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Conversion of carbon dioxide (CO2) into value-added fuels and chemicals can not only
reduce the emission amount of CO2 in the atmosphere and alleviate the greenhouse effect
but also realize carbon recycling. Through hydrogenation with renewable hydrogen (H2),
CO2 can be transformed into various hydrocarbons and oxygenates, including methanol,
ethanol, methane and light olefins, etc. Recently, metal-organic frameworks (MOFs) have
attracted extensive attention in the fields of adsorption, gas separation, and catalysis due
to their high surface area, abundant metal sites, and tunable metal-support interface
interaction. In CO2 hydrogenation, MOFs are regarded as important supports or sacrificed
precursors for the preparation of high-efficient catalysts, which can uniformly disperse
metal nanoparticles (NPs) and enhance the interaction between metal and support to
prevent sintering and aggregation of active metal species. This work summarizes the
recent process on hydrogenation of CO2 to methanol, methane and other C2+ products
over various MOFs-based catalysts, and it will provide some dues for the design of MOFs
materials in energy-efficient conversion and utilization.
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INTRODUCTION

Due to the rapid consumption of fossil resources, e.g., coal, petroleum, and natural gas, a large
number of CO2 have been released into the atmosphere (Song, 2006). From 2006 to 2021, the global
CO2 concentration in the atmosphere has been elevated from 381 to 415 ppm (NOAA, 2022). The
massive emission of CO2 has brought serious environmental problems, such as global climate change
and ocean acidification (Valles-Regino et al., 2015). Hence, reduction of CO2 amount and mitigation
of greenhouse effect are the major challenges faced by the whole human society.

Regardless of this, CO2 is an important C1 platform molecule. Conversion of CO2 through
sustainable catalytic processes into valuable chemicals and clean fuels is a promising way for CO2

utilization which could promote a circular carbon economy (Srinivas et al., 2014; Didas et al., 2015;
Porosoff et al., 2016; Rafiee et al., 2018). CO2 conversion can be achieved by electro-catalysis, photo-
catalysis, and thermal-catalysis processes. Electro-catalysis or photo-catalysis from clean and
renewable electrical or solar energy is regarded as an important route for CO2 reduction
reaction (CO2 RR). Through the rational design of high efficient catalysts, these reactions can be
performed under relatively mild conditions that considerably decrease the energy consumption (Liu
et al., 2012; Handoko et al., 2013; Jhong et al., 2013; Wang et al., 2015; Perathoner and Centi, 2019;
Wang J.-J. et al., 2021; Zhang et al., 2021; Zhang et al., 2022a). Nevertheless, the electro-catalysis or
photo-catalysis for CO2 conversion is time or geographically dependent, which, thus, decreases their

Edited by:
Haifeng Xiong,

Xiamen University, China

Reviewed by:
Shunji Xie,

Xiamen University, China
Zupeng Chen,

Nanjing Forestry University, China

*Correspondence:
Sen Wang

wangsen@sxicc.ac.cn
Weibin Fan

fanwb@sxicc.ac.cn

Specialty section:
This article was submitted to

Catalytic Reactions and Chemistry,
a section of the journal
Frontiers in Chemistry

Received: 30 May 2022
Accepted: 15 June 2022
Published: 18 July 2022

Citation:
Zhang Q, Wang S, Dong M and Fan W
(2022) CO2 Hydrogenation on Metal-
Organic Frameworks-Based Catalysts:

A Mini Review.
Front. Chem. 10:956223.

doi: 10.3389/fchem.2022.956223

Frontiers in Chemistry | www.frontiersin.org July 2022 | Volume 10 | Article 9562231

MINI REVIEW
published: 18 July 2022

doi: 10.3389/fchem.2022.956223

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.956223&domain=pdf&date_stamp=2022-07-18
https://www.frontiersin.org/articles/10.3389/fchem.2022.956223/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.956223/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.956223/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.956223/full
http://creativecommons.org/licenses/by/4.0/
mailto:wangsen@sxicc.ac.cn
mailto:fanwb@sxicc.ac.cn
https://doi.org/10.3389/fchem.2022.956223
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.956223


economic viability. Compared to the former two manners, the
thermal catalytic conversion of CO2 shows higher efficiency and it
is more potential for industrial application. Since the CO2

molecule is thermodynamically stable and kinetically inert, the
activation of the C=O bond in CO2 needs to overcome a high
energy barrier. Renewable hydrogen (H2) generated from
photolysis or electrolysis of water has high energy density and
it can effectively reduce CO2. Thus, hydrogenation of CO2 into
high-value hydrocarbons and oxygenates, including methane
(CH4), methanol (CH3OH), ethanol (C2H5OH), and light
olefins (C2

=-C4
=), has received increasing research interest

(Sha et al., 2020).
The catalytic system for CO2 hydrogenation mainly consists of

metal sites and support, including metal oxide/carbide, zeolite,
graphene, and so on. Coperet and co-workers prepared zirconia-
supported copper nanoparticles (NPs), which showed methanol
selectivity of 75% (Larmier et al., 2017). Encapsulation of Cu NPs
in Beta zeolite elevates ethanol selectivity and space-time yield
(STY) to ~ 100% and 398 mg gcat

−1 h−1 (Ding et al., 2020). Highly
selective conversion of CO2 into light olefins, aromatics,
gasolines, and diesel was also achieved over metal oxides/
zeolites bifunctional catalysts (Gao et al., 2017; Wang Y. et al.,
2018; Zhou et al., 2019; Wang S. et al., 2020; Wei et al., 2021;
Zhang et al., 2022b; Wang et al., 2022). In general, improvement
of metal site dispersion and modulation of metal-support
interaction can increase CO2 conversion and product selectivity.

In recent years, metal-organic frameworks (MOFs) have been
considered important host materials in adsorption, gas separation
and catalysis processes, due to their large surface area, abundant
metal sites, and three-dimensional (3D) porous structure (Kumar
et al., 2017; Guntern et al., 2021). MOFs are composed of metal-
oxygen clusters serving as secondary building units (SBUs) that
are connected by the organic ligands (Ranocchiari and Bokhoven,
2011; Chavan et al., 2012). The cages and the missing linker
defects in MOFs are ideal places for confining ultra-small metal
NPs, thus, inhibiting the sintering and aggregation of active sites
(An et al., 2017; Zhao et al., 2018; Abdel-Mageed et al., 2019; Hu
et al., 2019; Zhu et al., 2020; Yu et al., 2021). The metal-support
interaction can be adjusted by controlling the pyrolysis of nodes
and linkers in MOFs (Furukawa et al., 2010; Abdel-Mageed et al.,
2019; Wang, 2022). This work gives a short review about the
recent progress on the application of MOFs-based catalysts in
CO2 hydrogenation to methanol, methane, and some C2+

products. Synthesis and structural regulation of MOFs
materials have been reviewed in many other literatures
(Eddaoudi et al., 2002; Cavka et al., 2008; Wang C. et al.,
2018; Usman et al., 2021).

CO2 Hydrogenation to Methanol
Methanol is an important platform compound in the chemical
industry, and it can be transformed into commodity olefins,
aromatics, formaldehyde, and longer-chain alcohols (Liu et al.,
2018; Yarulina et al., 2018). Considering the unique features role
of methanol in energy conversion, a concept of “methanol
economy” was proposed by Olah and co-workers (Goeppert
et al., 2014). Hydrogenation of CO2 to methanol is described
as the following Equation 1

CO2 + 3H2 � CH3OH +H2O ΔH298K � −49.3kJ/mol (1)
Although CO2 hydrogenation to methanol is exothermic, the

activation of O=C=O bond requires to overcome a high energy
barrier that makes operating temperature generally as high as
240–300°C (Murthy et al., 2021). An increase in reaction
temperature not only accelerates competitive reverse water-gas
shift (RWGS) reaction (Equation 2) and produces more CO but
also induces sintering and aggregation of active metal NPs.

CO2 +H2 � CO +H2O ΔH298K � 41.1kJ/mol (2)
One efficient method to improve the sintering resistance of

active metal species is the enhancement of metal-support
interface interaction through confining ultrasmall metal NPs
within the pores or cages of MOFs. Yaghi and co-workers
prepared the catalyst with the single Cu nanocrystal
encapsulated in the cage of UiO-66 (Cu@UiO-66); Cu@UiO-
66 shows 100%methanol selectivity, and 8 times higher yield than
Cu/ZnO/Al2O3 in CO2 hydrogenation (Rungtaweevoranit et al.,
2016). It suggests that the strong interaction between Cu
nanocrystal and Zr-based SBUs of UiO-66 effectively stabilizes
Cu active sites. Anchoring Cu NPs into the missing-linker defects
of UiO-66 considerably enhances the interaction of metallic Cu
with Zr6O8 nodes of UiO-66. It is found that the isolated Cu can
only produce CO via RWGS reaction, whereas Cu NPs anchored
on the Zr6O8 nodes generates larger numbers of Cu-O-Zr
interface sites that show higher activity for methanol synthesis
(Figure 1A) (Zhu et al., 2020). An and co-workers reported that
the organic coordinating groups in MOFs play a vital role in
stabilizing metal NPs (An et al., 2017). The ultra-small Cu/ZnOx

NPs are in situ generated through the reduction of frameworks
Cu2+ and Zn2+ ions in Zr6 clusters of UiO-bpy (2,2-bipyridine)
MOF (Figure 1B). The strong interaction between Cu/ZnOx NPs
and bpy moieties in MOFs prevents the phase separation of Cu/
ZnOx. Thus, the prepared Cu/ZnOx@MOFs catalyst shows
methanol selectivity of 100% in CO2 hydrogenation, with the
STY as high as 2.59 gMeOH kgCu

−1 h−1. It should be noticed that
although these MOF catalysts have been widely used in CO2

hydrogenation, they usually need to be carried out at a relatively
low temperature, because of their low thermal/hydrothermal
stability. It is found that the organic ligands in MOF
decompose easily at the high reaction temperature, causing the
collapse of the pore structure and the decrease of catalytic activity.

Another way to enhance the metal-support interaction is to
pyrolyze the metal-loaded MOF precursors in an inert
atmosphere. Liu and co-workers fabricated a stable Cu@ZrOx

catalyst via in situ treatment of Cu/UiO-66 in H2 flow at different
temperatures (Liu et al., 2019). Cu@ZrOx possesses abundant Cu-
ZrOx interfaces and a stable 3D ZrOx framework that leads to the
formation of more Cu+ species on the surface of ZrO2. As a result,
CO2 hydrogenation to methanol is significantly improved via
forming more formate and methoxy intermediates. An inverse
ZnO/Cu catalyst with closer proximity to ZnO-Cu interface was
prepared by Hu and co-workers through directly calcining Cu@
ZIF-8 (Hu et al., 2019). It is shown that the small ZnO NPs on the
surface of Cu promote the formation of methanol in CO2

hydrogenation. HKUST-1 was used as the Cu source to
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prepare the ZrO2@HKUST-1 core-shell precursor via one-step
hydrothermal method. Upon calcination and reduction, the Cu
nanoclusters are highly dispersed on ZrO2, forming strong Cu-
ZrO2 interface interaction. This nano Cu-ZrO2 catalyst gives a
methanol space-time yield (STY) of about 5.2 times higher than
that of the sample obtained by the traditional impregnation
method (Yu et al., 2021).

Besides Cu-based catalysts, other metals-loaded MOFs have
been developed for CO2 hydrogenation to methanol. Yin and co-
workers embedded ultrasmall Pd crystals into ZIF-8 and further
pyrolyzed them into PdZn alloy after calcination under airflow
(Yin et al., 2018). The strong interface interaction between PdZn
and ZnO not only prevents the aggregation of metal sites but also
leads to the formation of more oxygen defects, thereby enhancing
catalytic activity and stability of PdZn catalyst in CO2

hydrogenation to methanol. Co3O4 coated by amorphous
In2O3 shell was synthesized through decomposition of In-
modified ZIF-67(Co) (Pustovarenko et al., 2020). Co3O4/In2O3

core-shell catalyst exhibits a maximum methanol STY of
0.65 gMeOH gcat

−1 h−1 over 100 h time on stream. Olsbye and
co-workers (Gutterod et al., 2019) encapsulated Pt NPs into the
octahedral cavity of UiO-67. The Pt-embedded UiO-67 produces
more methanol but less methane in CO2 hydrogenation than the
Pt/C, Pt/SiO2 and Pt/Al2O3 at 170°C and 1–8 bar. It is shown that
the interface between Pt NPs and linker-deficient Zr6O8 nodes is

the main site for methanol formation. A decrease in missing-
linker defects lowered the methanol formation rate (Gutterød
et al., 2020). Introduction of H2O is beneficial to increase in
methanol selectivity, due to the facilitation of methanol
desorption. The catalytic results of some MOFs-based catalysts
in CO2 hydrogenation to methanol are summarized in Table 1.

CO2 Hydrogenation to Methane
Methane (CH4) is the main component of natural gas and it is
also an important building block in the chemical industry, and
can be further transformed into downstream products such as
ethyne and ammonia (Bai et al., 2008; Sha et al., 2020).
Hydrogenation of CO2 to CH4 provides an alternative solution
to alleviated methane market shortage (Qin et al., 2017).
Although CO2 methanation is a strongly exothermic reaction
(Equation 3), it is always operated at high temperatures because
of the kinetic limitation.

CO2 + 4H2 � CH4 + 2H2O ΔH298K � −165.0kJ/mol (3)
Supported ruthenium (Ru), rhodium (Rh), nickel (Ni), and

cobalt (Co) catalysts are commonly used, as their high activity in
CO2 hydrogenation. Strong metal-support interaction (SMSI)
improves the dispersion of metal species and the stability of
catalyst. Using SMSI to mediate the catalytic behavior of
supported metal species is of significance in CO2

FIGURE 1 |CO2 hydrogenation over various MOFs-based catalysts. (A) Interface bonding of sub-nanometer Cu clusters with Zr6O8 nodes over Cu/UiO-66 and its
catalytic results in CO2 hydrogenation to methanol. Reproduced with permission from Zhu et al. (2020). Copyright 2020 Springer Nature. (B) The Cu/ZnOx NPs
embedded UiO-bpy and its catalytic results in CO2 hydrogenation to methanol. Reproduced with permission from An et al. (2017). Copyright 2017 American Chemical
Society. (C) Structural evolution in the decomposition process of Ru/UiO-66 and its catalytic results obtained material for CO2 hydrogenation to CH4. Reproduced
with permission from Lippi et al. (2017). Copyright 2017 Royal Society of Chemistry. (D) Fe/C-K catalyst fabricated through decomposition of Basolite F300 MOF and its
catalytic results obtained material for CO2 hydrogenation to CH4. Reproduced with permission from Ramirez et al. (2018). Copyright 2018 American Chemical Society.
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hydrogenation. MOFs are believed as promising supports or
sacrificed templates, as they can promote active metal species
dispersion and enhance the metal-support interaction.

Mihet and co-workers encapsulated Ni into MIL-101 (Ni@MIL-
101) using the impregnation method. The high surface area
(2,497 m2 g−1) and pore volume (1.75 cm3 g−1) of Ni@MIL-
101 make the Ni particles highly dispersed in MIL-101 which
enhances the adsorption and activation of CO2. With such a
catalyst, CO2 conversion reaches 56.4%, with CH4 selectivity of
91.6% at 320°C and gas hourly space velocity (GHSV) of
4,650 ml g−1 h−1 (Mihet et al., 2019). Ni@MOF-5 shows higher
Ni dispersion due to a larger surface area (2,961m2 g−1) and thus
resulting in higher CO2 conversion and CH4 selectivity of 75.1 and
~100% respectively at 300°C, 1 atm and GHSV of 2000ml g−1 h−1

(Zhen et al., 2015). In addition, the metal-support interaction is also
enhanced by anchoringNi onMOFs. Zhao and co-workers prepared
a series of UiO-66-supported Ni-based catalysts using impregnation
and reduction methods (Zhao et al., 2018). Encapsulation of
ultrasmall Ni particles in UiO-66 can increase the interface
interaction of Ni with UiO-66 support, which, hence, inhibits the
sintering of Ni species. The prepared 20%Ni@UiO-66 exhibits CO2

conversion of 57.6% and CH4 selectivity of 100% in CO2

hydrogenation. Interestingly, no significant deactivation was
observed even after a reaction of 100 h.

Lippi and co-workers investigated the structural evolution in
the decomposition process of metal-loaded MOFs (Lippi et al.,
2017; Lippi et al., 2021). The 3D framework of Ru-impregnated
UiO-66 (Ru/UiO-66) gradually collapsed under CO2

methanation conditions to form amorphous C and Zr
containing phase structure, which is then transformed into
tetragonal ZrO2(t) and finally into more stable monoclinic
ZrO2(m) (Figure 1C). The structure and morphology of
catalyst can be precisely controlled by altering the treatment
conditions during MOFs decomposition. The Ru/ZrO2(m) is a
highly active and stable CO2 methanation catalyst and it gives the

CO2 conversion of 96% and CH4 selectivity of 99% at 350°C and
5 bar. The catalytic results of reported MOFs-based catalysts for
CO2 hydrogenation to CH4 was shown in Table 1.

CO2 Hydrogenation to C2+ Products
Conversion of CO2 to C2+ products, such as alcohol, olefins and
aromatics, is highly desirable but remains a greater challenge than
to C1 compounds due to the high C-C coupling barrier (Guo
et al., 2018; Wei et al., 2021). Although CO2 hydrogenation to
ethanol, light olefin, or aromatic is exothermic (Equations 4–6),
relatively high temperature and pressure are always necessary for
the activation of CO2 molecules.

2CO2 + 6H2 � C2H5OH + 3H2O ΔH298K � −173.3kJ/mol (4)
2CO2 + 6H2 � C2H4 + 4H2O ΔH298K � −127.9kJ/mol (5)
6CO2 + 15H2 � C6H6 + 12H2O ΔH298K � −457.9kJ/mol (6)
Recently, some researchers suggested that direct pyrolysis of

metal-loaded MOFs in an inert atmosphere can generate various
metal-carbides, in which the metal NPs are closely confined in the
carbon porous materials to achieve strong metal-support interaction
and avoid aggregation of active sites. Tsubaki and co-workers
designed the K-CuZnAl and Na-Fe@C composite catalyst. This
catalyst enhances the ethanol selectivity as high as 35.0% and CO2

conversion of 39.2%, at 350°C and 5.0MPa in CO2 hydrogenation
(Wang Y. et al., 2021). The K-CuZnAl activates CO2 to form
methanol and CO, and Na-Fe@C promotes the C-C coupling,
with Na-Fe@C obtained from the pyrolysis of Fe-based MOFs
under N2 flow. The carbon matrix effectively prevents Fe
sintering and achieves the uniform dispersion of Fe active sites.

The hydrogenation of CO2 to olefins is a potential way of
achieving a sustainable carbon cycle. It is generally performed via
a two-step process on Fe-based catalysts: CO2 is firstly converted
to CO via RWGS reaction, and then CO is hydrogenated to
olefins via Fischer-Tropsch synthesis (FTS) reaction (Yang et al.,

TABLE 1 | Summary performance of catalysts for CO2 hydrogenation reaction.

Catalysts Main
Product

H2/CO2

Ratio
T

(oC)
P

(MPa)
Loading
(Wt%)

XCO2

(%)
Selectivity

(%)
STY (g
kgcat

−1

h−1)

TOS
(h)

Ref

Cu-UiO-66 Methanol 3:1 175 1 1.0 1 100 — — Rungtaweevoranit et al. (2016)
Cu/UiO-66 Methanol 3:1 250 3.2 1.4 - 29.6 679.76 50 Zhu et al. (2020)
Cu@3D-ZrOx Methanol 3:1 260 4.5 12.4 13.1 78.8 796 105 Liu et al. (2019)
Cu/ZnOx@UiO-66 Methanol 3:1 250 4 5.9 4.3 87 28.3 100 Yang et al. (2021)
Cu/ZnOx@UiO-bpy Methanol 3:1 250 4 6.9 3.3 100 37.5 100 An et al. (2017)
Cu-ZrO2(ZrO2@
HKUST-1)

Methanol 3:1 220 3 11 6.8 64.4 287.9 16 Yu et al. (2021)

ZnO/Cu(Cu@ZIF-8) Methanol 3:1 260 4.5 57.6 — — 933 76 Hu et al. (2019)
PdZn (Cu@ZIF-8) Methanol 3:1 270 4.5 — 14 55 650 50 Yin et al. (2018)
In2O3/Co3O4(In@
ZIF-67)

Methanol 3:1 300 5 — — 87 650 100 Pustovarenko et al. (2020)

Ni@MIL-101 Methane 8:1 320 0.1 10 56.4 91.6 — 10 Mihet et al. (2019)
Ni@MOF-5 Methane 4:1 320 0.1 10 75.1 100 — 100 Zhen et al. (2015)
Ni@UiO-66 Methane 3:1 300 — 20 57.6 100 — 100 Zhao et al. (2018)
Ru/UiO-66 Methane 4:1 350 0.5 1.0 96 99 — — Lippi et al. (2017)

K-CuZnAl + Na-Fe@C Ethanol 3:1 350 5 — 39.2 35 — 50 Wang Y. et al., 2021
Fe/C-K (Basolite F300) Olefins 3:1 320 3 — 40 ~40 — 50 Ramirez et al. (2018)
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2017; De et al., 2020). Ramirez and co-workers prepared the Fe/
C-K catalyst through the decomposition of Basolite F300 MOF
under N2 atmosphere (Ramirez et al., 2018). It shows good
catalytic performance for CO2 hydrogenation to olefins; CO2

conversion and C2
=-C4

= STY reach 40% and 33.6 mmol gcat
−1

h−1 at 320°C and 3 MPa (Figure 1D). The uniform distribution of
Fe active sites is considered effectively promote RWGS and FTS
reactions.

Similarly, Li and co-workers fabricated ZnZrOx@C catalyst with
three-dimensional (3D) hierarchical structure through carbonization
of Zn-modified UiO-66 (Wang Y. et al., 2020). The introduction of
Zn into the synthesis gel of UiO-66 induces the formation of more
defects due to the substitution of Zn for Zr. Upon coupling with
H-ZSM-5 zeolite, it affords the selectivity of aromatics in
hydrocarbons as high as 73.1%, CH4 is decreased to 3.4%.
Compared with possesses traditional ZnZrOx oxides, ZnZrOx@C
catalyst formed by the carbonization of defective MOFs owns richer
surface vacancies, and hence, shows higher CO/CO2 conversion due
to their strong adsorption. In addition, the 3D hierarchical carbon
framework structure facilitates the diffusion of products, thus,
avoiding secondary reactions and elevating the proportion of
benzene, toluene, and xylene (BTX) in aromatics.

DISCUSSION

Metal-organic frameworks (MOFs) are burgeoning porous
materials and they are widely used in adsorption, separation,
and catalysis processes due to their unique pore structure,
versatile compositions, and large surface area. The cages and
the missing-linker defects in MOFs provide ideal places for
encapsulating or anchoring metal nanoparticles, thereby
preventing the sintering and aggregation of active sites.
Nevertheless, MOFs are also important sacrificed templates for
the preparation of high-efficient metal oxides or carbides. Some
MOFs derived metal@C were designed, and exhibited high

catalytic performance in CO2 hydrogenation to methanol,
methane, and other C2+ products, due to high dispersion of
active sites and strong metal-support interaction.

Despite that MOFs as supports or catalysts have received
extensive attention and they show superior catalytic activity
and product selectivity in CO2 hydrogenation, however, the
much lower thermal and hydrothermal stability of MOFs than
SiO2, Al2O3, and zeolites limits the applications in many
industrial processes. This is because the organic ligands are
nearly impossible to resist high temperature or their facile
pyrolysis character. Nevertheless, there are potential candidates
for preparing highly dispersed oxide-supported metal catalysts
with strong metal-support interaction.
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