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A B S T R A C T   

Anxiety disorders are the most prevalent psychiatric condition among youth, with symptoms commonly 
emerging prior to or during adolescence. Delineating neurodevelopmental trajectories associated with anxiety 
disorders is important for understanding the pathophysiology of pediatric anxiety and for early risk identifica
tion. While a growing literature has yielded valuable insights into the nature of brain structure and function in 
pediatric anxiety, progress has been limited by inconsistent findings and challenges common to neuroimaging 
research. In this review, we first discuss these challenges and the promise of ‘big data’ to map neuro
developmental trajectories in pediatric anxiety. Next, we review evidence of age-related differences in neural 
structure and function among anxious youth, with a focus on anxiety-relevant processes such as threat and safety 
learning. We then highlight large-scale cross-sectional and longitudinal studies that assess anxiety and are well 
positioned to inform our understanding of neurodevelopment in pediatric anxiety. Finally, we detail relevant 
challenges of ‘big data’ and propose future directions through which large publicly available datasets can 
advance knowledge of deviations from normative brain development in anxiety. Leveraging ‘big data’ will be 
essential for continued progress in understanding the neurobiology of pediatric anxiety, with implications for 
identifying markers of risk and novel treatment targets.   

1. Introduction 

Anxiety disorders are common among youth, affecting approxi
mately 30% of children and adolescents (Costello et al., 2005; Mer
ikangas et al., 2010). The majority of anxiety disorders emerge during 
childhood and adolescence, with a median age of onset of 11 (Kessler 
et al., 2005). Nearly 50% of adolescents with anxiety disorders experi
ence continued psychopathology in adulthood (Gregory et al., 2007), 
highlighting the significant risk for chronic mental health problems and 
the need for effective treatments early in life. In order to understand this 
period of risk, it is important to consider the substantial changes in 
structural and functional brain maturation that occur during develop
ment. Delineating how variation in these neurodevelopmental trajec
tories is associated with risk for anxiety disorders is critical for 
improving risk detection and identifying novel targets for treatments in 
youth. Human neuroimaging research has proved an invaluable 
resource for furthering our understanding of neural mechanisms un
derlying pediatric anxiety; however, key methodological challenges and 
inconsistent findings have hindered progress in this area. In this review, 

we describe existing studies that have used large cross-sectional and 
longitudinal neuroimaging datasets to inform knowledge about pediat
ric anxiety and demonstrate how such approaches can be leveraged to 
understand trajectories of risk. Further, we highlight promising di
rections for future research that capitalize on growing trends in repro
ducible methods to delineate neurodevelopmental mechanisms related 
to anxiety. 

2. Age-related neural changes and pediatric anxiety 

Human neuroimaging research has yielded important insights into 
neural mechanisms related to pediatric anxiety. Anxiety disorders are 
associated with alterations in the frontolimbic circuitry (e.g., ventro
medial prefrontal cortex (vmPFC), amygdala, and hippocampus) (Gee 
and Casey, 2017) that governs fear learning, as well as large-scale net
works such as the salience network and default mode network, which 
are respectively involved in responding to salient stimuli and 
self-referential processing (Strawn et al., 2020). Childhood and adoles
cence are marked by ongoing structural (Gee et al., 2016; Swartz et al., 
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2014) and functional (Calabro et al., 2019; Gabard-Durnam et al., 2014; 
Gee et al., 2013; Hare et al., 2008; Jalbrzikowski et al., 2017) changes in 
frontolimbic circuitry and large-scale functional networks. In particular, 
the development of prefrontal regions is more protracted than that of 
subcortical structures (Casey et al., 2019; Gogtay et al., 2004; Lenroot 
and Giedd, 2006), and structural (i.e., uncinate fasciculus) (Gee et al., 
2016; Swartz et al., 2014) and functional (Calabro et al., 2019; 
Gabard-Durnam et al., 2014) connectivity of medial prefrontal regions 
with the amygdala and hippocampus continues to develop into young 
adulthood. Thus, mapping neurodevelopmental trajectories is important 
for understanding the etiology of anxiety and to relate neural changes to 
the emergence of symptomology. 

2.1. Structural diagnostic differences 

Previous neuroimaging research on anxiety disorders has identified 
several key structural alterations in frontolimbic circuitry, including the 
amygdala, vmPFC, anterior cingulate cortex (ACC), and insula (Gee and 
Casey, 2017). While the majority of existing research on anxiety-related 
structural differences has been conducted in adults, emerging studies in 
youth suggest similar patterns (Strawn et al., 2020). Several studies have 
identified structural abnormalities of the amygdala in youth with anxi
ety, but the direction of these alterations is inconsistent (Cohodes and 
Gee, 2017). Whereas some studies have found evidence for larger 
amygdala volumes in youth with anxiety disorders (e.g., De Bellis et al., 
2000; Qin et al., 2014; Schienle et al., 2011), others have found reduced 
amygdala volumes in anxious youth (e.g., Milham et al., 2005; Mueller 
et al., 2013; Strawn et al., 2015). Previous studies have also demon
strated structural differences in regions of the prefrontal cortex (PFC) in 
pediatric anxiety disorders. For example, previous studies identified 
increased cortical thickness in the vmPFC and decreased gray matter 
volumes in the ventrolateral PFC in youth with anxiety disorders 
compared to non-anxious youth (Gold et al., 2017; Strawn et al., 2015). 
While prior research suggests anxiety-related increases in gray matter 
volume in the dorsal ACC, other studies have failed to identify differ
ences in ACC volume between anxious and non-anxious youth (Mueller 
et al., 2013; Strawn et al., 2015). Finally, the existing literature suggests 
increased insula volume in youth with anxiety disorders compared to 
non-anxious youth (Mueller et al., 2013). Taken together, these findings 
suggest the presence of frontolimbic structural changes in pediatric 
anxiety, although the lingering inconsistencies among studies demon
strate the need for further work in this area. 

2.2. Functional diagnostic differences 

Consistent with evidence of altered structure in frontolimbic cir
cuitry in pediatric anxiety, existing studies have demonstrated that 
youth with anxiety disorders display differences in neural function 
associated with core processes implicated in anxiety. Broadly, youth 
with anxiety show alterations in activation and functional connectivity 
of regions including the amygdala, hippocampus, and various sub
regions of PFC when reacting to or regulating reactivity to emotional 
stimuli, particularly those associated with threat, or when engaging in 
learning about salient stimuli in the environment. Relative to their non- 
anxious peers, youth with anxiety disorders display heightened activa
tion of the amygdala, ACC, and ventral PFC when viewing fearful faces 
(Blair et al., 2011; McClure et al., 2007; Monk et al., 2008; Prater et al., 
2013; Thomas et al., 2001) and angry faces (Blair et al., 2011; Monk 
et al., 2008). Additionally, compared to non-anxious peers, youth with 
anxiety disorders show alterations in connectivity between the medial 
(Kim et al., 2011), dorsolateral (Prater et al., 2013), and ventrolateral 
(Monk et al., 2008) PFC and amygdala in response to emotional stimuli, 
potentially reflecting weakened prefrontal control of amygdala reac
tivity. These differences in activation and connectivity may contribute to 
anxious children’s tendency to show greater intensity of negative 
emotion (Carthy et al., 2010a, 2010b) and to interpret stimuli as more 

negative or threatening, relative to their non-anxious peers (Suveg and 
Zeman, 2004). Difficulty discriminating between threat and safety is 
another hallmark of anxiety disorders that is observed at the neural level 
(Britton et al., 2011; Duits et al., 2015; Graham and Milad, 2011; 
Jovanovic et al., 2014). During threat conditioning, adolescents with 
anxiety disorders display lower medial PFC activation than non-anxious 
adolescents, regardless of age (Haddad et al., 2015). In addition, anxious 
youth and adults exhibit lower subgenual ACC activation when engaged 
in threat appraisal during extinction recall compared to their 
non-anxious peers (Britton et al., 2013a). Finally, trait anxiety in youth 
may be associated with increased neural pattern similarity in prefrontal 
regions (e.g., vmPFC) between threat and safety during extinction recall 
(Glenn et al., 2020). Together, these findings suggest that neural 
discrimination between threat and safety is less pronounced and that 
specific prefrontal subregions may be recruited less during threat and 
safety learning among anxious individuals compared to their 
non-anxious peers. 

Given evidence of alterations in attentional bias to threat in anxiety 
disorders (Roy et al., 2015), neuroimaging studies in youth with anxiety 
disorders have also focused on this process. Aberrant functional con
nectivity of the amygdala with the insula (White et al., 2017) and the 
ventrolateral PFC (Monk et al., 2008), as well as weaker connectivity 
between the rostrodorsal ACC and hippocampus/parahippocampus 
(Price et al., 2014), have been observed in anxious youth during tasks of 
attentional threat bias. Disruptions in the functional connectivity of 
amygdala-based networks are also present at rest for youth with anxiety 
(Roy et al., 2013). Positive associations between functional connectivity 
at rest and during an attentional bias task suggest that these profiles of 
functional connectivity are stable across conditions and present even in 
the absence of threatening information (Harrewijn et al., 2020). Anxious 
children also show alterations in inhibitory control, which may 
contribute to less effective control of attention (Cardinale et al., 2019; 
Ladouceur et al., 2009; Lonigan and Vasey, 2009; Susa et al., 2012). 
Reduced activation in the rostral ACC has emerged as a potential neural 
correlate of weaker inhibitory control in anxious youth (Swartz et al., 
2014). Although these findings provide some insight into the neural 
mechanisms that may underlie behavioral and cognitive alterations in 
pediatric anxiety, much remains unknown about how these processes 
develop over time and whether neurodevelopmental trajectories differ 
in youth with anxiety disorders. 

2.3. Age-related diagnostic differences 

While most studies have not examined age-related diagnostic dif
ferences, some evidence suggests that anxiety-related changes in fron
toamygdala circuitry may be age-dependent. In typical development, 
children display positive functional connectivity between the medial 
PFC and amygdala in response to emotional faces, and this pattern shifts 
to negative connectivity around the transition to adolescence 
(Gabard-Durnam et al., 2014; Gee et al., 2013; Jalbrzikowski et al., 
2017). By contrast, youth with anxiety disorders show an opposite 
age-related pattern of medial PFC-amygdala functional connectivity in 
response to emotional faces, with increasing positive connectivity in 
adolescence (Kujawa et al., 2016). These findings highlight the impor
tance of examining diagnostic differences through a developmental lens 
and are consistent with broader evidence of age-related discontinuities 
in pediatric anxiety disorders. 

Examination of neural mechanisms relating to specific psychological 
processes during extinction recall shows that vmPFC engagement during 
threat appraisal, but not explicit threat memory, differs between anxious 
and non-anxious individuals in an age-dependent manner (Britton et al., 
2013a; Gold et al., 2020). Specifically, anxious youth, but not 
non-anxious youth or anxious adults, exhibit elevated vmPFC activation 
when ambiguity between threat and safety is minimized during threat 
appraisal (Britton et al., 2013a). Thus, age discontinuities in anxiety 
disorders may occur based on the biological state of specific neural 
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circuits and the psychological processes in which they are engaged (Gee 
and Kribakaran, 2020; Gold et al., 2020). Though longitudinal research 
on pediatric anxiety has been limited thus far, one longitudinal study 
found that changes beginning in adolescence in the functional neural 
architecture supporting inhibitory control and motivation were associ
ated with differing levels of anxiety in middle adulthood (Petrican and 
Grady, 2019). Future longitudinal work will be important for under
standing how alterations in neural circuitry related to processes such as 
inhibitory control and safety learning may confer risk for anxiety. 

As anxiety disorders commonly emerge during childhood or 
adolescence (Kessler et al., 2005), understanding clinical trajectories of 
anxiety is key to a developmental conceptualization of anxiety pathol
ogy. Evidence to date demonstrates some heterogeneity in the trajec
tories of anxiety depending on subtype. For example, separation anxiety 
disorder tends to emerge earlier in childhood, whereas social anxiety 
disorder tends to emerge later in childhood or during adolescence, and 
panic disorder and generalized anxiety disorder (GAD) may not emerge 
until even later in adolescence or early adulthood (Beesdo et al., 2009). 
As anxiety disorders are highly comorbid, building models that account 
for individual differences across comprehensive domains of functioning 
(e.g., behavioral, cognitive, social, etc.) and overlapping symptomology 
with other psychopathologies may be key for decoding individual risk 
throughout the lifespan. To this end, a longitudinal study of anxiety 
symptomology measured by the Screen for Child Anxiety Related 
Emotional Disorders (SCARED) across a 5-year period revealed sub
stantial individual variability in the emergence of different subtypes of 
anxiety disorders as a function of age and sex (Hale et al., 2008). 
Delineating neurobiological trajectories associated with anxiety may 
provide important insight into the individual differences observed in 
trajectories of symptomatology. 

3. Current challenges and the promise of big data 

Though the extant literature has provided important insights into 
neural changes associated with pediatric anxiety, neuroimaging 
research, particularly with clinical developmental samples, comes with 
many challenges. Collection of magnetic resonance imaging (MRI) data 
is costly and time-consuming, often resulting in relatively small sample 
sizes with low statistical power (on average between 8–31% in pub
lished neuroscience studies) (Button et al., 2013). Such low statistical 
power both decreases the probability of detecting a true effect and in
creases the probability of a statistically significant result that does not 
reflect a true effect (Button et al., 2013). Obtaining robust sample sizes 
can be particularly difficult when recruiting clinical and developmental 
populations, and studies of pediatric anxiety may be particularly sus
ceptible to attrition (e.g., Gee and Kribakaran, 2020; Gold et al., 2020; 
Shechner et al., 2014). Due to their anxiety, children with anxiety dis
orders may be less likely to begin or complete functional MRI (fMRI) 
studies, which involve a novel environment and require lying very still 
in a loud, tight space. Moreover, the nature of some tasks used to assess 
threat learning or attention to threat, which are particularly relevant to 
anxiety, can be aversive by definition and thus more associated with 
attrition. Given that children with the highest anxiety severity are most 
likely to drop out of such studies, the range of anxiety represented in 
pediatric neuroimaging studies is likely to be restricted. This restricted 
range of anxiety further lowers statistical power and is important to 
consider when interpreting findings or attempting to generalize findings 
to clinical populations. 

Reproducible results are important to ensure accuracy and external 
validity of research findings. Likely due to a combination of factors 
including low statistical power and differences in analytic approaches, 
many existing findings in neuroscience, particularly results from fMRI 
studies, fail to replicate in independent datasets (Button et al., 2013; 
Poldrack et al., 2017). The substantial flexibility available in neuro
imaging data analysis can introduce additional experimental degrees of 
freedom and impede valid, reproducible results (Poldrack et al., 2017). 

In a striking recent example of this, when 70 independent research 
teams were given the same fMRI dataset to test pre-defined hypotheses, 
no two teams selected the same workflows nor generated identical 
conclusions (Botvinik-Nezer et al., 2020). Inconsistent results limit 
interpretability and generalizability about the true relationship between 
neural measures and behavior or clinical symptoms. As in the broader 
neuroimaging literature, there have been inconsistent findings related to 
brain structure and function in youth with anxiety disorders. Although 
diagnostic differences have often been observed in the domains of 
structural and functional neuroimaging, the directionality and consis
tency of alterations related to pediatric anxiety are unclear. These 
inconsistent findings reflect substantial limitations of neuroimaging 
research as it has traditionally been employed and underscore the need 
to adopt approaches that will enhance reproducibility. 

The use of large, collaborative datasets can help to circumvent many 
of these challenges and offers exciting promise for advancing our un
derstanding of neurodevelopmental trajectories associated with pedi
atric anxiety. So-called ‘big data’ studies have emerged in parallel across 
many scientific fields and are characterized as cohesive large samples of 
homogenous measures. The designation of a dataset as “large” is relative 
between fields; in the field of genetics, for example, the UK Biobank has 
collected a sample of half a million participants (Allen et al., 2012) and 
in the field of economics some datasets of consumer behavior have bil
lions of data points (Fosso Wamba et al., 2015). By contrast, sample sizes 
in human neuroimaging are often on the order of tens of participants 
(Poldrack et al., 2017), in part because these data are costly to collect 
both in terms of time and resources. Thus, in the context of human 
neuroscience research, datasets with several hundreds or thousands of 
participants are orders of magnitude larger than traditional studies and 
represent a marked increase in statistical power available to researchers. 
Further, these large datasets have increasingly employed neuroimaging 
(Biswal et al., 2010) in addition to broader measures of behavior. Many 
of these datasets follow open science models and are publicly available 
to members of the research community. Importantly, these studies have 
allowed many researchers access to shared rich multimodal data in large 
cohorts. Along with facilitating access and broader use of collected data, 
these studies have increased statistical power and provided new op
portunities to enhance methodological rigor and reproducibility 
(Glasser et al., 2016). Multi-site data collection with identical protocols 
across sites has proved feasible and emerged as a core strategy for 
generating these large datasets, leading to a cohesive dataset much 
larger than a typical individual lab could feasibly collect (Jernigan et al., 
2016; Volkow et al., 2018). Larger datasets will be essential to 
advancing knowledge in this area as meta-analyses have revealed that 
tasks relevant to studying anxiety often have small to medium effect 
sizes, requiring sample sizes larger than current norms in the field to be 
adequately powered (Fig. 1). Moreover, large, multi-site studies provide 
opportunities to assess more comprehensive models of behavioral and 
clinical phenomena through consistent measurement of potential 
explanatory variables. 

4. Examining neurodevelopment and pediatric anxiety in big 
data studies 

Given challenges inherent to neuroimaging research, particularly 
with clinical developmental samples, big data studies will be essential to 
continued progress in identifying neurodevelopmental trajectories 
associated with pediatric anxiety. A growing number of large cross- 
sectional or longitudinal neuroimaging studies of childhood and/or 
adolescence are available with measures related to anxiety (Alexander 
et al., 2017; Casey et al., 2018; Evans, 2006; Hubbard et al., 2020; 
Jaddoe et al., 2006; Jernigan et al., 2016; Nooner et al., 2012; Pausova 
et al., 2017; Satterthwaite et al., 2016; Salum et al., 2015; Schumann 
et al., 2010; Somerville et al., 2018; Volkow et al., 2018). Each of these 
datasets contains measures of structural and/or functional neuro
imaging, anxiety symptoms, and various other relevant measures in 
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cognitive, emotional, social, behavioral, physical, and genetic domains 
(Table 1). The breadth of domains captured in many big data studies 
provides unique opportunities to examine a rich landscape of potential 
mediators and moderators that may provide unique mechanistic insights 
and elucidate interactions with key environmental (e.g., stress) or 
developmental (e.g., puberty) factors. The construction of more complex 
models that may better explain variance across individuals could help to 
reconcile inconsistent findings in the current literature on pediatric 
anxiety. Further, anxiety varies continuously from normative to patho
logical levels, and dimensional approaches to modeling anxiety can 
enhance statistical power. The highly dimensional symptom data that 
are sometimes collected in large datasets are important for examining 
continuous variation in brain structure or function associated with dif
ferential levels of anxiety severity, rather than relying on categorical 
diagnostic differences. Moreover, such dimensional data in combination 
with diagnostic information could be used to test whether there are 
more discrete shifts in brain structure or function that correspond to a 
clinical threshold. Another advantage of big data studies is the oppor
tunity to test for replication or generalizability of findings. Many of these 
datasets have been designed to collect overlapping measures for key 
constructs. As examples, several studies outlined in Table 1 collect the 
Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS; 
Kaufman et al., 1997) diagnostic interview to assess psychopathology, 
the NIH Toolbox (Gershon et al., 2010) to assess neurocognitive and 
behavioral functioning, and the PhenX Toolkit (Hamilton et al., 2011) to 
assess a wide array of phenotypic domains. These congruent measures 
allow for ease of facilitating comparisons across studies and testing for 
generalizability (e.g., Schork et al., 2019). In addition, assessment across 
multiple symptom domains (e.g., Barch et al., 2018) facilitates testing 
whether findings are specific to anxiety or common across other symp
tom domains, as anxiety is highly comorbid. Such models spanning 
multiple symptom domains may be key to disentangling neural markers 
that are specific to individual anxiety disorders versus markers that are 
common across diagnoses. As anxiety disorders are highly comorbid 
(Kessler et al., 2005) and are commonly characterized by physiological 
arousal, avoidance, and feelings of disproportionate worry and distress, 
it is plausible that shared neural bases could underlie many anxiety di
agnoses. On the other hand, the phenotypic signatures of specific anxi
ety disorders can be quite heterogeneous (e.g., the typical presentation 
of a specific phobia is quite different from that of generalized anxiety 

disorder), so some specificity in neural bases is also conceivable, which 
could be identified with the highly dimensional models based on big 
data. Meta-analytical consortia, such as the Enhancing Neuro Imaging 
Genetics through Meta Analysis (ENIGMA)-Anxiety Working Group, 
which has pooled many individual datasets of generalized anxiety dis
order, social anxiety disorder, specific phobia, and panic disorder sub
groups into the largest neuroimaging dataset to date focused on anxiety 
(Bas-Hoogendam et al., 2020), may be especially valuable for in
vestigations to this end. 

4.1. Complementary strengths of large datasets 

Given different study designs and data modalities, existing big data 
studies have complementary strengths and are poised to address distinct 
questions related to pediatric anxiety (for open questions well-suited to 
investigation with large datasets, see Table 2). For example, the Boston 
Adolescent Neuroimaging of Depression and Anxiety (BANDA) study, 
which is harmonized with the Human Connectome Project (HCP), has a 
uniquely large clinical sample with a focus on recruiting adolescents 
ages 14− 17 (N = 225) with and without anxiety and depression (Hub
bard et al., 2020). The fMRI tasks in the BANDA study focus on processes 
with direct clinical relevance to anxiety (e.g., emotion processing, 
emotional interference), making it an ideal dataset for probing brain 
function in clinically anxious youth and parsing heterogeneity in 
anxious subtypes. In addition, given the focus on anxiety and depression, 
the BANDA study will be well positioned to dissociate neural processes 
that are uniquely altered in anxiety from those that have transdiagnostic 
relevance for internalizing disorders. Other large cohort studies are well 
positioned to examine genetic factors and heritability related to anxiety. 
The longitudinal Adolescent Brain Cognitive Development (ABCD) 
Study includes a twin substudy of 800 pairs of same-sex twins across four 
sites. This design will allow for comparisons within and between 
monozygotic and dizygotic twin pairs to examine genetic and environ
mental contributions to associations between neurodevelopment and 
anxiety (Iacono et al., 2018). The Saguenay Youth Study (SYS) contains 
multimodal data from adolescent siblings and their parents from a re
gion of Québec with a large genetic founder-effect, characterized by low 
genetic diversity caused by a small number of individuals founding the 
population of an isolated area (Braekeleer, 1991; Pausova et al., 2017). 
The reduced genomic heterogeneity in this sample makes this dataset 
well-suited for researchers interested in studying complex traits associ
ated with predisposition toward anxiety and its heritability. The Healthy 
Brain Network (HBN) biobank collected by the Child Mind Institute aims 
to collect a community sample of 10,000 youths ages 5− 21 from the 
New York City area (Alexander et al., 2017). This dataset has a unique 
suite of measures including genetic information, blood and urine bio
samples, and strength and cardiovascular physical fitness measures, 
which will allow researchers to examine biophysical interactions as they 
relate to risk for anxiety. 

Such large cross-sectional and longitudinal studies will be essential 
to mapping neurodevelopmental trajectories that are associated with 
anxiety. One promising strategy to advance knowledge in this domain is 
to leverage these big data studies to test and expand upon existing hy
potheses and age-related results derived from smaller cross-sectional 
studies of pediatric anxiety. In addition, results that have emerged 
from large cross-sectional datasets can be tested in longitudinal datasets 
that allow for the examination of within-subject trajectories, especially 
in studies with cohorts overlapping in age. Critically, large datasets with 
broad age ranges or longitudinal follow-up timepoints can be used to 
address questions about structural and functional neural factors that 
characterize the onset, progression, and remission of anxiety in youth. 
Cohesive large datasets additionally present strengths complementary to 
those of individual studies or meta-analyses that pool findings across 
smaller individual studies. The utility of meta-analytical results hinges 
upon the quality of the constituent studies. When a meta-analysis is 
based upon under-powered studies, as discussed above, findings may be 

Fig. 1. Sample size needed for adequate statistical power for tasks relevant to 
the study of anxiety. These power curves represent sample sizes needed for an 
adequately powered two-sample t-test for an alpha value of 0.05. The dotted 
horizontal line marks 80% statistical power. Effect sizes observed in anxious 
populations for tasks of attentional bias (d = 0.45, Bar-Haim et al., 2007), fear 
acquisition (d = 0.19, Lissek et al., 2005), fear extinction (d = 0.23, Lissek 
et al., 2005), and attentional control (d = 0.58, Shi et al., 2019) were deter
mined based on meta-analyses. 
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Table 1 
Representative large developmental datasets that include magnetic resonance imaging data. Additional multimodal measures collected in each dataset are displayed. Key: Int. = clinical interview (e.g., K-SADS); MH = self- 
or parent-reported mental health questionnaires (e.g., BDI, SCARED); Struc. = structural MRI (e.g., T1w, proton density); rsMRI = resting state MRI; dMRI = diffusion MRI (e.g., DTI, HARDI); fMRI = functional MRI (e.g., 
BOLD signal measured during task); Beh. = behavioral measures; Bio. = biological samples; Cog. = cognitive measures; Emo. = emotional measures (e.g., Youth Self Report); Gen. = genetic samples; L/E = lifestyle or 
experiential measures; Phys. = physical or medical measures; Soc. = social measures; Sub. = substance use measures.  

Dataset Location(s) 
Collected 
sample size 
(N) 

Longitudinal or 
cross-sectional 

Ages of 
partic- 
ipants 

Clinical 
measures 

Neuroimaging measures Additional measures 

Int. MH Struc. rsMRI dMRI fMRI Beh. Bio. Cog. Emo. Gen. L/ 
E 

Phys. Soc. Sub. 

Adolescent Brain Cognitive 
Development Study (ABCD) 

21 sites across US 11,878 Longitudinal 9− 20 X X X X X X X X X X X X X X X 

Boston Adolescent 
Neuroimaging of Depression 
and Anxiety (BANDA) 

Greater Boston, MA 
area 

245 Both 14− 17 X X X X X X X  X X  X X  X 

Brazilian High Risk Cohort 
Study (BHRC) 

Porto Alegre and São 
Paulo, Brazil 

2,511 Longitudinal 6− 21 X X X X X  X X X X X X  X X 

Child Mind Institute Healthy 
Brain Network (HBN) 

Greater New York 
City, NY area 

2,092 Cross-sectional 5− 21 X X X X X X X X X X X X X X X 

The Generation R study Greater Rotterdam, 
Netherlands area 

9,749 Longitudinal 0− 16 X X X X X  X X X X X X X X  

IMAGEN study 8 sites across Western 
Europe 

2,000 Longitudinal 14− 22 X  X X X X X  X X X X   X 

Lifespan Human Connectome 
Project in Development (HCP- 
D) 

5 sites across US 1,344 Both 5− 21 X X X X X X X X X X X X X X X 

Nathan Kline Institute-Rockland 
Enhanced Sample (NKI-RS) 

Greater New York 
City, NY area 

1,495 Both 6− 85 X X X X X X X X X X X X X X X 

NIH MRI Study of Normal Brain 
Development 

6 sites across US 556 Longitudinal 0− 18 X X X  X  X X X X   X   

Pediatric Imaging, 
Neurocognition, and Genetics 
(PING) 

10 sites across US 1,493 Cross-sectional 3− 20  X X X X  X  X X X X X X X 

Philadelphia 
Neurodevelopmental Cohort 
(PNC) 

Greater Philadelphia, 
PA area 

9,267 Cross-sectional 8− 21 X X X X X X X  X X X X X  X 

Saguenay Youth Study (SYS) Saguenay Lac Saint- 
Jean region of 
Québec, Canada 

1,029 Cross-sectional 12− 18 X X X    X X X X X X X X X  
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skewed and prone to some of the same limitations as smaller individual 
studies. In addition, meta-analytical approaches of a given construct of 
interest often rely on studies with substantial variability in measures, 
exclusion criteria, or acquisition parameters, which can increase noise. 
On the other hand, consistent results from multiple studies using 
different measures for the same construct support the external validity 
and generalizability of the findings. Big datasets can ensure harmoni
zation of study design across sites and enhance statistical power. How
ever, there are clear trade-offs. Particularly when it comes to clinical 
developmental neuroscience, large-scale efforts may not have the flex
ibility to collect in-depth clinical batteries or to focus on patient pop
ulations to the same extent as smaller-scale, investigator-led studies. 
Thus, a balance of big data studies and meta-analyses of smaller indi
vidual studies will be important to continue to advance the field. 

4.2. Delineating age-related changes in large datasets 

Various large-scale cross-sectional studies allow for the examination 
of age-related neural patterns related to anxiety across a broad age 
range. Examples include multi-site studies such as the Lifespan Human 
Connectome Project Development (HPC-D) study (N > 1,300, ages 
5− 21, 5 sites; Somerville et al., 2018), which has data across imaging 
modalities, and the Pediatric Imaging, Neurocognition, and Genetics 
(PING) study (N > 1400, ages 3− 20, 10 sites; Jernigan et al., 2016), 
which includes structural, diffusion-weighted, and resting-state MRI. 
These studies are also well-suited for investigating premorbid or early 
correlates of anxiety, as they begin sampling in early childhood and the 
median age of onset for anxiety disorders onset is 11 (Kessler et al., 
2005). While large-scale longitudinal studies are less common, there are 
also a number of longitudinal studies with measures of anxiety. The 
ABCD Study represents the largest longitudinal study of neuro
development and contains measures of structural, diffusion-weighted, 
functional, and resting-state MRI (Casey et al., 2018). The large size 
(N > 11,000; 21 sites) of the ABCD Study and its long-term longitudinal 
follow-up across the second decade of life (Volkow et al., 2018) will be 
particularly valuable for mapping trajectories and examining temporal 
relationships between neural measures, anxiety, and variables across a 
broad range of other domains including cognition, physical health, 
culture, and environment. The longitudinal Generation R study con
ducted in the Netherlands (N > 9000) is particularly notable for its 
broad age range (birth-16 years of age), with some measures available as 

early as prenatally (Jaddoe et al., 2006). For later development, the 
IMAGEN study (N > 2,000; 8 sites) provides a range of imaging mea
sures across ages 14− 22 (Schumann et al., 2010). Though evidence 
suggests that adult templates of normalized brain space are largely 
acceptable for examining pediatric change (Burgund et al., 2002), in
vestigators may wish to consider using graded age-specific brain tem
plates for a more fine-grained examination of neurodevelopmental 
trajectories (e.g., Sanchez et al., 2012 for open-source templates span
ning 4.5–19.5 years of age in 6-month intervals). Taken together, these 
big data studies provide many opportunities to examine neuro
developmental trajectories associated with anxiety. 

4.3. Existing knowledge about anxiety-related trajectories from large 
datasets 

Big data studies have already begun to facilitate such contributions. 
In the structural domain, examination of cortical surface area and 
thickness in the PING dataset showed that higher levels of anxiety, 
specifically symptoms of generalized anxiety disorder, are associated 
with reduced global cortical thickness and lower cortical surface area of 
the vmPFC (Newman et al., 2016). Another study using the PING dataset 
did not find associations between anxiety symptoms and cortical 
thickness, surface area, or gray matter volume (Merz et al., 2018a). 
Notably, whereas Newman and colleagues specifically examined 
generalized anxiety, Merz et al. examined a sample characterized by any 
type of anxiety, suggesting that differences in brain structure associated 
with anxiety may differ based on subtype. Large datasets will be 
important for helping researchers to continue to map age-related 
structural changes associated with anxiety and to disentangle associa
tions between brain development and various dimensions of anxiety. In 
the functional domain, data from 1,129 youth in the Philadelphia 
Neurodevelopmental Cohort (PNC) have shown that some functional 
activation patterns during working memory, probed using a fractal 
n-back task, are associated with overall psychopathology, whereas 
anxiety symptoms in particular are associated with increased activation 
in the executive network (Shanmugan et al., 2016). These findings 
suggest that neural correlates of working memory, although often 
altered in many psychiatric conditions, exhibit some unique changes in 
pediatric anxiety. Extending this work, future research using large 
developmental cohorts should investigate functional trajectories asso
ciated with specific aspects of executive functioning that have been 

Table 2 
Prior pediatric anxiety research findings and remaining open questions that are well suited for investigation with big data.  

Domain Prior research Open questions 

Structural 
alterations  

• Reduced cortical thickness in GAD (Newman et al., 2016)  • How do differences in brain structure vary based upon anxiety subtype 
during childhood and adolescence? To what extent are these neural 
markers common across anxiety disorders or distinct as a function of 
diagnosis?  

• No cortical thickness differences observed in sample of any anxiety disorder (Merz 
et al., 2018a)  

• Greater amygdala volumes in anxious youth (De Bellis et al., 2000; Qin et al., 
2014; Schienle et al., 2011)  

• Are volumetric differences in the amygdala present in anxious youth? To 
what extent do these volumetric differences relate to function?  

• Reduced amygdala volumes in anxious youth (Milham et al., 2005; Mueller et al., 
2013; Strawn et al., 2015)  

• To what extent can trajectories of neurodevelopment accurately predict 
onset of anxiety? Are certain anxiety diagnoses better able to be 
predicted from neural bases? 

Functional 
alterations  

• vmPFC engagement during threat appraisal differs between anxious and non- 
anxious youth in an age-dependent manner (Britton et al., 2013a; Gold et al., 
2020)  

• How do age-related alterations in neural circuitry related to processes 
relevant to anxiety, such as threat learning, interact with the emergence 
of pediatric anxiety?  

• Anxious youth show altered functional connectivity between the amygdala and 
the medial (Kim et al., 2011), dorsolateral (Prater et al., 2013), and ventrolateral 
(Monk et al., 2008) prefrontal cortex in response to emotional stimuli  

• Are alterations in connectivity between the amygdala and prefrontal 
regions causally related to anxiety symptomatology or hypervigilance to 
negative emotion?  

• Anxious youth show aberrant functional connectivity between the amygdala and 
insula (White et al., 2017), amygdala and ventrolateral prefrontal cortex (Monk 
et al., 2008), and rostrodorsal ACC and hippocampus/parahippocampus (Price 
et al., 2014) during attentional threat bias tasks  

• How does aberrant connectivity between these regions mechanistically 
support attentional bias to threat?  

• How do neural markers of anxiety derived from task and resting-state 
fMRI data relate to one another, and how might this change across 
development?  

• Age discontinuities in anxiety disorders may occur based on the biological state of 
specific neural circuits and the psychological processes in which they are engaged 
(Gold et al., 2020)  

• To what extent do neural correlates and mechanisms related to anxiety 
remain consistent or shift across development?  
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strongly associated with anxiety disorders, such as inhibitory control. 
To this end, large longitudinal studies can additionally play a pivotal 

role in mapping developmental trajectories of neural function related to 
processes that are implicated in anxiety disorders, such as threat 
learning and emotional reactivity. In particular, they may help reconcile 
inconsistent findings in the extant literature related to potential neuro
developmental differences in anxiety. For example, the longitudinal 
BANDA study is taking a big data approach to examine functional tra
jectories related to emotional reactivity, in addition to responsiveness to 
reward and cognitive control, and their associations with depression and 
anxiety symptomatology. The study employs tasks shown, through 
smaller studies, to elicit process-specific neural changes linked to anxi
ety and depression. Specifically, the BANDA study uses the Emotion 
Processing Task (EPT) to examine emotional reactivity, the Incentive 
Processing Task to probe responsiveness to reward, and the Emotion 
Interference Task to investigate cognitive control. From this research, 
longitudinal functional imaging data from the EPT, for example, can be 
used to test whether functional patterns of activation during emotional 
reactivity differentially predict changes in anxiety versus depressive 
symptomatology later in adolescence (Hubbard et al., 2020). Taken 
together, these examples indicate some of the ways that large datasets 
can be used to delineate process-specific neurodevelopmental trajec
tories specific to and predictive of anxiety disorders. 

4.4. Mapping risk for anxiety with large datasets 

Large-scale longitudinal studies, in particular, have an essential role 
in examining specific risk factors that have been closely linked with the 
development of anxiety disorders. It is particularly important to study 
risk factors over time in order to examine potential pathways to the 
development of anxiety disorders. Both large-scale, multi-site studies as 
well as more circumscribed investigator-led studies offer great potential 
for investigating potential links between risk factors, such as early 
temperament, and neurodevelopment associated with future anxiety 
diagnoses. Behavioral inhibition (BI), is a temperamental trait charac
terized by hypervigilance to threat and novelty, which has been asso
ciated with increased risk for anxiety disorders (Liu and Pérez-Edgar, 
2019; Pérez-Edgar and Guyer, 2014). The Temperament Over Time 
Study first screened children at four months of age and has continued to 
follow children selected for high reactivity to novel stimuli, as well as an 
unselected control group, across development (Hane et al., 2008). 
Through such longitudinal studies, BI has been associated with alter
ations in frontolimbic function such as greater dorsolateral PFC activa
tion in children directing attention away from threat (Fu et al., 2017) 
and greater amygdala activation in adolescents attending to subjective 
fear (Pérez-Edgar et al., 2007). Longitudinal neuroimaging of neonates 
revealed that functional connectivity profiles in default mode and 
ventral attention networks are associated with BI in toddlers (Sylvester 
et al., 2018a), highlighting the feasibility of examining neural processes 
associated with risk for anxiety very early in life. Characterizing tra
jectories of BI and related traits such as shyness (Sylvester et al., 2018b) 
in big datasets will be particularly helpful for assessing continuous 
variation (i.e., across a broad range from normative to extreme levels) in 
risk factors for anxiety. Sex differences may also confer variability in risk 
for anxiety disorders, as evidence from the PNC dataset suggests that 
elevated perfusion in the amygdala during adolescence mediates higher 
trait anxiety in postpubertal female participants relative to male par
ticipants (Kaczkurkin et al., 2016). 

Furthermore, studies employing large shared datasets have already 
made several contributions to identifying potential etiological in
fluences, such as genetic factors or environmental exposures, that may 
increase risk for anxiety at specific developmental stages. Paralleling 
cross-species evidence in rodents, data from the PING study showed that 
the impact of genetic variation related to endocannabinoid signaling on 
frontolimbic structural connectivity and anxiety emerges during 
adolescence (Gee et al., 2016). Also in the PING study, Newman et al. 

found that associations between symptoms of generalized anxiety and 
reduced cortical thickness/surface area are stronger in childhood and 
early adolescence than in late adolescence or young adulthood (New
man et al., 2016). In the domain of environmental factors, another study 
utilizing the PING dataset showed that an association between lower 
family income and parental education with smaller amygdala volume is 
specific to adolescence, and not observed in childhood, and that lower 
parental education is associated with higher levels of anxiety and 
depression (Merz et al., 2018b). These age-specific structural findings 
underscore the need to conceptualize risk factors for anxiety in the 
context of trajectories, rather than as static elements, since some factors 
are associated with greater risk only at certain developmental stages. 
Furthermore, longitudinal neural evidence from the IMAGEN study has 
demonstrated that changes in putamen and caudate volumes during 
adolescence mediate the association between peer victimization and 
anxiety (Quinlan et al., 2018). These findings highlight deviations from 
normative brain development that are associated with potential risk 
factors for anxiety across a variety of domains and help to inform a more 
complete picture of how anxiety emerges. 

5. Limitations and future directions 

Though large datasets offer many advantages, important challenges 
remain (for a concise summary of advantages and disadvantages, please 
see Table 3). First, test-retest reliability of fMRI has been identified as a 
central concern and is poorer with longer durations between scans 
(Herting et al., 2018), making it difficult to isolate true developmental 
change in longitudinal studies that typically collect scans months or 
years apart. Selecting tasks with high behavioral reliability and validity, 
such as tasks of emotion processing (Gee et al., 2015; Haller et al., 2018), 
or tasks that are associated with reliable patterns of functional activa
tion, such as attentional bias toward threat (Britton et al., 2013b; White 
et al., 2016), at the stage of experimental design may be particularly 
useful for imaging studies. In addition, longitudinal designs may help in 
assessing the voxel-wise reliability of task effects to isolate true devel
opmental change from fluctuation in the blood-oxygen-level-dependent 
(BOLD) signal due to noise (e.g., Britton et al., 2013b; van den Bulk 
et al., 2013; White et al., 2016). Reporting individual task reliability to a 
common platform to facilitate selection of tasks that have higher reli
ability at the design stage has emerged as one proposed initiative to 
address this challenge (Herting et al., 2018). Second, the detection of 
very small effect sizes is more likely in large studies; however, these 

Table 3 
Key advantages and challenges of using big datasets to study pediatric anxiety.  

Key advantages of ‘big data’ to study 
pediatric anxiety 

Key limitations of ‘big data’ to study 
pediatric anxiety  

• Sample sizes can be orders of 
magnitude larger than is feasible for 
individual labs to collect  

• Sample sizes are large enough to 
detect small effects for some anxiety- 
relevant tasks  

• Higher statistical power is available to 
detect true effects  

• There is opportunity to replicate 
findings from previous smaller studies 
and to adjudicate inconsistent 
findings from the literature  

• Overlapping measures between some 
large datasets allow for testing 
replication of results  

• Broad domains of collected measures 
allow for comprehensive dimensional 
modeling of risk  

• Open access structures of many 
datasets allow for greater utility of 
collected data and promote 
replicability  

• Very small effects that can be detected 
by virtue of large sample sizes may not 
be clinically or biologically 
meaningful  

• Many datasets collect a community 
sample and may not include a 
sufficient number of individuals 
meeting diagnostic criteria for 
analyses that rely on diagnoses  

• Many big datasets are from a single 
geographic area, which may limit 
generalizability of findings  

• Large amounts of data require greater 
computational resources and skills  
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effects may not be biologically or clinically meaningful (Dick et al., 
2020; Smith and Nichols, 2018). Reporting effect sizes and confidence 
intervals alongside significant p-values in publications will allow for 
greater context and care in interpreting results (Dick et al., 2020). Third, 
despite some studies with large sample sizes, the number of youth who 
meet criteria for an anxiety disorder in a representative community 
sample that is not specifically ascertained based on clinical criteria is 
still limited. However, multi-site studies have proven to be effective and 
necessary for studies of conditions that are less common (Cannon et al., 
2008). Fourth, the storage and computational capacities needed to work 
efficiently with the volume of data captured in large datasets is by 
definition greater than resources typically required for individual lab 
studies. As such, additional funding may need to be allocated from de
partments or funding agencies to labs working with large datasets, 
specifically to support adequate storage, cluster computing cores, and 
computational training for personnel. Finally, capturing the breadth of 
measures obtained in many big data studies requires vast resources and 
researcher and participant time. Thus, it would be rare for a large-scale 
study to provide the depth of measures related to anxiety (e.g., clinical 
assessment, fMRI tasks) that is more typical of smaller-scale studies 
focused specifically on anxiety. As such, the nature of questions related 
to pediatric anxiety that can be addressed with traditional big data 
studies will be inherently somewhat circumscribed. 

Collecting neuroimaging data in clinical samples with protocols 
harmonized to those of large-scale studies of typically developing youth 
or community samples is a promising approach to extend the clinical 
utility of big data. An example of this approach is the BANDA study, in 
which the sampling strategy ensures that a large proportion of the 
sample will have an anxiety disorder, the assessment battery provides 
additional depth to focus on anxiety, and the overall protocol is 
harmonized to the HCP-D study to facilitate comparison. Collaborations 
that pool data across smaller investigator-led studies may also help to 
bridge the gap between traditional big data and isolated studies. For 
example, while consortium-based collaborations may be ideally situated 
to capture general measures with robust samples, collaborations among 
a smaller group of investigators might be better positioned to probe 
more nuanced or exploratory measures related to anxiety and to study 
even more specialized populations, such as treatment-seeking anxious 
youth. Increased investment and attention to such research efforts can 
therefore address some of the challenges that accompany investigating 
neurodevelopmental trajectories associated with clinical phenomena in 
big data studies. 

Ongoing research with big data will play a central role in delineating 
neurodevelopmental trajectories associated with anxiety, including by 
more rigorously testing hypotheses that have been generated in smaller- 
scale and cross-sectional studies, and by helping to resolve inconsistent 
findings. As longitudinal large datasets typically track symptom severity 
and clinical presentation in an observational manner, the knowledge 
gained can be best applied in a complementary fashion to smaller studies 
or clinical trials researching treatment as a primary independent vari
able. Moreover, this work ultimately has important clinical implications 
that include enhancing early identification of risk, identifying novel 
treatment targets, and informing efforts to optimize the efficacy of 
evidence-based treatments (Cohodes and Gee, 2017). Although current 
evidence-based treatments (namely cognitive behavioral therapy (CBT) 
and selective serotonin reuptake inhibitors (SSRI)) can be highly effec
tive treatments for pediatric anxiety, up to 50% of clinically anxious 
children and adolescents do not respond sufficiently to these in
terventions (Ginsburg et al., 2018; Walkup et al., 2008). Given dynamic 
changes in brain maturation, the mechanisms underlying anxiety and 
optimal approaches for intervention are likely to differ across develop
ment. However, current treatments for clinically anxious youth, such as 
CBT, have been based largely on principles studied in adults (Lee et al., 
2014). Knowledge gleaned from big data studies regarding changes in 
frontolimbic circuitry and large-scale networks throughout childhood 
and adolescence could be leveraged to optimize interventions for 

pediatric anxiety disorders based on the biological state of the devel
oping brain (Casey et al., 2015). 

Furthermore, much remains unknown about how neural measures 
may predict the onset of anxiety disorders or treatment outcomes in 
youth. Existing studies have largely examined associations between 
neural measures at baseline and symptom reduction following treatment 
but have not tested prediction at the individual level or examined the 
extent to which neural measures are related to treatment outcomes over 
and above clinically observable phenomena. To have meaningful 
translational value, neural predictors must be tested in external samples 
and improve prediction relative to more readily obtained clinical and 
behavioral measures (Gabrieli et al., 2015). Evidence in adults suggests 
that neural measures may indeed enhance clinical prediction (Doehr
mann et al., 2013), and future research in youth will be important to 
replicate existing findings in larger samples and test their generaliz
ability. In addition to predicting response to a single treatment, future 
research that identifies neural markers that can improve differential 
prediction of how an individual may benefit from one treatment versus 
another (e.g., White et al., 2017) would be particularly useful for 
enhancing personalized medicine. International collaborations will be 
important for generalizable findings of global clinical relevance. The 
ENIGMA-Anxiety Database, a meta-analytical consortium containing 
many neuroimaging datasets from 16 countries across 5 continents 
(Bas-Hoogendam et al., 2020), is an excellent example of this approach 
on a global scale. Taken together, this burgeoning area of the field may 
play an important role in determining when and for whom different 
treatments for anxiety will be most effective, as well as informing novel 
approaches to optimize existing treatments based on mechanisms that 
will target specific stages of neurodevelopment. 

6. Conclusions 

Pediatric anxiety disorders place a major burden on public health. 
Given the early age of onset and chronic course when left unaddressed, 
there is a clear need to enhance early identification of risk for anxiety 
disorders in youth. Delineating neurodevelopmental trajectories asso
ciated with anxiety has the potential to increase understanding of risk at 
key times in childhood and adolescence. Large-scale cross-sectional and 
longitudinal studies can mitigate some of the limitations of smaller 
neuroimaging studies and increase the possibility of identifying robust 
and reproducible patterns of brain structure and function associated 
with anxiety symptomatology. In this review, we highlight early find
ings from big data studies that demonstrate how developmental 
neuroscience can employ best practices for reproducibility to identify 
neurodevelopmental trajectories associated with risk. Leveraging ad
vances in neuroscience and collaborative research thus offers a prom
ising pathway to addressing the immense burden of pediatric anxiety 
through a deeper understanding of trajectories of risk across 
development. 

Data statement 

To facilitate ease of access to researchers wishing to work with the 
datasets mentioned in the manuscript, links to descriptive papers for 
each dataset and links to the data repository (or instructions for 
accessing the data repository) for each dataset are provided. 

Adolescent Brain Cognitive Development (ABCD) Study 
Descriptive papers: Casey et al., 2018: https://doi.org/10.1016/j. 

dcn.2018.03.001 & Volkow et al., 2018: https://doi.org/10.1016/j. 
dcn.2017.10.002. 

Data repository/Instructions for accessing: https://nda.nih. 
gov/abcd. 

Boston Adolescent Neuroimaging of Depression and Anxiety 
(BANDA) 

Descriptive paper: Hubbard et al., 2020: https://doi.org/10.1016/j. 
nicl.2020.102240. 
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Data repository/Instructions for accessing: data soon to be made 
available on https://nda.nih.gov/; present study website https://banda. 
mit.edu/. 

Brazilian High Risk Cohort Study (BHRC) 
Descriptive paper: Salum et al., 2015: https://doi.org/10.1002 

/mpr.1459. 
Data repository/Instructions for accessing: https://osf.io/ktz5h. 
Child Mind Institute Healthy Brain Network (HBN) 
Descriptive paper: Alexander et al., 2017: https://doi.org/10. 

1038/sdata.2017.181. 
Data repository/Instructions for accessing: http://fcon_1000. 

projects.nitrc.org/indi/cmi_healthy_brain_network/. 
The Generation R Study 
Descriptive paper: Jaddoe et al., 2006: https://doi.org/10.1007/s10 

654-006-9022-0. 
Data repository/Instructions for accessing: https://generationr.nl/re 

searchers/collaboration/. 
IMAGEN Study 
Descriptive paper: Schumann et al., 2010: https://doi.org/10.1038/ 

mp.2010.4. 
Data repository/Instructions for accessing: https://imagen-europe. 

com/resources/imagen-dataset/. 
Lifespan Human Connectome Project in Development (HCP-D) 
Descriptive paper: Somerville et al., 2018: https://doi.org/10.10 

16/j.neuroimage.2018.08.050. 
Data repository/Instructions for accessing: https://www.human 

connectome.org/study/hcp-lifespan-development/data-releases. 
Nathan Kline Institute-Rockland Enhanced Sample (NKI-RS) 
Descriptive paper: Nooner et al., 2012: https://doi.org/10.3389/fni 

ns.2012.00152. 
Data repository/Instructions for accessing: http://fcon_1000.project 

s.nitrc.org/indi/enhanced/access.html. 
NIH MRI Study of Normal Brain Development 
Descriptive paper: Evans, 2006: https://doi.org/10.1016/j.neu 

roimage.2005.09.068. 
Data repository/Instructions for accessing: http://pediatricmri.nih. 

gov. 
Pediatric Imaging, Neurocognition, and Genetics (PING) 
Descriptive paper: Jernigan et al., 2016: https://doi.org/10.1016/j. 

neuroimage.2015.04.057. 
Data repository/Instructions for accessing: https://nda.nih. 

gov/edit_collection.html?id=2607. 
Philadelphia Neurodevelopmental Cohort (PNC) 
Descriptive paper: Satterthwaite et al., 2015: https://doi.org/10.10 

16/j.neuroimage.2015.03.056. 
Data repository/Instructions for accessing: https://www.ncbi.nlm. 

nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2. 
Saguenay Youth Study (SYS) 
Descriptive paper: Pausova et al., 2017: https://doi.org/10.1093/i 

je/dyw023. 
Data repository/Instructions for accessing: http://saguenay-youth- 

study.org/scientific-community/collaborative-interest/. 
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