ubiquitination of specific targets likely play a role in
aging.
Protein metabolism pathways were generally down-

regulated in post-reproductive rotifers (Fig. 5). Leading edge
analysis revealed the subset of genes that were commonly
down-regulated between multiple protein metabolism
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replicates for each life stage. Data are row-normalized, with red indicating
highest expression and blue indicating lowest expression

Gribble and Mark Welch BMC Genomics  (2017) 18:217 Page 8 of 14



pathways (Additional file 4). These were generally involved
in catalyzing formation and then breakdown of S-
adenosylmethionine (MAT1A, MAT2A, AHCY, CTH, and
WBSCR22), ultimately decreasing the production of methyl
groups available for methylation. Expression of the protein
methyltransferases METTL6, METTL2B, and LCMT2 also
declined. A suite of dehydrogenase enzymes that function in
the mitochondria were down-regulated (GCDH, ALDH3A2,
ALDH2, HADH, HADHA, ALDH4A1, GLUD1), affecting
most protein metabolism pathways and linking amino acid
metabolism and degradation with the butanoate and
propanoate metabolism pathways.
Expression of all the enzymes involved in the highly

conserved, five-step tyrosine degradation pathway de-
clined in post-reproductive rotifers (Fig. 9). Tyrosine is an
important regulator of larval development and adult
longevity in C. elegans, and acts as a signaling molecule
involved in cell differentiation, growth, and maintenance
[48]. Expression of homogentisate 1,2-dioxygenase (HGD)

doubles in the transition from eggs to neonates, decreases
slightly in the transition to early reproduction, doubles
again in late reproduction, and declines again to less than
half of previous levels in post-reproductive females. HGD
is involved in the catabolism of tyrosine and phenylalanine
and is best known as the autosomal recessive cause of
alkaptonuria when mutated. Decreased function of HGD
leads to a damaging buildup of homogentisic acid in con-
nective tissues, and the inability to recycle phenylalanine
and tyrosine into new proteins [49]. Increases in tyrosine
concentration or changes in post-translational modifica-
tion are associated with age-related disease including can-
cer, diabetes, neurodegeneration, and cataracts [48, 50].
Tyrosine metabolism is tied with metabolism and signal-
ing, and is actively controlled by insulin signaling and in
turn tyrosine aminotransferase (TAT), which catalyzes the
conversion of tyrosine to fumarate and acetoacetate, ap-
pears to modify the effects of daf2/IGFR through FOXO
and AMPK, thus strongly tying metabolic and protein
sensing, signaling, and regulation.
Cathepsin C (CC; dipeptidyl peptidase-1) expression sig-

nificantly increased 2.2 fold in senescent rotifers (baySeq,
p < 0.05). CC is a lysosomal cysteine protease that activates
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Fig. 8 Expression change of proteasome subunit and assembly
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Fig. 9 Expression change of tyrosine metabolism pathway genes
between late- and post reproduction in Brachionus manjavacas. Blue
arrows indicate the observed decline in expression of enzymes that
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granule serine peptidases in inflammatory cells. Increases
in CC are associated with inflammatory diseases, and CC
protein levels are increased in the central nervous system
in aging mice, contributing to pathogenic inflammation
[51]. Across taxa, aging is correlated with chronic inflam-
mation that is associated with disease, decline in physical
function, and mortality; this remains an active area of
investigation in the biology of aging [52, 53].

Signaling and interaction with the environment
The calcium pathway shows a dramatic shift over lifespan
in rotifers, with the highest expression across nearly all
calcium pathway related genes in eggs and neonates, a
dramatic decrease during early and late reproduction, then
a slight rise in expression of a subset of genes in the post-
reproductive period (Fig. 10, Additional file 5). Several
kinases involved in calcium signaling, including PhKG2,
PRKACA and ITPKB also increase in late life. In contrast,
there is decreased expression of SERCA (ATP2A2) cal-
cium pumps in the endoplasmic reticulum, which could
decrease cellular calcium buffering capacity, as found in
aged neurons [54]. In rotifers, as in other animals, mito-
chondria appear to have a decreased ability to take up
calcium in late life [55, 56].
The overall effect of the observed changes in gene

expression is likely to be dysregulation of calcium homeo-
stasis in senescent rotifers, leading to an increased intra-
cellular calcium load that may negatively impact neuronal
excitability [57–59]. In other model systems, loss of
calcium homeostasis has been shown to be common to
several age-related neurodegenerative diseases, including
Alzheimers, Parkinson’s, and ALS [54, 60, 61]. The dysreg-
ulation of signaling and of sensing pathways, including
neuron recognition and chemotaxis, beginning as soon as
the early-reproductive period should be investigated
further. Loss of the ability to sense and react appropriately
to environmental conditions would be detrimental in late
life.

Epigenetic control of transcription across all life stages
The level of 5-methylcytosine in Brachionus is below re-
liable limits of detection by LC-MS [62], and we and
others have not found DNA methyltransferases (Dnmt1,
Dnmt3) in the B. manjavacas transcriptome or in other
published rotifer transcriptomes or genomes [15, 31, 62].
However, we report here that B. manjavacas has the
molecular machinery for post-translational modifications
to histone tails, including histone methylation and
acetylation; these modifications play an important role
in regulating gene expression. Most histone acetylases
(HAT1, KAT5, KAT7, KAT8, CLOCK, ELP1) remained
relatively constant with age, while histone deacetylases,
activity of which is associated with repressed transcrip-
tion, increased after the developmental period in eggs
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and neonates and remained high through late life
(Fig. 11). Expression of HDAC6/10 was highest in post-
reproductive rotifers. Only HDAC4 declined slightly but
steadily from eggs to late reproduction.
Sirtuin proteins are NAD+ dependent deacetylases,

and are conserved regulators of aging and age-related
diseases [63]. In B. manjavacas we found homologs of
human sirtuins, based on amino acid sequence similar-
ity: SIRT1 (nuclear), SIRT2 (cytoplasmic), SIRT3, SIRT4
(both mitochondrial) and SIRT7 (nuclear). Expression of
SIRT1 and SIRT3 were relatively constant over rotifer
lifespan (Fig. 12). Decrease in SIRT1 (the mammalian
ortholog of yeast Sir2) by RNAi shortens lifespan in
model organisms, while lifespan-extending caloric re-
striction up-regulates SIRT1. While SIRT4 expression
was low, it rose 1.9-fold over the transitions from eggs
to neonates to early reproduction. Sirt4 is a mitochon-
drial protein with additional activity as an NAD-
dependent protein ADP-ribosyl transferase. SIRT2 ex-
pression, conversely, is high through development and
early life, then declines by 1.1-fold through the repro-
ductive and post-reproductive period. Sirt2 deacetylates

a number of substrates, including H3K56, and H3K16,
FOXO3, and alpha-tubulin [64–66]. Expression of SIRT7
displays the opposite profile, and is low in eggs and neo-
nates then rises by 2.7-fold to remain high for the rest of
life. SIRT7 specifically mediates deacetylation of H3K18,
and is directly linked to the control of gene expression,
particularly of nuclear hormone receptors [67]. SIRT7
plays a role in oncogenic transformation by suppressing
the expression of tumor suppressor genes, and in
humans SIRT7 expression is significantly elevated in
breast cancer and thyroid carcinoma [68, 69].
Histone methyltransferases demonstrated a shift in ex-

pression between the first two (developmental) and last
three (early-, late-, and post-reproductive) life stages
(Fig. 13). In particular, expression of several genes that
methylate H3K4, causing transcriptional activation, in-
creased after development (KMT2A, 1.8-fold increase,
KMT2B; 1.5-fold increase; SETD1B, 1.4-fold increase).
Other, repressive histone methyltransferases also in-
creased expression slightly in late life, including SETD8,
SETD1B, EHMT, while expression of SUV420H1 de-
creased. The repressive polycomb group protein EZH,
which methylates H3K9 and H3K27 and plays a key role
in development and differentiation [70], declined in ex-
pression by 1.4-fold from neonates to early reproduction,
and another 1.0-fold from early- to late reproduction.
There was little to no up-regulation of histone lysine

demethylases in late age; only KDM1A, which demethy-
lates H3K4 and H3K9, repressing transcription, increased
0.4-fold from early- to late reproduction, then declined by
the same amount from late- to post reproduction. Expres-
sion of the H3R2 and H4R3 demethylase JMJD6 increased
1.1-fold between neonates and early reproduction, result-
ing in repression of transcription.
Together, these results suggest that large shifts in epi-

genetic markers may be partly or even largely respon-
sible for driving the changes in gene expression over
lifespan, an idea increasingly supported by results from
other model systems [71, 72]. SETD1 and SETMAR pro-
vide particularly interesting targets for future investiga-
tion, as their expression changes greatly over lifespan,
and not only in the transition from development to
growth and reproduction. The increase (0.8-fold) of
SETMAR and large decrease in SETD1A (5.2-fold) in
the transition from late- to post reproduction suggests
that they have functions beyond development, cell div-
ision, and differentiation.

Differential expression during aging revealed in the
rotifer model
Our assembly of the B. manjavacas transcriptome in-
cluded 614 and 910 transcripts with potential homologs
in the human genome absent in D. melanogaster and C.
elegans genomes, respectively. Of these, 150 and 262

Fig. 11 Expression of histone acetylase and deacetylase genes at each
life stage in Brachionus manjavacas. Bars show mean expression as
log2 of Fragments Per Kilobase of transcript per Million mapped reads
(FPKM) ± standard deviation of two biological replicates

Fig. 12 Expression of sirtuin family genes at each life stages in
Brachionus manjavacas. Bars show mean expression as log2 of
Fragments Per Kilobase of transcript per Million mapped reads
(FPKM) ± standard deviation of two biological replicates
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(~25%) were significantly differentially expressed in at
least one life stage transition. Differentially expressed
transcripts that lack homologs in both flies and worms
correspond to 93 human genes, of which 20 are differen-
tially expressed between eggs and neonates, 69 between
neonates and early reproduction, 10 between early and
late reproduction, and one between late reproduction
and senescence (Additional file 6). In the egg to neonate
transition, increased expression of arsenite methyltrans-
ferase (AS3MT), methionine adenosyltransferase 2B
(MAT2B), and thiopurine S-methyltransferase (TPMT)
enrich GO terms related to xenobiotic stimulus. In the
neonate to early reproductive transition, increased
expression of 12 genes enriched GO terms related to
the cell cycle and DNA metabolic processes. Five of
these and an additional three genes enrich GO terms
associated with the microtubule organizing center and
centrosome. The centrosome is involved in chromo-
some stability and has been suggested to play a role in
aging [73–75].

Conclusions
This study is the first to provide a detailed examination
of the transcriptome and of changes in gene expression
and gene pathways with normal aging in the rotifer Bra-
chionus manjavacas, an emerging animal model for the
study of the biology of aging. Shifts in expression in
major aging related pathways very early in life suggest

that changes in gene expression that cause or are caused
by aging may actually begin at a relatively young age.
We found a general decline in metabolism, signaling,
proteostasis, and mitochondrial function associated with
aging. Our findings highlight the important role in aging
of changes in pathways that integrate many diverse func-
tions, and suggest that subtle changes in expression of
many genes, rather than a dramatic change in expression
of individual genes, may lead to significant shifts in the
function of biochemical pathways. A decline in pathways
involved in cellular maintenance and repair such as the
proteasome will lead to the accumulation of damage and
prevent the recycling of cellular components. Signaling
pathways such as calcium and insulin exert control
across cellular and organismal processes as disparate as
development, metabolism and neural function. The sim-
ultaneous declines in expression of energetic, signaling,
and amino acid metabolism pathways are likely to have
very different consequences for health and longevity
than single or multi-gene knockdown in an otherwise
healthy animal; thus investigation of subtle but genome-
wide change in amino acid sensing and metabolism
pathways during aging is an important area for future
study. These results offer a framework that may be used
to generate new hypotheses about the molecular genetic
mechanisms of aging and provide a baseline against
which to evaluate changes in gene expression due to in-
terventions that change healthspan and lifespan.

Fig. 13 Expression of histone methyltransferase and demethylase genes at each life stages in Brachionus manjavacas. Bars show mean expression
as log2 of Fragments Per Kilobase of transcript per Million mapped reads (FPKM) ± standard deviation of two biological replicates
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relative to eggs; Worksheet 2. GO terms significantly down-regulated in
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Additional file 3: Table of genes significantly differentially expressed in
the late-to post-reproductive transition and at least one other transition,
with KEGG description, and with charts showing changes in expression in
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