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The ultimate goal of liver gene therapy for
monogenic diseases is to provide safe, thera-
peutic, life-long replacement of the missing
function to affected patients by a single
administration. Avoiding immunity and
achieving immune tolerance to the trans-
gene-encoded protein is of fundamental
importance to reach this goal. Adeno-associ-
ated viral (AAV) vectors delivering a func-
tional coagulation factor VIII (FVIII) or IX
(FIX) transgene have shown multi-year ther-
apeutic benefit in adults with hemophilia,
following a single intravenous administra-
tion. These have now become commercially
available gene therapies, indicated for adult
patients affected by hemophilia A or B,
bleeding diseases due to deficiency of FVIII
or FIX, respectively.1,2 Importantly, treated
patients did not develop anti-FVIII or anti-
FIX antibodies (Abs). These data confirm
many years of pre-clinical research support-
ing that AAV-based liver gene transfer is in
most cases pro-tolerogenic rather than
immunogenic, i.e., favors the induction of
immune tolerance rather than immunity to-
ward transgene-derived antigens (Ags).3

Mingozzi et al. showed that AAV-mediated
expression by hepatocytes induced FIX-spe-
cific regulatory T cells (Tregs) and immune
tolerance in vivo in mice.4 Similarly, lentivi-
ral vector (LV)-based liver gene transfer
was also associated to immune unrespon-
siveness and active immune tolerance to-
ward transgene Ags.5,6 Interestingly, the
pro-tolerogenic outcome was promoted
when expression of the transgene was made
strictly hepatocyte specific by a combination
of transcriptional and post-transcriptional
microRNA-mediated control.7 In this
construct, target sequences of the hemato-
poietic-cell-specific microRNA 142, in the
transgene 30 UTR, mediate transgene RNA
degradation in antigen-presenting cells,
thus allowing for cell-specific de-targeting
of transgene expression.7,8 The liver pro-tol-
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erogenic properties are well known for de-
cades because of the successful transplanta-
tion of allogeneic livers9 and the induction
of immune tolerance toward portal vein-
delivered Ags.10 The exact mechanisms by
which the liver can skew the immune system
toward tolerance remain to be fully under-
stood. Different cell types have been impli-
cated in this process, among which are hepa-
tocyte themselves and liver sinusoidal
endothelial cells11 (LSECs).

In this issue of Molecular Therapy Nucleic
Acids, Borsotti et al. describe the use of an
LSEC-specific promoter based on the endog-
enous stabilin-2 (STAB2) promoter inside
LVs, driving expression of GFP as marker
gene, or FVIII as therapeutic transgene for
hemophilia A. Contrary to a ubiquitously ex-
pressed GFP, LSEC-specific GFP expression
is maintained long term in LV-treated
mice, indicating lack of anti-GFP immune
responses. This is confirmed even if anti-
GFP clonal cytotoxic T cells (Jedi)12 are
adoptively transferred to LV.STAB2-GFP-
treated mice, suggesting active immune
tolerance toward the GFP. When FVIII
transgenes are expressed by LVs with the
STAB2 promoter, partial therapeutic activity
(10%–15% of normal) is maintained stable
and long term, in the absence of anti-FVIII
immunity. If Tregs are depleted, a transient
rise in anti-FVIII Abs is observed. This
work builds upon previous achievements of
the Follenzi group, following the concept
that expressing transgenes in endothelial
cells can induce immunological tolerance.
This article confirms and expands previous
findings reported by the same group using
different endothelial promoters, based on
VE-cadherin (VEC) and endogenous FVIII
promoter.13,14

LV.STAB2 represents the evolution of the
LV.VECplatform, by further restricting trans-
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gene expression to LSECs among the endothe-
lial cells. LSEC-specific transgene expression
amplified the tolerogenic capacity of LV.VEC
delivery, as shown by persistence of GFP-ex-
pressing LSECs inmice after adoptive transfer
of the anti-GFP Jedi CD8 T cells. Conversely,
GFP expression was eradicated by Jedi CD8
T cells in LV.VEC-treated mice.13 Phenotypic
analysis of immune cells in the liver of
LV.STAB2-treatedmice revealed an abundant
recruitment of CD8 T cells, which showed a
significant upregulation of PD1 compared
with those in untreated mice. PD1 expression
wasnot associatedwith a specific LV construct
or with the transfer of Jedi CD8T cells. There-
fore, the PD1-PDL1 pathway does not seem to
play a key role in the induction of tolerance to
the transgene in LV.STAB2-treated mice,
rather may represent a naturally occurring
regulatory loop to control excessive T cell acti-
vation. However, tolerance in LV.STAB2-
treated mice was associated with a reduced
killing activity of CD8 T cells in vivo and
in vitro, thus suggesting a permanent inactiva-
tion ascribable to an exhaustion state, which
remains an interesting aspect to be elucidated.

Application of LV.STAB2 platform for FVIII
gene addition confirmed previous achieve-
ments. Stable FVIII expression was estab-
lished in vivo in adult hemophilia A mice
in absence of humoral and cellular immune
responses, as obtained using the VEC pro-
moter or the endogenous FVIII pro-
moter.13,14 An advantage of LV-mediated
compared with AAV-mediated liver gene
transfer is the potential to be maintained
upon target cell proliferation, such as during
liver growth and homeostatic turnover. For
this reason, it would be useful to monitor
the stability of in vivo gene transfer to LSECs
following LV delivery to newborn mice. In
terms of immunological characterization, in
this work, Borsotti and colleagues show
that Treg depletion temporary re-awake
anti-FVIII immune responses, without any
loss of FVIII-expressing LSECs. This result
is intriguing and the underlying mechanisms
are worth further investigation. Indeed, in
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absence of Tregs, only CD4 T and B lympho-
cytes were free to react toward FVIII, respec-
tively, providing “helper” function to anti-
FVIII Abs production. Conversely, CD8 T
lymphocytes did not re-acquire their killing
capacity, thus explaining the recovery of
FVIII activity to pre-Treg depletion levels,
without any sign of immune-mediated loss
of FVIII-expressing LSECs.

LVs are emerging as versatile tools for in vivo
gene delivery to the liver, as they can be made
alloantigen free and phagocytosis shielded,15,16

thus potentially improving the efficiency of
gene transfer to LSECs, as well as to hepato-
cytes, and transgene expression can be effec-
tively tailored to specific cell types. Many ele-
ments of the mechanisms of immune
response to LV-encodedAgs in the liver appear
to converge whether instructing transgene
expression to LSECs, by STAB2 promoter, or
to hepatocytes, by the previously described
cassette, composed by the enhanced transthyr-
etin promoter and target sequences of micro-
RNA 142.6 Induction of transgene-specific
Tregs was demonstrated when targeting to he-
patocytes expression of GFP and ovalbumin as
model Ags, or alternatively, FIX to correct he-
mophilia B or even an insulin immunodomi-
nant T cell epitope to prevent type 1 dia-
betes.17–20 However, in all these cases the
persistence of transgene in hepatocytes has
been shown to be Treg dependent.6,18,19 In
addition, we reported that interferon-g-depen-
dent PDL1 upregulation by hepatocytes played
a role in controlling the expansionof transgene-
specific CD8 T cells, which did not display a
permanent loss of killing activity, revealed in
the absence of Treg in vivo and in vitro.20

Overall, these studies highlight the
complexity of the immune responses trig-
gered by in vivo LV gene transfer to the liver
and suggest that deeper understanding and
the capacity to control these mechanisms
will offer a wide range of applications not
only to treat genetic diseases but also to
counteract immune-mediated disorders.
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