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Hypertension tends to perpetuate in families and the heritability of hypertension is estimated to be around 20–60%. So far, the main
proportion of this heritability has not been found by single-locus genome-wide association studies. Therefore, the current study
explored gene-gene interactions that have the potential to partially fill in the missing heritability. A two-stage discovery-
confirmatory analysis was carried out in the Framingham Heart Study cohorts. The first stage was an exhaustive pairwise search
performed in 2320 early-onset hypertensive cases with matched normotensive controls from the offspring cohort. Then,
identified gene-gene interactions were assessed in an independent set of 694 subjects from the original cohort. Four unique
gene-gene interactions were found to be related to hypertension. Three detected genes were recognized by previous studies, and
the other 5 loci/genes (MAN1A1, LMO3, NPAP1/SNRPN, DNAL4, and RNA5SP455/KRT8P5) were novel findings, which had no
strong main effect on hypertension and could not be easily identified by single-locus genome-wide studies. Also, by including
the identified gene-gene interactions, more variance was explained in hypertension. Overall, our study provides evidence that
the genome-wide gene-gene interaction analysis has the possibility to identify new susceptibility genes, which can provide more
insights into the genetic background of blood pressure regulation.

1. Introduction

Hypertension (HTN) affects 1 out of 3 adults in the
United States and is a major risk factor for stroke and car-
diovascular diseases (CVDs) [1]. Antihypertensive therapy
has considerably reduced the morbidity and mortality
associated with CVDs [2]. However, nearly half of hyper-
tensive patients do not have their blood pressure (BP)
under control [1]. Thus, alternative strategies and more
individualized treatments for BP reduction are particularly
desirable.

Evidence has suggested that the heritability of HTN is
around 20–60% [3–5]. Genome-wide association studies
(GWASs), especially a recent meta-analysis with large con-
sortia, have been productive in recognition of hypertension
susceptibility genes, and more than 200 loci have been iden-
tified [6–15]. But the genetic contribution accounted for by
the identified variants is limited [5–7]. A large amount of

genetic variance is still left unexplained, which is referred to
as “missing heritability.”

Several new approaches have been explored to search for
the missing genetic contribution. Gene-gene (GxG) interac-
tions, also called epistasis, is one approach that has the poten-
tial to enlighten the missing heritability [16]. Biologically, the
regulation of BP consists of complex physiological pathways,
which include the cardiovascular, neural, renal, endocrine
system and local tissue [17]. Genes that are involved in the
function of these systems interact with each other to main-
tain the homeostasis of BP. Therefore, hypertension is prob-
ably the outcome of multiple genes acting conjointly.
Statistically, single-locus GWASs and meta-analyses have
been focused on identification of genes with main effects.
An epistasis analysis, on the other hand, is capable of discov-
ering genes with nonapparent or weak effects, when the GxG
interactions are significant [18, 19]. Consequently, studies of
GxG interactions have the potential to recognize novel genes
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that may be missed in meta-analyses if the main genetic
effects are minimal and to contribute to the explanation of
the heritability of hypertension.

To date, a few genome-wide analyses have been con-
ducted to identify GxG interactions for hypertension [19–
23]. These studies have identified new genes in addition to
the findings of single-locus GWASs, which further supports
the value of the epistasis analysis. Interestingly, most genes
identified by these epistasis analyses had no main effects
[19–22]. However, only one of these studies has replicated
their findings in an additional population [22], and the sam-
ple size in that study was relatively small (350 subjects) at the
discovery stage, which potentially limited their findings. For
the studies without appropriate replications, the identified
GxG interactions could not be verified, and other possible
explanations, such as population structure, could not be
ruled out. In addition, none of the above studies examined
the variance in HTN that could be accounted for by the
identified GxG interactions, which would substantiate
whether GxG interactions contribute to the explanation
of the missing heritability.

For the current study, we explored the contribution of
GxG interactions to HTN using a two-stage approach, the
discovery stage and the confirmatory stage. We incorpo-
rated the boolean operation-based screening and testing
(BOOST) method developed by Wan et al. [19] to detect
GxG interactions at the discovery stage. The BOOST
method is an effective epistasis approach especially for
detecting GxG interactions when there are no main effects
[24] and has been frequently adopted to conduct an epis-
tasis analysis [21, 23, 25–27]. Following the discovery
stage, the interactions were verified in a separate sample
at the confirmatory stage. The purpose of the current
study was to identify hypertension susceptibility GxG
interactions on the basis of a two-stage approach including
a genome-wide discovery analysis and a confirmatory
association analysis. Furthermore, the contribution of
GxG interactions was also assessed with regard to the her-
itability of hypertension.

2. Materials and Methods

2.1. Framingham Heart Study Samples. We used the data
from the Framingham Heart Study [FHS; https://www
.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=
phs000007.v28.p10]. FHS is a longitudinal cohort study
that was initiated in 1948 to investigate the common risk
factors for CVDs. The study has collected a vast array of
phenotypes including BP periodically over three genera-
tions: the original cohort, the offspring cohort, and the
third-generation cohort [4, 28]. In the current study, a
two-stage analysis was performed. The genome-wide dis-
covery scan was conducted in 2320 cases with matched
controls from the offspring cohort. The following confir-
matory association analysis was applied to 694 cases with
matched controls from the original cohort. The third gen-
eration was not included due to the limited period over
which the phenotypes were measured. The current study
was approved by the Institutional Review Board.

2.2. Blood Pressure Phenotypes. The original cohort examina-
tions 1–17 and the offspring cohort examinations 1–8 were
included in this study. At each clinical examination, the
systolic and diastolic BP (SBP and DBP) were measured
three times by two physicians and a nurse/technician.
The BP measurements from the physicians were averaged
to generate the SBP and DBP readings for that examination.
The BP measurements from the nurse/technician were used
if the measurements from one physician were missed. If
the BP measurements were missed from both physicians,
the observations were removed from that examination.
For participants taking antihypertensive medications,
10mmHg and 5mmHg were added to the SBP and DBP
values, respectively [11].

The inclusion criteria for the case groups were defined as
follows: (1) SBP ≥ 140mmHg by two physicians’measures or
(2) DBP ≥ 90mmHg by two physicians’ measures or (3)
taking antihypertensive medications. The participants who
fulfilled the inclusion criteria at any examination were
selected as the hypertensive cases. Participants were consid-
ered candidates for the controls if their BPs were below
130/80mmHg without taking BP-lowering medications and
they were not allocated to cases (hypertensive) at any exam-
ination. The exclusion criteria for both case and control
groups were as follows: (1) age > 65 years or (2) body mass
index (BMI)≥ 30 kg/m2 or (3) potential secondary causes of
hypertension, including thyroid disorders and renal diseases,
or (4) diabetes mellitus. Cases did not undergo screening to
exclude secondary HTN. Additionally, individuals whose
reported sex did not match the genomic data were removed
from the sample. Finally, a one-to-one matching based on
propensity scores was applied to balance age, sex, BMI, and
examination [29] between the cases and controls in both
cohorts. Hypertension was used as the primary outcome. BP
traits (SBP and DBP) were used as the secondary outcomes.

2.3. Genotyping Methods. Affymetrix 550K genotyping data
(GeneChip Human Mapping 500K Array Set and HuGen-
eFocused 50K Array) from the Framingham Heart Study
were utilized in the current study. Single-nucleotide poly-
morphisms (SNPs) were filtered according to these exclusion
criteria: genotyping call rate for each SNP < 95%, minor allele
frequency (MAF) < 1%, and Hardy-Weinberg equilibrium p
value <1× 10−6. Individuals with an overall genotyping call
rate less than 95% were also excluded. In total, there were
438,565 SNPs available for the subsequent analysis. In addi-
tion, population stratification in each cohort was assessed,
and the first 10 principal components (PCs) were generated
and used as covariates.

2.4. Statistical Methods. At the discovery stage, the genome-
wide GxG interaction scan was conducted using the BOOST
method [19]. In the BOOST test, all pairwise interactions
were first examined using Kirkwood superposition approxi-
mation which compares the joint distribution under the full
logistic regression model with the joint distribution under
the main-effect model. Interactions that passed a specified
threshold (p = 4 89 × 10−6) were further assessed using the
likelihood ratio statistic and the χ2 test to compute the
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interaction effects and the significance levels of the interac-
tions. The top 100 unique GxG interactions with the lowest
p values were selected based on the results from the BOOST
test. These top 100 interactions were further examined by lin-
ear regression (for SBP and DBP) and logistic regression (for
HTN) which were adjusted for covariates, including age, sex,
BMI, and 10 PCs. The significance level for the regression
analyses was set at 5× 10−4 after Bonferroni correction.

At the confirmatory stage, interactions significant in
either regression analysis were verified in the FHS original
cohort. Linear and logistic regressions adjusted for covariates
were used again to evaluate the candidate interactions. Two
criteria were used to justify the HTN susceptibility GxG
interactions, including p < 0 05 and the interaction effects
on BP/HTN consistent between the original and offspring
cohorts.

Single-locus associations of the SNPs in the top 100
unique interactions were assessed using the linear and
logistic regressions adjusted for covariates in the offspring
cohort to examine their main effects on the BP traits and
HTN. Haplotype blocks were also estimated for these
SNPs to determine the uniqueness of the GxG interactions.
Interactions formed by SNPs from the same haplotype block
were considered the same interaction.

Phenotype data were processed using STATA 13.0 (Stata-
Corp, College Station, TX). The BOOST test, linear regres-
sion of the interactions, linear and logistic regressions of
the single locus, and haplotype block estimation were con-
ducted using PLINK1.9 (https://www.cog-genomics.org/
plink2; [30, 31]). Logistic regression of the interactions was
completed using CASSI to control covariates [Howey;
http://www.staff.ncl.ac.uk/richard.howey/cassi/].

3. Results

3.1. The Discovery Stage. Characteristics of the participants
from the offspring cohort are shown in S1 Table available
online at https://doi.org/10.1155/2017/7208318. There were
1246 males and 1074 females. The mean age in the cases
was 49 years old, which was around 2.6 years older than the
controls (p < 0 001). The difference in BMI was relatively
small (mean difference = 0.5, p < 0 001). Sex was exactly
matched between cases and controls. The range of SBP was
from 99 to 209mmHg in the cases and from 86 to 130mmHg
in the controls. The range of DBP was from 63 to 125mmHg
in the cases and from 50 to 80mmHg in the controls.

First, the exhaustive pairwise genome-wide GxG interac-
tion analysis was performed using the BOOST test. The
quantile-quantile plot for the interaction analysis on HTN
is presented in S1 Figure. 145 SNP pairs were selected, which
represented the top 100 unique SNP pairs with the lowest sig-
nificance levels because some SNPs were in linkage disequi-
librium. Then, these SNP pairs were further evaluated using
the linear and logistic regressions, since age and BMI were
not perfectly matched between cases and controls. Also, the
population structure was adjusted in the regression analyses.
Totally, 71 unique SNP pairs (103 SNP pairs) were significant
after Bonferroni correction (p < 5 × 10−4) for either HTN or
BP traits (S1 Dataset).

3.2. The Confirmatory Stage. The cases and controls from the
FHS original cohort were selected according to the same cri-
teria as for the offspring cohort. Characteristics of the sub-
jects from the original cohort are listed in S2 Table. The
proportion of females in this sample was higher compared
to that of the offspring cohort. The difference in mean age
between the cases and controls was smaller (p = 0 5995) than
seen in the offspring cohort. The difference in BMI was sim-
ilar to that of the offspring sample (p = 0 0096). The range of
SBP in the sample from the original cohort was from 115 to
203mmHg in the cases and from 84 to 130mmHg in the
controls. The range of DBP was from 54 to 115mmHg in
the cases and from 57 to 80mmHg in the controls.

The 71 unique GxG interactions identified at the discov-
ery stage were assessed with the sample from the original
cohort. Six unique SNP pairs remained significant (p < 0 05,
S2 Dataset). Among them, two SNP pairs were dropped
because their effects on DBP were not consistent between
the original cohort and the offspring cohort. The remaining
four unique GxG interactions (5 SNP pairs) are presented
in Table 1. The majority of SNPs in the interactions are
intron variants, except for two SNPs, rs3913226 and
rs17688362, which are located outside of currently known
gene regions. The nearest genes to these two SNPs were
searched for and obtained from the National Center for
Biotechnology Information (NCBI) human genome database
(annotation release 107; http://www.ncbi.nlm.nih.gov/
projects/genome/guide/human/index.shtml).

Single-locus associations of the SNPs identified at the dis-
covery stage were also conducted on the BP traits and HTN
in the offspring cohort. Three genetic models, additive, dom-
inant, and recessive, were adopted in the association analyses.
The main effects of the SNPs which were significant at the
confirmatory stage are presented in S3 Dataset. None of the
SNPs were significantly related to the BP traits or HTN.
The p values ranged from 0.0598 to 0.9805.

The contribution of the four unique GxG interactions
was also assessed using linear and logistic regressions. In
the offspring cohort, the main effects of the SNPs in these
GxG interactions together explained 0.04% to 0.56% of the
variance in SBP, DBP, and HTN. The GxG interactions alone
(main effect was not included), however, explained 3.98% to
4.86% of the variance in the BP traits and HTN. In the orig-
inal cohort, the accumulated main effects of the SNPs were
ranged from 0.04% to 1.66%. By including the interactions,
the variance explained in BP and HTN was also improved,
though the magnitude was decreased to 0.33% to 1.32%
(main effect was not included).

3.3. Interaction Patterns. The interaction patterns for the four
distinct gene pairs in the offspring sample are presented in
Table 2. The interaction found between rs4235144 and
rs9489622 is located within the gene gamma-aminobutyric
acid type A receptor beta1 subunit (GABRB1) and the gene
mannosidase alpha class 1A member 1 (MAN1A1). The
SNPs have a MAF of 0.015 and 0.49, respectively. The geno-
types CT/GA and CT/AA demonstrated a protective effect
(odds ratio (OR)=0.36 and 0.07, resp.) from developing
hypertension compared to the homozygous TT/AA. The
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Table 2: Genotype counts for SNP pairs and odds ratios relative to the double major allele homozygote genotype in the offspring sample.

(a)

rs9489622
rs4235144 GG GA AA

Controls

CC 0 0 0

CT 0 18 14

TT 278 550 292

Hypertension

CC 0 0 0

CT 17 7 1

TT 262 556 315

ORa relative to TT/AA (95% CI)

CC — — —

CT — 0.36 (0.148–0.876)∗ 0.07 (0.009–0.507)∗

TT 0.87 (0.693–1.102) 0.94 (0.769–1.142) 1

(b)

rs3913226
rs2058798 TT TC CC

Controls

AA 0 0 0

AG 2 19 1

GG 25 310 781

Hypertension

AA 0 0 0

AG 0 5 27

GG 30 332 745

ORa relative to GG/CC (95% CI)

AA — — —

AG 0.21 (0.010–4.375) 0.28 (0.103–0.743)∗ 28.30 (3.836–208.829)∗

GG 1.26 (0.733–2.159) 1.12 (0.934–1.350) 1

(c)

rs17284390
rs1909884 GG GA AA

Controls

AA 2 24 132

AG 8 117 398

GG 15 108 351

Hypertension

AA 7 46 82

AG 15 110 428

GG 0 76 391

ORa relative to GG/AA (95% CI)

AA 3.14 (0.648–15.225) 1.72 (1.029–2.877)∗ 0.56 (0.409–0.761)∗

AG 1.68 (0.705–4.018) 0.84 (0.627–1.137) 0.97 (0.792–1.177)

GG 0.03 (0.002–0.486)∗ 0.63 (0.456–0.876)∗ 1

(d)

rs12484954
rs17688362 CC CG GG

Controls

TT 3 40 8

TG 60 198 121

GG 88 325 307

Hypertension
TT 12 9 26

TG 57 160 149
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genotype CT/GG appeared to be overrepresented in the
hypertensive group. The interaction patterns were further
assessed in the original sample (S3 Table). None of the geno-
types for this interactive SNP pair were significant due to the
limited sample size. But the directions of these genotypes
were similar between the two cohorts (S3a Table). The other
SNP pairs (rs4235144-rs9481890) within the same GxG
interaction presented a similar pattern.

The interaction between rs2058798 and rs3913226
involves a rhombotin family of cysteine-rich LIM domain
oncogene (LMO3) and a gene encoding nuclear pore-
associated protein 1 (NPAP1) or a gene encoding small
nuclear ribonucleoprotein polypeptide N (SNRPN). The
MAFs of these SNPs are 0.012 and 0.18, respectively. The
genotype AG/CC had a higher odds of hypertension
(OR=28.30; 95% CI: 3.836–208.829), while the genotype
AG/TC had a lower odds (OR=0.28; 95% CI: 0.103–0.743).
The confidence intervals are broader for these genotypes
because the MAF of rs2058798 is relatively rare, and conse-
quently, the individuals who carried these two genotypes
are limited. The directions of the majority genotypes, none-
theless, were replicated in the original sample (S3b Table).

The interaction between rs1909884 and rs17284390 is
located within the gene cholinergic receptor nicotinic alpha 7
subunit (CHRNA7) and the gene cadherin 13 (CDH13). The
MAFs of these SNPs are 0.36 and 0.11, respectively. For the
genotype pairs AA/AA, GG/GG, and GG/GA), the odds of
developing hypertension were lower compared to those for
the most common double homozygous GG/AA. The ORs
ranged from 0.03 to 0.63. The genotype AA/GA, however,
had a higher risk for hypertension (OR=1.72; 95% CI:
1.029–2.877). The directions of the majority genotypes were
consistent with those in the original cohort (S3c Table).

The interaction between rs17688362 and rs12484954
involves the RNA 5S ribosomal pseudogene 455
(RNA5SP455)/keratin 8 pseudogene 5 (KRT8P5) and the
gene dynein axonemal light chain 4 (DNAL4). The two SNPs
are relatively common (MAFs of 0.21 and 0.39, resp.). Over-
all, the odds of hypertension were increased by carrying
minor alleles, except for the genotype TT/CG which had a
lower odds ratio (Table 2(d), OR=0.27; 95% CI: 0.128–
0.564). When compared to the interaction pattern in the
original sample, the directions for the majority genotype
pairs were comparable (S3d Table).

4. Discussion

Compared to single-locus GWASs, a GxG interaction analy-
sis is capable of identifying susceptibility genes with weak or

no main effects [18, 19]. Therefore, additional susceptibility
genes can be recognized using this methodology as was done
in the current study. Among the genes identified in the four
unique GxG interactions, none of them had a significant
main effect on BP or HTN in the FHS population. Two of
the genes, CDH13 and GABRB1, have been associated with
hypertension in a previous GWAS [6, 7, 15]. The gene
CHRNA7, though it has not been identified by other GWASs,
has been shown to play a role in BP regulation in rat models
[32–34]. The remaining 5 loci/genes are new findings.

The gene MAN1A1 encodes a type of αl,2-mannosidases
located in the Golgi [35]. In humans,MAN1A1 was first iso-
lated from the kidney and was also observed in other tissues
and organs, such as the liver, spleen, and leukocytes [36, 37].
The function of MAN1A1 has not been investigated exten-
sively. One study has found the product enzyme was involved
in immune function and played a role in T cell activation
[38]. Interestingly, another study has shown that the activity
of α-mannosidase in the urine was increased in patients with
severe gestational hypertension during pregnancy [39].

Two other identified genes, LMO3 and SNRPN, are pre-
dominantly expressed in the brain [40, 41]. Although they
have not been directly linked to hypertension, both have
interactions with the tumor suppressor protein p53 (TP53).
LMO3 has been found to interact with TP53 directly and
repress TP53-dependent mRNA expression [42]. The inter-
action between SNRPN and TP53 was recognized by the
two-hybrid interaction mating [43]. TP53 is a well-known
tumor suppressor gene that regulates the transcription of
diverse target genes and is involved in a variety of cellular
functions. Evidence suggests that TP53 contributes to BP reg-
ulation and hypertension-induced complications, such as left
ventricular hypertrophy [44–46].

In addition, LMO3 also promotes adipogenesis, and stud-
ies have shown that adipose tissue participates in the renin-
angiotensin system, which is a well-recognized BP regulation
system [47, 48]. Interestingly, rs3913226 (between NPAP1
and SNRPN) is located within chromosome 15q11–13, a
region associated with Prader-Willi syndrome. One charac-
teristic of Prader-Willi syndrome is hyperphagia with obesity
[49]. Therefore, it is also possible that LMO3 and SNRPN (or
NPAP1) participate in BP regulation through another mech-
anism, such as adipose tissue.

The gene DNAL4 encodes a dynein light chain which is a
component of the dynein motor complex [50]. In humans,
DNAL4 is highly expressed in the testis, thyroid, and brain.
This gene has been suggested to play a role in the neurotro-
phin signaling pathway which is essential for the proper
function and survival of neurons (REACTOME: R-HSA-

Table 2: Continued.

rs12484954
rs17688362 CC CG GG

GG 109 363 257

ORa relative to GG/GG (95% CI)

TT 4.78 (1.334–17.117)∗ 0.27 (0.128–0.564)∗ 3.88 (1.728–8.723)∗

TG 1.13 (0.762–1.691) 0.97 (0.740–1.260) 1.47 (1.099–1.969)∗

GG 1.48 (1.068–2.050)∗ 1.33 (1.067–1.668)∗ 1

Note. ∗p < 0 05. aOR is odds ratio.
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177504). Also, a study has found that the dynein motor
complex participates in the cytoplasmic transportation of
TP53 [51]. The final two identified genes, RNA5SP455
and KRT8P5, are pseudogenes, whose function has not
been discovered.

The four GxG interactions discovered in this study are all
novel discoveries. None of the previously identified GxG
interactions were replicated in this study. A possible explana-
tion is that epistasis analyses are typically low yield (0-1 SNP
pair identified per study) due to the strict Bonferroni correc-
tion for multiple testing [19–21]. The challenge of multiple
testing is more prominent in epistasis analyses compared to
single-locus GWASs. For example, there are approximately
125 billion SNP pairs to be tested in a GWAS with 500,000
SNPs. A p value less than 10−13 is rare for a GWAS at this
scale after Bonferroni correction. Another less conservative
approach, false discovery rate, was also adopted to select
genome-wide significant GxG interactions [22]. The number
of significant outcomes was improved slightly but still limited
(one SNP pair identified at the confirmatory stage). Other
methods, such as gene-based interaction analyses, have the
potential to enhance the power to identify more GxG interac-
tions, if the computational efficacy is adequate to conduct
genome-wide analyses [52]. Meanwhile, an epistasis meta-
analysis also has the capability of improving the findings
and replications.

As indicated by previous studies, an interaction found by
an epistasis analysis does not mean that the two genes are
connected with each other directly [20–22]. The two genes
may be involved in the same pathway or have a similar
impact on a disease trait. None of the GxG interactions iden-
tified in the current study are interactive directly. However,
mutual proteins were identified by consulting the Biological
General Repository for Interaction Datasets (https://
thebiogrid.org/) and the Human Protein Reference Database
(http://www.hprd.org/index_html) for protein-protein inter-
actions. For example, TP53 has a connection to the gene pair,
LMO3 and SNRPN. For two other interactions, GABRB1 and
MAN1A1 and CHRNA7 and CDH13, a network of multiple
genes instead of a single gene may establish the relationship
between the two genes. For instance, the possible linkages
can be plotted as GABRB1-PIK3CA-PIK3R1-TYK2-PLAUR-
MAN1A1 and CHRNA7-APP-APOA1-MAPK6-CDH13
according to the protein-protein interaction network.

Our results indicate that the explanation of the heritabil-
ity of BP was improved by including GxG interactions. In
single-locus GWASs, the amount of the variation in BP traits
explained by the identified SNPs together has typically been
less than 3% in individual studies [6, 7, 9, 14]. The variance
explained in our study by the four identified GxG interac-
tions (main effects were not included) was comparable to this
amount. It is possible that as more GxG interactions are
discovered, a greater amount of heritability can be
explained. On the other hand, a proportion of the herita-
bility of BP may be accounted for by rare alleles [9], epi-
genetic factors, such as DNA methylation at promoter
sites to regulate the expression of hypertension-related
genes [53], and gene-environmental interactions, such as
gene-sodium interactions [54].

In summary, our study identified new GxG interactions
using the genome-wide epistasis analysis, and the findings
were confirmed with an additional sample. The limitation
of our study is the relatively small sample size. For future
studies, replication with larger samples and other popula-
tions is desirable to investigate the roles of these newly iden-
tified genes and interactions. Overall, our study further
demonstrates the ability of a genome-wide GxG interaction
analysis in detection of novel genes which are potentially
missed in single-locus GWASs due to weak or nomain effects
on phenotypes. Moreover, our study supports the hypothesis
that GxG interactions can contribute to the explanation of
the missing heritability of hypertension.
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