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Abstract: Coherent neuronal activity is believed to underlie the transfer and processing of information
in the brain. Coherent activity in the form of synchronous firing and oscillations has been measured
in many brain regions and has been correlated with enhanced feature processing and other sensory
and cognitive functions. In the theoretical context, synfire chains and the transfer of transient
activity packets in feedforward networks have been appealed to in order to describe coherent
spiking and information transfer. Recently, it has been demonstrated that the classical synfire chain
architecture, with the addition of suitably timed gating currents, can support the graded transfer of
mean firing rates in feedforward networks (called synfire-gated synfire chains—SGSCs). Here we
study information propagation in SGSCs by examining mutual information as a function of layer
number in a feedforward network. We explore the effects of gating and noise on information transfer
in synfire chains and demonstrate that asymptotically, two main regions exist in parameter space
where information may be propagated and its propagation is controlled by pulse-gating: a large
region where binary codes may be propagated, and a smaller region near a cusp in parameter space
that supports graded propagation across many layers.

Keywords: pulse-gating; channel capacity; neural coding; feedforward networks; neural information
propagation

1. Introduction

Faithful information transmission between neuronal populations is essential to computation
in the brain. Correlated spiking activity has been measured experimentally between many brain
areas [1–8]. Experimental and theoretical studies have shown that synchronized volleys of spikes
can propagate within cortical networks and are thus capable of transmitting information between
neuronal populations on millisecond timescales [9–17]. Many such mechanisms have been proposed for
feedforward networks [14,15,17–23]. Commonly, mechanisms use transient synchronization to provide
windows in time during which spikes may be transferred more easily from layer to layer [14,15,17–22].

For instance, the successful propagation of synchronous activity has been identified in “synfire
chains” [18,19,21,24,25], wherein volleys of transiently synchronous spikes can be propagated through
a predominantly excitatory feedforward architecture. Studies have shown that synchronous spike
volleys can reliably drive responses through the visual cortex [13] with the temporal precision required
for neural coding [26,27]. However, only sufficiently strong stimuli can elicit transient spike volleys
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that can successfully propagate through the network, and the waveform of spiking tends to an attractor
with a single, fixed amplitude [21,28]. Thus, it is not possible to transfer graded information in the
amplitudes of synchronously propagating spike volleys in this type of synfire chain.

Nonetheless, recent work has shown that synfire chains may be used as a pulse-gating
mechanism coupled with a parallel “graded” chain (“synfire-gated synfire chain”—SGSC) to transfer
arbitrary firing-rate amplitudes (graded information) through many layers in a feedforward neural
circuit [14–17]. The addition of a companion gating circuit additionally provides a new mechanism
for controlling information propagation in neural circuits [14–17]. Within a feedforward network,
graded-rate transfer manifests as approximately time-translationally invariant spiking probabilities
that propagate through many layers (guided by gating pulses) [17]. Using a Fokker–Planck (FP)
approach, it has been demonstrated that this time-translational invariance arises near a cusp
catastrophe in the parameter space of the gating current, synaptic strength and synaptic noise [17].

While many researchers have studied the dynamics of activity transmission in feedforward
networks [21,23,25,29], few have examined these networks as information channels (however, see [30]).
Shannon information [31,32] provides a natural framework with which to quantify the capacity
of neural information transmission, by providing a measure of the correlation between input and
output variables.

In particular, mutual information (MI), and measures based on MI, can be used to evaluate the
expected reduction in entropy, for example, of the input, from the measurement of the output. Much
work has focused on estimating probability distributions from spiking data (see, e.g., [33–38]). At
the circuit level, studies have shown that MI is maximized in balanced networks (in cortical cultures,
rats and macaques) that admit neuronal avalanches [39,40]. Furthermore, by examining the effects of
gamma oscillations on MI in infralimbic and prelimbic cortex of mice, it has been shown that gamma
rhythms enhance information transfer by reducing noise and signal amplification [7].

Theoretically, maximizing MI has been used to find nonlinear “infomax” networks [41] that can
find statistically independent components capable of separating features in the visual scene [42]. MI has
been used to assess the effectiveness and precision of population codes [43]. By combining decoding
and MI, one can extract single-trial information from population activity and, at the same time,
a quantitative estimate of how each neuron in the population contributes to the internal representation
of the stimulus [44]. Furthermore, information-theoretic measures such as MI have been used on
large-scale measurements of brain activity to estimate connectivity between different brain regions [45].

Here we consider information propagation properties in feedforward networks, and in particular,
examine MI of mean firing-rate transfers across many layers of an SGSC neural circuit. We make
use of an FP model to describe the dynamic evolution of membrane-potential probability densities
in a pulse-gated, feedforward, integrate-and-fire (I&F) neuronal network [17]. We investigate the
efficacy of information transfer in the parameter space near where graded mean firing-rate transfer is
possible. We find that MI can be optimized by adjusting the strength of the gating (gating current), the
feedforward synaptic strength, the level of synaptic noise, and the input distribution. Furthermore,
our results reveal that via the coordination of pulse-gating and synaptic noise, a graded channel may
be transformed into a binary channel. Our results demonstrate a wide range of possible information
propagation choices in feedforward networks and the dynamic coding capacity of SGSCs.

2. Materials and Methods

We use a neuronal network model consisting of a set of j = 1, . . . , M populations, each with
i = 1, . . . , N excitatory, current-based, I&F point neurons whose membrane potential, Vi,j, and
(feedforward) synaptic current, Iff

i,j, are described by

d
dt

Vi,j = −gL

(
Vi,j −VR

)
+ Ig,j + Iff

i,j (1a)

τ
d
dt

Iff
i,j = −Iff

i,j +


S

pN ∑
k

pjk∑
l

δ
(

t− tl
j−1,k

)
, j > 1

Aδ(t), j = 1
(1b)
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where VR is the reset voltage, τ is the synaptic timescale, S is the synaptic coupling strength, pjk is
a Bernoulli distributed random variable and p = 〈pjk〉 is the mean synaptic coupling probability.
The lth spike time of the kth neuron in layer j− 1 is determined by V(tl

j−1,k) = VTh, that is, when the
neuron reaches the threshold. The gating current, Ig,j, is a white-noise process with a square pulse
envelope, θ(t− (j− 1)T)− θ(t− jT), where θ is a Heaviside theta function and T is the pulse length [14]
of pulse height Ig and variance σ2

0 . We note that with the j = 1 equation, an exponentially decaying
current is injected into population 1, providing graded synchronized activity that subsequently
propagates downstream through populations j = 2, . . . , M.

Assuming the spike trains in Equation (1b) to be Poisson-distributed, the collective behavior of
this feedforward network may be described by the FP equations:

∂

∂t
ρj (V, t) = − ∂

∂V
Jj(V, t) (2a)

τ
d
dt

Iff
j = −Iff

j +

{
Smj−1, j > 1
Aδ(t), j = 1

(2b)

(While the output spike-train of a single neuron in general does not obey Poisson statistics, the spike
train obtained from the summed output of all neurons in a single population does obey these statistics
asymptotically for a large network size N. In the case of pulse-gating, the summed output spikes of a
single population tend to a time-dependent Poisson process.) These equations describe the evolution
of the probability density function (PDF), ρj(V, t), in terms of the probability density flux, Jj(V, t), the
mean feedforward synaptic current, Iff

j ≡ 〈Iff
i,j〉, and the population firing rate, mj. For each layer j,

the probability density function gives the probability of finding a neuron with membrane potential
V ∈ (−∞, VTh] at time t.

The probability density flux is given by

Jj (V, t) =
([
−gL (V −VR) + Ig + Iff

j

]
− σ2

j
∂

∂V

)
ρj (V, t)

where Ig indicates the mean gating current. The effective diffusivity is

σ2
j = σ2

0 +
1
2

S2

pN
mj−1 (t) (3)

In the simulations reported below, we have taken N → ∞, thus ignoring the second term in Equation (3)
(i.e., ignoring diffusion due to finite size effects). The population firing rate is the flux of the PDF
at threshold:

mj (t) = Jj (VTh, t) (4)

The boundary conditions for the FP equations are

Jj
(
V+

R , t
)

= Jj (VTh, t) + Jj
(
V−R , t

)
(5)

ρj
(
V+

R , t
)

= ρj (VTh, t) + ρj
(
V−R , t

)
(6)

and
ρj (V = −∞, t) = 0 (7)

To efficiently obtain solutions to the FP equations [17], we have used an approximate Gaussian
initial distribution, ρj(V, t+ jT) = (1/P) exp (−(V − µ(t))2/2σ2), with width σ and mean µ(t), where

P =
∫ VTh
−∞ ρ0(V, 0) is a normalization factor that accounts for the truncation of the Gaussian at threshold,

VTh. At the onset of gating, the distribution is advected toward the voltage threshold, VTh, and the
population starts to fire. The advection neglects a small amount of firing due to a diffusive flux across
the firing threshold; thus the fold bifurcation occurs at a slightly larger value of synaptic coupling,
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S, for this approximation, relative to numerical simulations [17]. Because the pulse is fast, neurons
only have time to fire once (approximately). Thus, we neglect the re-emergent population at VR, which
does not have enough time to advect to VTh and therefore does not contribute to firing during the
transient pulse.

Using this approximation, Equation (2a) gives rise to µ̇ = −gL(µ − VR) + Ig + Iff
u , where

σ2 = σ2
0 /gL, with upstream current Iff

u = Ae−t/τ . Setting VTh = 1, this integrates to

µ(t) = µ0e−gLt +
Ig

gL
(1− e−gLt) +

A
1
τ − gL

(e−gLt − e−t/τ) (8)

and from Equation (4), we have

m(t) =
[
(−gLµ(t) + Ig + Ae−t/τ)

1
P

e−(1−µ(t))2/2σ2
]+

(9)

which, from Equation (2b), results in a downstream synaptic current at t = T:

Iff
d = Se−T/τ

∫ T

0
et/τm(t)

dt
τ

(10)

After the gating pulse terminates, the current decays exponentially. This decaying current feeds
forward and is integrated by the next layer. For an exact transfer, Iff

d (S, Ig, A, T) = A.
To compute MI, we generated a distribution of upstream current amplitudes {Iu}. These

were typically within or near the range of fixed points of the map Iff
d (S, Ig, A, T) = A. Using

Equations (8)–(10), we generated a distribution of downstream current amplitudes {Id} with {Iu} as
initial values. The joint probability distribution p(Iu, Id) was estimated by forming a two-dimensional
histogram with ∆I = 0.3/s. MI, I(Iu; Id) = H(Iu) + H(Id) − H(Iu, Id), was computed (in bits)
with H(x) = −∑x p(x) log2(p(x)) and H(x, y) = −∑x,y p(x, y) log2(p(x, y)), where the marginal
probabilities p(Iu) and p(Id) were computed from the histogram.

3. Results

We consider the transfer of spiking activity between two successive layers of a pulse-gated
feedforward network. The spiking activity of feedforward propagation quickly converges to a
stereotypical firing-rate waveform with arbitrary amplitudes (within a certain range) and with
associated dynamics of the membrane potential PDF, ρ(V, t), for each layer. This waveform essentially
represents a volley of spikes that propagate downstream within the network. Furthermore, the temporal
evolution of the first two moments (i.e., mean and variance) of ρ(V, t) suffice to capture the dynamics
during pulse-gating [17]. Therefore, as [17] showed, the population dynamics across a large region of
parameter space can be mapped by using a Gaussian approximation to the membrane potential PDF
(see Materials and Methods), revealing the bifurcation structure underlying a cusp catastrophe.

We first examined the cusp catastrophe in SGSC systems and its role in shaping the transfer of
mean firing rates. Because of the existence of stable, attracting, translationally invariant firing-rate
waveforms, we could capture and understand the dynamics in the SGSC system as an iterated map
describing the firing-rate amplitude as it changed between successive network layers. Figure 1 shows
two cases of the fixed points of this iterated map. Figure 1a plots the firing-rate amplitude, A, at the
fixed points at the end of the pulse-gating period as a function of the strength of the gating current, Ig,
and synaptic coupling strength, S, for fixed σ = 1.05. For small Ig, there existed a range in S where
the system was bistable; however, as we increased the strength of the gating, the region of bistability
(two stable attracting solutions with an unstable solution in between) disappeared at a cusp where
the manifold of the fixed point was nearly vertical. It was shown in [17] that near this cusp, the slow
dynamics along the unstable manifold of the unstable fixed point allow for the nearly graded transfer
of firing rates between successive layers, giving rise to an approximate line attractor in the amplitude
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of the output firing rates. Figure 1b shows that this cusp catastrophe also existed at fixed gating current
Ig = 24 as we varied both the feedforward synaptic coupling strength S and the variance of the initial
PDF, ρ(V, t = 0), just before pulse-gating. As the variance, σ2, was increased, the bistable region in S
also disappeared.

Figure 1. Cusp enabling graded and binary propagation in a synfire-gated synfire chain (SGSC).
(a) View for fixed noise, σ = 1.05, as a function of firing-rate amplitude, A/gL; synaptic strength, S;
and gating current, Ig. (b) View for fixed gating current, Ig = 24, as a function of A/gL, S, and σ.
Plotted in both panels are zeros of the function I(A, Ig, σ)− A (the difference between input and output
firing-rate amplitudes in a given layer). This function becomes zero at a fixed point. At a fixed point,
a firing-rate amplitude propagates exactly from one layer to the next. When this function is small but
non-zero, the firing-rate amplitude only changes slowly as it propagates. We note that the cusp is
high-dimensional and can be viewed in various projections. Graded propagation (approximately exact
amplitude propagation) is enabled as a result of ghost (slow) dynamics near the cusp, such that the
firing-rate amplitude A varies only slowly from layer to layer. At the cusp, an approximate line attractor
exists where an input firing rate in a given layer changes only slowly as it propagates downstream.
Away from the cusp, firing rates rapidly approach attractors. For many parameter regions, there are
two attractors giving rise to the propagation of a binary code.

Next, we examine the evolution of MI through the network. Figure 2 shows the transmission
of the mean firing rate, A/gL, in a pulse-gated feedforward network, as well as the associated MI
for three types of channels. Figure 2a plots the firing rate for an idealized exact transfer across many
layers (j = 1, . . . , 100), where we utilized a thresholded linear f–I curve to model each layer [14]. In this
toy model, the transfer was exact and the mean firing rate propagated indefinitely without change.
Figure 2b shows the propagation of firing rates for an SGSC situated near the cusp of Figure 1a. The
long-term propagation of the initially uniform input firing rates revealed the dynamical structure
near the cusp, namely, two stable, attracting firing rates (top and bottom) with an unstable saddle
in between. Because of the slowness of the dynamics along the unstable manifold of the saddle,
the transfer of mean firing rates through the network was approximately graded for many layers
(j ≈ 1–30). Furthermore, this transfer of the mean firing rates was order preserving (i.e., the relative
ordering of amplitudes was maintained) across many more layers (j up to 100). Figure 2c demonstrates
the propagation of firing rates for a binary transfer, where the unstable saddle was strongly repelling;
for most initial conditions, the rates converged to one of two rates within 10–15 layers. To investigate
the effects of the SGSC dynamics on information propagation, we computed the MI for each of the
three cases. Figure 2d demonstrates the effect of the SGSC dynamics on information propagation.
In the exact transfer case, the MI between the input and each layer remained constant and represented
an upper bound on the information transfer. In the binary transfer case, the MI quickly decayed to
1 bit, but, as for the exact case, was stable over long timescales. Near the cusp, where the firing-rate
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transfer was approximately graded, the MI decayed slowly, so that even after j = 100 transfers, the
channel retained almost 4 bits of information. In Figure 2e, the joint probabilities from which the MI
was computed for representative layers are plotted. For the exact case, the distribution is always along
the diagonal. The fast transition from diagonal to binary is evident for binary transfers, and a slow
transition from diagonal to binary is seen for the graded case.

Figure 2. Mutual information (MI) for transfers across a 100 layer synfire-gated synfire chain (SGSC).
(a) Exact transfer: Firing-rate amplitudes for theoretically perfect transfer. The range of A/gL is
the same for (a–c). Amplitudes transfer exactly from one layer to the next (j = 1, . . . , 100). This
practically unattainable communication mode is shown for comparison and attains the maximum
possible information transfer (MI; see (d)) as a function of the layer. (b) Graded transfer: Firing-rate
amplitudes from approximate Fokker–Planck (FP) solutions in a multi-layer SGSC. Parameters:
Ig = 24.03; S = 7.001; σ = 1.0496. We note that as the number of layers through which the initial
amplitudes propagate increases, the amplitudes drift slowly away from an unstable attractor in the
center of the amplitude distribution towards stable attractors at the sides of the distribution. (c) Binary
transfer: Firing-rate amplitudes from approximate FP solutions in a multi-layer SGSC. Parameters:
Ig = 5.0; S = 7; σ = 0.6. For these parameters, the unstable attractor rapidly repels the amplitudes
toward stable attractors on either side, resulting in binary transfer. Binary transfer is extremely stable
in the SGSC. (d) MI as a function of layer, j, for each of the above types of channel (a–c). (e) The joint
probabilities, p(I1, I2), p(I1, I20), and p(I1, I100), from which the MI was computed for exact, graded
and binary transfer. Here, the exact case is as would be expected. The graded case shows a gradual
deformation away from the diagonal that approaches binary transfer asymptotically. The binary case
rapidly approaches the propagation of only two states. We note that in much of the parameter space,
the approach to binary is much faster than that shown here. We used these parameters so that the
transition was slower and therefore more evident.
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An FP analysis of the SGSC system reveals four important system parameters: strength of
the gating current, Ig; strength of the feedforward synaptic coupling, S; mean membrane potential
distribution at the beginning of pulse-gating, ρj(V, t = jT); and variance of the synaptic current,
σ2 (see Materials and Methods). Figure 3 shows where graded and binary codes are supported.
Figure 3a,b plots the MI as a function of S and the network layer (which is equivalent to propagation
time) for fixed Ig, σ and ρj(V, t = jT) (which equals 0 for all panels). As we can see, for both cases,
there exists an optimal S for which MI (and approximate graded activity) can be maintained for many
layers. As we move away from this optimal S, we quickly go into a binary coding regime (MI = 1).
Figure 3c demonstrates that similar qualitative behavior can be obtained by varying σ.

Figure 3. Mutual information (MI) for parameters supporting graded and binary codes. (a) MI
propagation across 100 layers for Ig = 24, σ = 1.05 and S ranging from 0 to 10. We note that
graded transfer allows high values of MI to propagate across 100 layers at S ≈ 7. (b) MI propagation
across 100 layers for Ig = 24, σ = 0.6 and S from 0 to 10. We note that above S ≈ 5, there is a large
range of S for which binary propagation (MI of 1 bit; see colorbar) is supported. (c) MI propagation for
Ig = 24, S = 7 and σ from 0.1 to 2. Here, both graded and binary information propagate depending on
the value of σ.
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Out of the four system parameters, it is easiest to manipulate either the gating current or the
variance of the synaptic current. Both can be viewed as controls independent of the SGSC system.
Therefore, in Figure 4, we examine the evolution of MI as a function of Ig and σ through the network.
As we expect from our results thus far, large regions of parameter space support binary coding;
however, there is a thin line that materializes towards the bottom of the binary region that corresponds
to the location of the cusp, where MI can be maintained at high levels (MI > 3) through many layers.
We note that asymptotically, as j→ ∞, MI approaches 1 (a binary channel) because of the existence of
two attractors, even near the cusp.

Figure 4. Regions of parameter space supporting graded and binary information propagation.
Visualization of mutual information (MI) for σ between 0.5 and 1.05 and Ig between 14 and 27 at
successive layers j; σ and Ig axes as denoted in the lower left panel are the same for all panels. Colorbar
for lower right panel is the same for all panels. We note that across a few layers, MI remains high for a
large region of parameter space, but by j = 21, only binary and graded codes persist. By j = 91, it is
seen that a large region of parameter space supports binary propagation. Along a thin diagonal line at
the bottom of the binary region, corresponding to the location of the cusp, graded information may be
transferred.

4. Discussion

Although coherent activity has now been measured in many regions of the mammalian brain,
the precise mechanism and the extent to which the brain can make use of synchronous spiking activity
to transfer information have remained unclear. Many mechanisms have been proposed for information
transfer via transiently synchronous spiking that relies on oscillations and gating [18,20,22,46–52].
These mechanisms make use of the fact that coherent input can provide temporal windows during
which spiking activity may be more easily transferred between sending and receiving populations.
However, from the theoretical perspective, how MI and other measures of communication capacity
can be related to the underlying neuronal network architecture and the emergent network dynamics
have remained unexplored.

Here we study the capacity for information transfer of feedforward networks by examining the
evolution of mutual information through many layers of an SGSC system. Previous work has showed
that by introducing suitably timed pulses, graded information could be transferred and controlled
in a feedforward excitatory neuronal network [14–17]. In this context, pulse-gating has allowed us
to understand information propagation as an iterated map. FP analysis of this map has enabled the
identification of a cusp catastrophe in the relevant parameter space. Our results here demonstrate that
the dynamics of the SGSC system naturally give rise to two different types of channel (as measured
by MI). Large regions of parameter space support binary coding by using transiently synchronous
propagation of high and low firing rates. (In the classical synfire chain case, the low firing-rate state
is a silent state. In the SGSC case, as a result of the gating current, it is small, but non-zero.) In the
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binary regime, the distance between low and high firing rates is much larger than the variance of the
distributions; therefore propagation is stable. Furthermore, by systematically varying the relevant
SGSC system parameters, we were able to optimize graded-rate transfer near the fold of a cusp
catastrophe, which enabled us to maintain a relatively high MI through many layers.

Evidence exists for graded information coding in visual and other cortices [53], and there is some
evidence for binary coding in the auditory cortex [54]; sparse coding mechanisms for its use have
been put forward [55,56]. Luczak et al. [51] have argued that spike packets and stereotypical and
repeating sequences (similar to sequences observed in implementations of information processing
algorithms in graded-transfer SGSCs [15]) underlie neural coding. More recently, Piet et al. [57] have
used attractor networks to model frontal orienting fields in rat cortices to argue that bistable attractor
dynamics can account for the memory observed in a perceptual decision-making task. Indeed, in many
decision-making tasks, cortical activity appears to be holding graded information in working memory,
before a decision forces the activity into a binary code [58]. Therefore, it is of interest that both graded
and binary pulse-gated channels are supported by the SGSC mechanism and that it is fairly simple
and rapid to convert a graded code to a binary code.

Examining the structure of the cusp catastrophe in the parameter space, it appears that in general,
weaker Ig and higher S are correlated with bistability, while stronger Ig can support graded information
transfer at lower S (see Figure 1a); at the same time, for fixed Ig, a lower σ tends to bistable states
(see Figure 1b).

In previous theoretical studies of graded propagation and line attractors, it has been shown
that some fine tuning of system parameters is required [59–61]. However, graded propagation and
line attractors have been observed in many areas of the brain (see, e.g., [62–65]). Our results here
demonstrate that an important consideration for understanding graded propagation is the depth of
the circuit being used to propagate the information. That is, graded information propagation circuits
with a depth of 20 to 30 layers are not particularly fine-tuned. In this depth range, about 1/10th of
the parameter space (e.g., S or σ; see Figure 3, top and bottom plots) is capable of propagating graded
information (with relatively high MI). As the depth of the circuit grows, j→ ∞, MI approaches 1 bit,
and hence graded propagation in deep circuits is not possible (with an SGSC with parameters near
the cusp).

A clear advantage of a graded information channel is that a vector of high-resolution graded
information (resolution 2n, where n is the number of bits of MI—up to 32 levels of resolution in the
graded channel shown in Figure 2) could be rapidly processed in a network with linear synaptic
connectivity. Thus, synaptic processing such as Gabor transforms, seen in the visual cortex, would
most naturally operate on graded information, rapidly reducing the dimension of and orthogonalizing
input data. However, the stable processing of information through deep and complicated neural
logic circuits would take better advantage of binary channels. Here, essentially exact pulse-gated
binary transformations and decisions [15] can make use of the attractor structure of the channel to
reduce noise and maintain discrete states. In order to make use of high-bandwidth graded processing,
at some point in a neural circuit, graded information would need to be transformed to binary
information. Mechanisms to do this are beyond the scope of this paper, but they could make use of
dimension-reducing transforms on the input (e.g., Gabor transform) and subsequent digitization of
the data subspace.

Finally, we note that the symmetric nature of the binary SGSC channel may be an advantage for
logic circuit gating, as either of the parallel synfire chains can operate as information or the gate [15].
Finally, it should be remembered that with a stable binary code, binary digit coding can be constructed,
effectively increasing the information resolution propagating in a binary circuit.

5. Conclusions

We have performed an investigation of the communication capabilities of SGSCs using the metric
of MI. The main conclusion of this investigation is that SGSCs sustain two types of channel: the first
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is binary transfer (MI = 1, in bits), which is supported for a wide range of parameters. For circuit
depths of up to 30–40 layers, in a narrower range of parameters, graded transfer is also supported.
A secondary conclusion is that, because of the dependence of MI on the depth of a circuit in some
parameter regimes, circuit depth should be taken into account when considering the communication
capacity of a neural circuit.
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