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Abstract 
Background.   Glioblastoma is the most aggressive malignant brain tumor with poor survival due to its invasive 
nature driven by cell migration, with unclear linkage to transcriptomic information. The aim of this study was to 
develop a physics-based framework connecting to transcriptomics to predict patient-specific glioblastoma cell 
migration.
Methods and Results.   We applied a physics-based motor-clutch model, a cell migration simulator (CMS), to pa-
rameterize the migration of glioblastoma cells and define physical biomarkers on a patient-by-patient basis. We 
reduced the 11-dimensional parameter space of the CMS into 3 principal physical parameters that govern cell 
migration: motor number—describing myosin II activity, clutch number—describing adhesion level, and F-actin 
polymerization rate. Experimentally, we found that glioblastoma patient-derived (xenograft) cell lines across mes-
enchymal (MES), proneural, and classical subtypes and 2 institutions (N = 13 patients) had optimal motility and 
traction force on stiffnesses around 9.3 kPa, with otherwise heterogeneous and uncorrelated motility, traction, and 
F-actin flow. By contrast, with the CMS parameterization, we found that glioblastoma cells consistently had bal-
anced motor/clutch ratios to enable effective migration and that MES cells had higher actin polymerization rates 
resulting in higher motility. The CMS also predicted differential sensitivity to cytoskeletal drugs between patients. 
Finally, we identified 18 genes that correlated with the physical parameters, suggesting transcriptomic data alone 
could potentially predict the mechanics and speed of glioblastoma cell migration.
Conclusions.   We describe a general physics-based framework for parameterizing individual glioblastoma pa-
tients and connecting to clinical transcriptomic data that can potentially be used to develop patient-specific anti-
migratory therapeutic strategies.

Key Points

• Glioblastoma cells had balanced motor/clutch ratios to enable effective migration.

• Mesenchymal cells had enhanced actin polymerization resulting in higher motility.

• Eighteen genes were correlated with the biophysical parameters to predict cell migration.

Glioblastoma is the most common malignant brain tumor with 
a median survival of only 15 months and less than 5% 5-year 
survival rate.1,2 Complete surgical resection is difficult because 
the tumor is highly invasive, and tumor cell infiltration into the 
surrounding brain tissue drives disease progression and re-
currence.3,4 Therefore, understanding the mechanics of cancer 
cell migration can potentially be used to predict patterns of 

invasion and guide efforts to disrupt migration and slow dis-
ease progression.5 To target cell migration, cilengitide inhibits 
adhesion proteins such as αvβ3 and αvβ5 integrin but failed in a 
phase 3 trial,6 suggesting that other adhesion proteins, such as 
CD44, serve as major adhesive molecules in glioblastoma.7–9 
Inhibiting nonmuscle myosin II resulted in blocking glioma 
cell migration,10,11 and clinically safe derivatives of a myosin 
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inhibitor are under development.12 Fluvoxamine, an anti-
depressant, can potently inhibit actin polymerization and 
block glioma cell migration.13 However, in these studies, 
the connection of drug potency to fundamental glioma cell 
migration mechanics as a function of the transcriptomicly 
defined glioblastoma subtypes of proneural (PN), classical 
(CL), and mesenchymal (MES)14–16 was still unclear. In ad-
dition, it is not always feasible clinically to conduct in vitro 
migration assays on patient cells, and different harvesting 
and culturing methods may significantly alter the migra-
tion behavior.17 Therefore, to effectively target cancer cell 
migration, it is critical to understand the fundamental 
mechanics of glioblastoma cell migration and its potential 
link to transcriptomic information to predict tumor cell in-
vasion based on patient-specific omic analysis.

In the classic cell migration cycle, the first step is the ex-
tension of a cell protrusion at the leading edge driven by 
actin polymerization into self-assembled actin filaments 
(F-actin). F-actin undergoes retrograde flow driven by my-
osin II (motor)-mediated contraction, leading to protru-
sion retraction. At the same time, cell adhesion molecule 
binding to the extracellular environment and subsequent 
stretching of the actin-adhesion adaptor proteins constitute 
a molecular “clutch” that resists myosin forces and biases 
the protrusion toward net extension. The adhesion proteins 
can form focal adhesions that allow the cell to transmit 
traction forces onto compliant substrates. This system is 
known as the motor-clutch mechanism and is widely used 
to describe cell migration.18–20 Stochastic simulations of 
the motor-clutch model21 have been developed and suc-
cessfully predict the cell traction force, cell morphology, 
and F-actin flow on various substrate conditions.21–23 
Beyond single protrusions, the cell nucleates multiple pro-
trusions via F-actin polymerization, each of which can be 
modeled as a motor-clutch system, with traction forces 
balancing across the different protrusions. Stochastic per-
turbations to the force balance due to adhesion bond rup-
ture enable larger-scale cell movements and can define 
the front and the rear of the cell.24,25 By imposing a force 
balance between the protrusions, Bangasser et al.26 devel-
oped a whole-cell motor-clutch model, which we refer to 
here as the cell migration simulator (CMS, Figure 1A). The 
CMS has successfully captured the unique cell migration 
features on substrates with various stiffnesses,26 various 
focal adhesion sizes,27 different viscoelastic properties,28 
different stiffness gradients,29 within 1D channels,30 and 
in brain tissue ex vivo.5,7,8,31 Therefore, the CMS provides 
a consistent mechanical framework that can potentially be 
used to interpret and synthesize cell migration and force 
measurements of glioblastoma patient-derived (PD) cells 
across subtypes to predict cell migration.

In this study, we applied migration assays to glioblas-
toma PD xenograft (PDX) and PD cells (collectively referred 
to here as “PD(X)”). We explored the ability of the CMS 
to serve as a physics-based framework for glioblastoma 
subtypes and PD(X) systems. We used the CMS param-
eters representing myosin II motors, adhesion protein 
“clutches,” and F-actin polymerization to predict cell migra-
tion generally, and then mechanically parameterized glio-
blastoma cells obtained from a cohort of 11 glioblastoma 
patients across all 3 subtypes and 2 different culture pro-
cedures. Using single-cell migration and force generation 
data obtained on compliant 2D surfaces, we found distinct 
parameter sets for glioblastoma patients across subtypes 
and culture conditions. In addition, the CMS-predicted dif-
ferential cell migration sensitivities to cytoskeletal drugs 
between subtypes. Finally, we established correlative links 
between the CMS parameter values and patient cell tran-
scriptomes. Our results suggest it is feasible to estimate 
cell migration speeds using mRNA expression, similar 
to how migration speed can be estimated via machine 
learning-based detection of features in clinical MRI im-
ages.31 Overall, we describe a consistent physics-based 
framework for parameterizing individual glioblastoma pa-
tients, connected to clinical transcriptomic data, that can 
potentially be used to develop subtype and patient-specific 
anti-migratory therapeutic strategies for glioblastoma.

Materials and Methods

Cell Migration Simulator

The detailed governing equations and algorithms of the CMS 
were described in Bangasser et al.26 and in Supplementary 
Methods. Briefly, the CMS comprises multiple protrusions 
or modules that were nucleated randomly based on the rate 
kmod. Protrusions were elongated based on the polymeriza-
tion rate vpoly. Protrusions were capped randomly at the rate 
kcap eliminating further polymerization and removed if the 
protrusion length was shorter than the minimum length lmin

. The cell position was determined by the force balance be-
tween protrusion forces for modules and the cell body force. 
Clutches bound and unbound to F-actin based on the clutch 
binding rate kon and unbinding rate kof f (Table 1).

Monte Carlo simulations were conducted using a direct 
Gillespie Stochastic Simulation Algorithm, the event was 
executed based on accumulated event rates, including kon,  
kof f, kmod, and kcap, and the next time step tstep was deter-
mined based on the total event rates 

∑
ki . The C++ version 

of the CMS27 was used to conduct the simulations on the 

Importance of the Study

Successful precision medicine requires biomarkers to 
define patient states and identify personalized treat-
ments. While biomarkers are generally based on ex-
pression levels of protein and/or RNA, we ultimately 
seek to alter fundamental cell behaviors such as cell 

migration, which drives tumor invasion and metastasis. 
Our study defines a new approach for using biophysics-
based models to define mechanical biomarkers that can 
be used to identify patient-specific anti-migratory ther-
apeutic strategies.
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Mesabi computer cluster at the Minnesota Supercomputing 
Institute.

Grouped Clutch

Here we used the grouped-clutch algorithm to significantly 
enhance the computational efficiency by grouping clutches 
together to have a smaller number of clutches to represent 
all clutches, which produced equivalent results but with 
much faster simulations (Supplementary Figure 2). The de-
tailed governing equations and analysis were described in 
Supplementary Methods.

Parameter Sensitivity and Clustering

The cell migration predictions, including the max-
imum random motility coefficient (RMC), the maximum 
traction force, and the minimum F-actin flow over dif-
ferent stiffnesses were generated by the CMS with the 
changes of the base parameter values (Table 1), plotted 
in Supplementary Figure 1. The linear regression between 
the CMS migration predictions Y and the logarithm of pa-
rameter ratios was plotted in Supplementary Figure 1. 
Parameter sensitivity values were determined by the slope 
of the linear regression normalized by the base prediction 
values (Y0) (slope (linear regression)/Y0). We applied the 
agglomerative hierarchical clustering to the CMS param-
eter sensitivities using the linkage function in MATLAB 
with an average method to identify the main clusters for 
the CMS parameter sensitivities (Figure 1B).

Glioblastoma Patient Cell Lines and Cell Culture

Mayo PDX cell lines were developed and maintained by 
the Sarkaria lab at Mayo Clinic (Rochester, MN).32 Cell 
lines were established by implanting patient tumors into 
mouse flanks, and cells were derived in short-term explant 
cultures with serum-containing medium. We used MES 
(Mayo 16, 46, 59), PN (Mayo 64, 80, 85), and CL (Mayo 6, 
38, 76, 91, 195) cells. Cells were shipped in fetal bovine 
serum (FBS) media (Dulbecco's modified Eagle's me-
dium [DMEM] + 10% serum) and grown adherently until 
confluent, and then frozen in 10% DMSO 90% FBS media. 
Cells prepared for experiments were thawed into a flask 
coated with 10% Matrigel (Corning 354263) in Neural Stem 
Cell (NSC) Media (DMEM/F12 (Gibco 11320033) + 1X B-27 
Supplement (Gibco 12587010) + 1X Pen/Strep (Corning 
45000-650) + 1ng/mL epidermal growth factor/fibroblast 
growth factor (Peprotech AF10015/Peprotech AF10018B) 
(added every 2–3 days)). Cells were allowed to recover for 
several days prior to imaging.

UCSD PD lines33 were developed and maintained by 
Clark Chen’s Laboratory at the University of Minnesota 
(formerly at the University of California San Diego). Cell 
lines were derived and established from MES and PN gli-
oblastoma patients and cultured as neurospheres.33 UCSD 
cells prepared for experiments were propagated in ultra-
low adhesion flasks (Corning 3814) with NSC Media and 
were allowed to recover thawing for several days prior to 
imaging. For adherent culture conditions, UCSD cells were 

grown on a Matrigel-coated T-flask in an NSC medium for a 
minimum of 1 week prior to imaging.

Cell Migration, Traction Force, and F-Actin Flow 
on PA Gels

Polyacrylamide (PA) gels with different stiffnesses (0.7, 4.6, 
9.3, and 19.5 kPa) were synthesized following the previous 
protocols26 and described in Supplementary Methods. 
Before imaging, Mayo cells were plated on laminin with 
media containing 2% serum to promote adhesion. UCSD 
cells could not adhere to laminin, collagen, or fibronectin, 
except for Matrigel with no serum. Time-lapse light micro-
scopic images were taken using established protocols26 
and described in Supplementary Methods. Time-lapse 
phase-contrast images were taken for 10 h to track cell mi-
gration using a Nikon Eclipse TE200 microscope with a Plan 
Fluor 10×/0.30NA objective. Time-lapse phase-contrast im-
ages were taken for 3 min to measure F-actin flow. Phase-
contrast and epifluorescence images were taken before 
and after glioblastoma cells detached by treatment with 
0.05% trypsin to determine the cell traction.

Cell motility (RMCs), cell area, aspect ratio, actin ret-
rograde flow, and traction strain energy were deter-
mined based on established protocols26 and described in 
Supplementary Methods. Cell motility, area, and aspect 
ratio were measured for Mayo MES (Mayo 16(patient 
number), 46, 59), PN (Mayo 64, 80, 85), and CL(Mayo 6, 
38, 76, 91, 195) cells and UCSD MES, PN cells. Actin flow 
was measured for Mayo MES (Mayo 16, 46, 59), PN (Mayo 
64, 80, 85), and CL(Mayo 6, 38, 76, 91, 195) cells and UCSD 
MES, PN cells. Strain energy was measured for Mayo MES 
(Mayo 16, 46, 59), PN (Mayo 64, 80, 85), and CL (Mayo 6, 38, 
76, 91, 195) cells and UCSD MES, PN cells.

Parameterizing Glioblastoma Cell Lines With  
(nm, nc, vpoly) Values

CMS predictions (vF -actin (min), Fmodule (max), Rmc (max)) 
were linearly interpolated based on a 3-dimensional 
parameter space defined by nm, nc, and vpoly. Cell trac-
tion force was estimated using the linear relation be-
tween module force and experimental strain energy 
(Fmodule = 175*Estrain) based on the U251 maximum strain 
energy value and the assumption that U251 cells had 7500 
clutches in the model.26 The unique (nm, nc, vpoly) values 
were found for each patient to limit the relative errors be-
tween CMS and experimental results to within 10% (eg, 
(vF -actin (min, model) − vF -actin (min, patient))/vF -actin (min, 
patient) < 10%).

mRNA Expression Analysis

Detailed mRNA expression analysis was described in 
Supplementary Methods. In short, we derived RNAseq 
reads per kilobase million (RPKM) expressions of Mayo PDX 
cells from Vaubel et al.32 (19 552 genes, www.cbioportal.
org). We filtered out genes with geometric means smaller 
than 1 and with counts in less than 80% of patients to 
achieve a normal gene expression distribution compared 
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with the original distribution (Supplementary Figure 6A 
and B, 11 752 genes left). We applied the 2-sample t-test 
to the RNAseq-derived mRNA expression levels of Mayo 
MES and PN lines and derived 1 177 differential genes 
with P < .05 and FC > 2 in the volcano plot (Supplementary 
Figure 6C). We applied pathway enrichment analysis to 
these differential genes based on the KEGG database34 
with the false discovery rate (FDR)-adjusted P < .05 and de-
rived 29 enriched pathways (Supplementary Figure 7). We 
derived the actin-motor gene list (34 genes) based on the 
“Regulation of actin cytoskeleton” pathway, and the clutch 
gene list (42 genes) based on the “Focal adhesion” and 
“ECM-receptor interaction” pathways. We applied linear 
correlation analysis between the mRNA expression ratios 
of the actin-motor (Figure 5A and B) and clutch (Figure 5C) 
genes in the 10 Mayo lines used in the present study and 
their CMS parameter values (vpoly, nm, nc) (Figure 5A–C), re-
spectively. We derived RNAseq normalized transcripts per 
kilobase million (TPM) values by RSEM algorithm from The 
Cancer Genome Atlas (TCGA) Glioblastoma Project (www.
cbioportal.org, 151 patients, 20 531 genes). We applied Cox 
regression analysis between the mRNA expression ratios 
of the actin-motor (Supplementary Figure 10A) and clutch 
(Supplementary Figure 10B) genes in a cohort of 66 Mayo 
patients and their overall survival, and their hazard ratios 
with 95% confidence interval were sorted and plotted in 
Supplementary Figure 10, with the significant hazard ratios 
in red.

Statistics

* Denotes P < .05, ** P < .01, and *** P < .001 derived from 
the Kruskal-Wallis test with Dunn–Sidak post hoc analysis.

Code and Data Availability

All codes and data will be made available on reasonable 
request from the corresponding author.

Results

Three CMS Physical Parameters Dictate Cell 
Migration and Traction Force

To understand the relationship between the CMS param-
eters and its predictions, we computed the optimal cell 
motility (RMC), traction force, and F-actin retrograde flow 
in the range of substrate stiffnesses across a wide range 
of parameter values (Supplementary Figure 1). Similar to 
the analysis in Bangasser et al.,35 the sensitivities of the 
fold changes in the CMS predictions to the fold changes 
in parameter values, referred to as the parameter sen-
sitivities, were plotted in Figure 1B. Results showed that 
clutch-related parameters (nc, Fb, kon, kof f, kc, Table 1) in-
creased the cell traction force and reduced the F-actin flow, 
motor-related parameters (nm, Fm, vm, Table 1) increased 

Table 1.  Parameters for the Cellular Level CMS

Parameter Symbol Value Ref.

Total number of myosin motors nm 1000 Adjusted

Total number of clutches nc 750 Adjusted

Maximum total actin length Atot 100 µm *

Maximum actin polymerization rate vpoly 200 nm/s Adjusted

Maximum module nucleation rate kmod 1 s–1 *

Module capping rate kcap 0.001 s–1 *

Initial module length lin 5 µm *

Minimum module length lmin 0.1 µm *

Cell spring constant kcell 10 000 pN/nm *

Number of cell body clutches nc,cell 10 *

Substrate spring constant ks 0.3‒300 pN/nm Adjusted

Maximum number of module motors nm 1000 *

Myosin motor stall force Fm 2 pN *

Unloaded actin flow rate vm 120 nm/s *

Maximum number of module clutches nc 750 *

Clutch on-rate kon 1 s–1 *

Unloaded clutch off-rate kof f 0.1 s–1 *

Clutch spring constant kc 0.8 pN/nm *

Characteristic clutch rupture force Fb 2 pN *

*Adebowale et al.28
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the F-actin flow and motility, and actin-related parameters 
(kmod, vpoly, kcap, Table 1) increased the motility (Figure 1B). 
We applied unsupervised hierarchical clustering to the 
parameter sensitivities, and the motor, clutch, and actin-
related parameters naturally clustered into motor, clutch, 
and actin groups, respectively (Figure 1B). Therefore, the 
CMS parameters can be categorized broadly into 3 groups, 
and each has its own unique influence on predicted cell 
migration, which allows us to reduce the 11-dimensional 

parameter space (see Table 1) to 3 fundamental dimen-
sions of motor, clutch, and actin parameters.

Because of the natural clustering into 3 distinct groups, 
we chose 1 parameter from each clustered group as the 
fundamental physical parameters: motor number (nm

) representing myosin II motor activity, clutch number 
(nc) representing functional adhesion protein level, and 
F-actin polymerization rate (vpoly) representing actin fila-
ment polymerization activity. These 3 parameters are the 
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Figure 1.  Three cell migration simulator (CMS) physical parameters dictate cell migration and traction force. (A) CMS schematic. (B) Parameter 
sensitivities of the CMS were analyzed to predict maximum cell migration speed (RMC), minimum F-actin flow, and maximum traction force 
across substrate stiffnesses. With hierarchical clustering, 3 parameter groups were identified: clutch group (nc, Fb, kon, kof f), motor group (nm, Fm, 
 vm) and actin group (vpoly, kmod, kcap). The 3 parameters (nm, nc, vpoly) were chosen as fundamental physical expressions of the CMS. (C) Maximum 
RMC, maximum traction, and minimum F-actin flow across substrate stiffnesses as a function of the 3 biophysical expressions (nm, nc, vpoly) pre-
dicted by the CMS were plotted. Conditions I–IV represent distinct cell migratory behaviors with different (nm, nc, vpoly). (D) Condition I represents a 
typical migrating cell with base parameter values. In Condition II, a higher motor number resulted in lower traction, shorter protrusion length, and 
slower cell migration. In Condition III, a higher clutch number resulted in near-maximal constant traction, limited dynamic protrusions, and poor 
cell migration. In Condition IV, a higher actin polymerization rate resulted in more dynamic protrusions, longer protrusion length, highly fluctuating 
traction, and faster cell migration.
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key components in the cell migration process,18–20 they ex-
hibit different values in different cell types,24,25 and they are 
easily manipulated by drugs.26 Therefore, we used these 3 
parameters (nm, nc, vpoly) as a fundamental basis set to pre-
dict glioblastoma cell migration across subtypes and cul-
ture conditions in the absence and presence of drugs.

To illustrate the cell migration governed by the 3 funda-
mental physical parameters, we plotted the optimal motility 
(RMC), traction force, and F-actin flow as a function of the 
3 physical parameters (nm, nc, vpoly) (Figure 1C). Here we 
used the grouped-clutch algorithm to significantly enhance 
the computational efficiency (Supplementary Figure2). 
There are 4 different scenarios observed in the parameter 
space (Figure 1C, Conditions I–IV), and the time-dependent 
cell protrusion dynamics and traction force fluctuations in 
these conditions were plotted in Figure 1D. In Condition I, 
a typical simulated migrating cell with a balanced motor 
and clutch number showed the dynamic protrusions with 
sequential phases of nucleation, elongation, retraction, and 
elimination, and fluctuating traction force to produce fast 
cell migration (Figure 1C and D, Condition I). In Condition II 
with the higher motor number in the cells, the motor-clutch 
mechanism became “free-flowing”35 with faster F-actin 
flow, lower traction force, shorter protrusion length, and 
hence slower cell migration (Figure 1C and D, Condition II). 
In Condition III with the higher clutch number, the motor-
clutch system became “stalled”35 with near zero F-actin 
flow, near-maximal constant traction force, limited dynamic 
protrusions, and hence poor cell migration (Figure 1C and 
D, Condition III). In Condition IV with the higher actin polym-
erization rate, the protrusion dynamics became more signif-
icant, with longer protrusion length and highly fluctuating 
traction forces, to produce faster cell migration (Figure 1C 
and D, Condition IV). Overall, these simulations indicate 
that the CMS fundamental parameters (nm, nc, vpoly) can 
uniquely describe motor-clutch-mediated cell migration.

Heterogeneity in Migration Phenotypes of 
Glioblastoma Patient Cells

To understand the migration phenotypes of glioblastoma 
patient cells, we measured the cell migration of Mayo glio-
blastoma PDX lines of MES (MM, 3 lines), PN (MP, 3 lines), 
CL (MC, 5 lines) subtypes with adherent culture32 and UCSD 
glioblastoma PD lines of MES (UM, 1 line), PN (UP, 1 line) 
subtypes cultured as neurospheres33 (N = 13, Figure 2C). We 
measured the migration of glioblastoma cells on PA gels 
with different stiffnesses, coated with laminin for the Mayo 
cells and Matrigel for the UCSD cells, to reach adequate cell 
adhesion (Figure 2A and B). We found heterogeneity in cell 
migration of glioblastoma cells with different subtypes and 
sources, and their mean ± SEM of cell motility (RMC), trac-
tion strain energy, and F-actin retrograde flow rate were all 
highly variable (Figure 2D). Despite this heterogeneity, we 
found that glioblastoma cells tended to have maximal mo-
tility on stiffnesses ranging from 4.6 to 19.5 kPa (Figure 2D), 
which is comparable to brain tissue stiffnesses (1–6 kPa36). 
Mayo MES and PN cells exhibited optimal traction strain 
energy with the stiffness of 9.3 kPa, whereas the other cell 
lines had low cell traction strain energy with no evidence 
of optimality (Figure 2D). All cell lines had no clear optimal 

F-actin retrograde flow (Figure 2D), cell area, and aspect 
ratio (Supplementary Figure 3B) as a function of substrate 
stiffness. The differences in cell migration between sub-
types and sources were similar at all substrate stiffnesses 
(ie Mayo MES had higher motility than Mayo PN cells at all 
stiffnesses) (Figure 2D), and therefore, in subsequent anal-
ysis, we combined the cell migration data for a given PD(X) 
line across all substrate stiffnesses.

The mean cell motility (RMC), traction strain energy, and 
F-actin flow rate for each PD(X) line were plotted in the 3D ex-
perimental measurement space with 2D projections (Figure 
2E). The cell migration data of all glioblastoma cells across 
all subtypes and sources were plotted in Supplementary 
Figure 3C with statistical analysis. Mayo MES cells had 
significantly higher motility, F-actin flow, cell area, and as-
pect ratio compared with Mayo PN cells (Figures 2E and 
Supplementary Figure 3C). Mayo CL cells had intermediate 
values in motility, F-actin flow, and morphology, except for 
the lower traction strain energy, compared with Mayo MES, 
PN cells (Figures 2E and Supplementary Figure 3C). UCSD 
MES cells had higher motility and cell area compared with 
UCSD PN cells (Figures 2E and S3C). All Mayo cells had 
higher traction strain energy, F-actin flow, and cell area with 
lower motility and aspect ratio compared with all UCSD 
cells (Figures 2E, and Supplementary Figure 3C). Overall, 
these results show significant heterogeneity in cell migra-
tion mechanics of glioblastoma cells across different sub-
types and sources, and a general lack of correlation between 
motility, traction force, and F-actin flow rate.

CMS-derived parameters of glioblastoma patient cells 
exhibit balanced motors and clutches with F-actin as-
sembly correlating with cell migration motility.

To transform these empirical measurements of glioblas-
toma patient cell migration mechanics into fundamental 
mechanistic interpretation, we used the CMS to param-
eterize the cell migration of PD(X) lines by fitting their 
motility, traction force, and F-actin retrograde flow exper-
imental data to simulations with adjusted physical param-
eters (nm, nc, vpoly). For each PD(X) line, this effectively 
mapped the 3D empirical observation space into a 3D the-
oretical physical space. These physical parameter values 
were then plotted in the 3D CMS parameter space of (nm

, nc, vpoly) for each patient with 2D projections in Figure 3A, 
also plotted as bar graphs in Supplementary Figure 4. We 
found that despite the apparent heterogeneity of physical 
parameters, glioblastoma PD(X) lines consistently showed 
approximately balanced motor number and clutch number 
(nc/nm ∼ 0.75) (Figure 3A), which enabled robust cell mi-
gration and traction forces that increased with the motor-
clutch level (Figure 1C). Therefore, we can also plot the 
CMS parameter values on the heat map of various values 
for (nm,vpoly) with a constant ratio nc/nm = 0.75 in Figure 
3B. We found that Mayo MES cells had higher motor (nm) 
and clutch (nc) numbers, and higher F-actin polymerization 
rate (vpoly) compared with PN cells (Figures 3A and B, and 
Supplementary Figure 4), resulting in higher motility and 
F-actin flow. UCSD MES cells had a higher F-actin polymer-
ization rate (vpoly) compared with UCSD PN cells, resulting 
in higher motility. Mayo cells had higher motor and clutch 
numbers and lower F-actin polymerization to produce 
higher traction force and lower motility compared with 
UCSD cells (Figure 3A and B). These results suggested that 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
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myosin motors and adhesion clutches were well balanced 
in all glioblastoma cells, fast-moving cells had higher 
F-actin polymerization with either high or low cell traction, 
and adherently cultured cells had higher myosin motors 
and adhesion clutches and lower F-actin polymerization 
compared with neurosphere cultured cells. Overall, the 3D 
CMS parameter space (nm, nc,vpoly) provides a more fun-
damental and revealing framework for describing glioblas-
toma PD(X) migration than does the empirical 3D space 
defined by the measured experimental quantities (cell mo-
tility (RMC), traction strain energy, F-actin retrograde flow).

The CMS Predicts PD(X) Glioblastoma Cell 
Migration Upon Drug Perturbations

Knowing the CMS 3D parameter set for each PD(X) line not 
only allows us to predict the cell migration using the CMS, 

but also to predict different migration behaviors with the 
change of parameter values due to hypothetical drug treat-
ments. The CMS predictions with various values of (nm,vpoly
) and a constant clutch number (nc = 225) were plotted as 
the heat map in Figure 4A, along with the UCSD MES cells, 
which had higher F-actin polymerization rate (vpoly) and 
lower motor number (nm) (Figure 4A orange) but higher 
motor/clutch ratio (Figure 3A), resulting in higher cell mo-
tility and higher F-actin flow (Figure 4A and B, orange) 
compared with UCSD PN cells (Figure 4A and B, blue).

When reducing the motor number, the motility and F-actin 
flow of UCSD MES cells would be reduced to a greater ex-
tent than UCSD PN cells as indicated by the solid-red arrows 
in Figure 4A, which was confirmed by the CMS predic-
tions with the reducing motor number (∆nm) in Figure 4B. 
Consistent with the CMS predictions, when UCSD cells were 
treated with blebbistatin to inhibit their myosin II contrac-
tility, the cell motility and F-actin flow of UCSD MES cells on 
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Figure 2.  Heterogeneity in migration phenotypes of glioblastoma patient cells. (A) Mayo patient-derived xenograft (PDX) cell lines were es-
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for each cell line were plotted in the 3D space, along with their 2D projections. RMC, tractions strain energy, and F-actin flow were all highly vari-
able with no obvious correlations with each other.



 8 Hou et al.: Biophysics-based biomarkers for glioblastoma

PA gels decreased more significantly compared with UCSD 
PN cells (Figure 4D). This test of the model was not only con-
sistent with the CMS predictions (Figure 4B), but also con-
firmed the motor number difference between UCSD MES 
and PN cells (Figures 3A and 4A).

When reducing the F-actin polymerization rate, we pre-
dicted that the UCSD PN cells would reduce their motility 
to a greater extent than UCSD MES cells, with the insen-
sitivity of F-actin flow, as indicated by the dotted arrow in 
Figure 4A, also confirmed by the CMS predictions with the 
reducing F-actin polymerization rate, ∆vpoly, in Figure 4C. 
We then treated the UCSD cells with Latrunculin A to in-
hibit their actin polymerization by binding G-actin mono-
mers and found the motility of UCSD PN cells indeed 
decreased more significantly compared with UCSD MES 
cells (Figure 4E), which again was consistent with the CMS 
predictions (Figure 4C).

To test whether the culture conditions affect the migra-
tion phenotype, we cultured the neurosphere UCSD MES 
cells adherently for 1 week to create UCSD MES-AD cells 
before conducting migration assays, and we found the 
migration phenotypes of UCSD MES-AD cells became 
closer to the phenotypes of UCSD PN cells, with higher 
motor number and lower F-actin polymerization rate re-
sulting in lower motility and higher F-actin flow compared 
with UCSD MES cells (Supplementary Figure 5A and B). 
We also treated the UCSD MES-AD cells with cytoskel-
eton drugs and found MES-AD cells had lower sensi-
tivity to blebbistatin and higher sensitivity to Latrunculin 
A in motility and F-actin flow compared with UCSD MES 
cells (Supplementary Figure 5D and E), which again was 
consistent with the CMS predictions (Supplementary 
Figure 5B and C), and confirmed that adherent culture can 

increase the functional motor number and decrease the 
F-actin polymerization rate of neurosphere cultured cells 
(Figure S5A).

Overall, we found that CMS-predicted sensitivities of 
cell motility (Figure 4F) and F-actin flow (Figure 4G) to 
decreasing parameter values were highly correlated with 
the measured sensitivities to cytoskeletal drugs. Not only 
can we use the CMS physical parameter values of glioblas-
toma PD(X) lines to describe migration phenotypes (Figure 
3), but also to predict the differential migration changes be-
tween patients due to the changes in the parameter values 
either by cytoskeletal drugs or by the culture conditions 
(Figures 4 and Supplementary Figure 5).

Identification of CMS-Based Transcriptomic 
Biomarkers

In principle, the CMS parameters should depend on tran-
scriptional levels of key genes controlling motor, clutch, 
and F-actin polymerization activities. Thus, we sought 
to identify correlates of the CMS parameters in previ-
ously collected transcription-level data. In Figures 3 and 
Supplementary Figure 4, there are consistent differen-
tial estimates of the CMS parameters between MES and 
PN for both Mayo and UCSD patient cells. Moreover, PN 
and MES subtypes became more frequent in patients with 
tumor recurrences.15 Therefore, we decided to analyze 
the differential genes between MES and PN and correlate 
them with the CMS parameters. We first derived RNAseq 
RPKM expression of Mayo PDX cells from Vaubel et al.32 
(19 552 genes in 20 MES patients and 16 PN patients). We 
filtered out genes with small mean values and low patient 
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Figure 3.  Cell migration simulator (CMS)-derived physical parameters of glioblastoma patient cell migration. (A) Physical parameter values of 
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portions to achieve a normal gene expression distribu-
tion (Supplementary Figure 6A and B, 11 752 genes left). 
We derived 1177 differential genes between Mayo MES 
and PN cells using the 2-sample t-test (P < .05, FC > 2, 
Supplementary Figure 6C). We applied the pathway enrich-
ment analysis to these differential genes using the KEGG 
database34 with the FDR-adjusted P < .05 and derived 29 en-
riched pathways (Supplementary Figure 7). We derived the 
actin-motor gene list (34 genes) based on the “Regulation 
of actin cytoskeleton” pathway, and the clutch gene list (42 
genes) based on the “Focal adhesion” and “ECM-receptor 
interaction” pathways. This resulted in a final reduced list 
of actin-motor and clutch genes that could potentially be 
correlated with the CMS physical parameters.

We applied correlation analysis between the mRNA 
expression of the actin-motor and clutch genes in the 10 
Mayo PDX lines used in the present study for which mRNA 
expression level was available, and their CMS parameter 
values were (vpoly, nm, nc), respectively. In the correlation 
of actin-motor genes with the actin polymerization rate, 
RRAS had the highest positive (although not significant) 
correlation coefficient (R) and FGFR1 had the lowest (and 

significant) R (Figure 5A). In the correlation of actin-motor 
genes with the motor number, VCL, ARPC1B, RRAS2, MSN, 
ACTN1, ITGB1, RRAS, CXCR4, and MYL12A had statisti-
cally significant and positive R (P < .05) (Figure 5B). In the 
correlation of clutch genes with the clutch number, VCL, 
CD44, EMP1, ACTN1, ITGB1, CAPN2, SHC1, and MYL12A 
had a positive R that was statistically significant (P < .05) 
(Figure 5C). In Figure 5A and B, altogether, 18 of 76 genes 
were significantly correlated (P < 10−7 for a Poisson distri-
bution with mean = 0.05 × 76 = 4 and observed 18 events) 
and 17 of 18 genes were positively correlated (P < 10−5 for 
binomial distribution with 17 successes in 18 trials with 
P = .05 success in 1 trial), which is much higher than sig-
nificance by chance (95% confidence interval, 5% of the 76 
total genes = ~4 genes). This result validates the actual cor-
relation of the CMS parameters to the gene expression in 
cell migration.

With the genes highly correlating with the CMS param-
eters, we were able to estimate the physical parameters 
of Mayo PDX lines (N = 66) based on their mRNA expres-
sions. RRAS, CXCR4, TMSB4X, RRAS2, and ARPC1B were 
highly correlated with actin polymerization rate (Figure 5A) 
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and were chosen to represent actin genes. MSN, ACTN1, 
MLY12A; MYH9 were significantly correlated with a motor 
number (Figure 5B) and represent motor genes (MYH9 
was added as a key component in myosin assembly with 

P = .067 slightly above our cutoff of P = .05). VCL, CD44, 
EMP1, ITGB1, CAPN2, and SHC1 were significantly correl-
ated with a clutch number (Figure 5C) and represent clutch 
genes. By averaging the mRNA ratios of these correlated 

A 1

0

Actin-myosin genes correlating with actin polymerization rate

Actin-myosin genes correlating with motor number

Focal-adhesion genes correlating with clutch number

FGFR1

APC2
SRC

RAC3

RAC3

IQ
GAP2

RGCC

IT
GA2

APC2

RAC3

GP1B
B

COL4
A1

SHC2

COL4
A2

IT
GA2

TNR
M

YL9

COL9
A2

SRC

ERBB2

IT
GB5

LA
M

B2

NPNT

IT
GA6

COL6
A1

FN1

IT
GB4

COL1
A2

FLN
C
TNC

IT
GA5

LA
M

C1

LA
M

B3
SPP1

IT
GA3

CAV2

SDC4
CAV1

THBS1

SDC1
FLN

A
VA

SP

COL6
A2

M
YL1

2A

CAPN2

SHC1

IT
GB1

ACTN1

EM
P1

VCL
CD44

FGF1

IT
GB5

M
YL9

RGCC

CYFIP
2

IT
GB4

IT
GA5

FN1

IT
GA6

F2R

F2R
M

YL9
FGF1

FGFR1
SRC

W
ASF1

CYFIP
2

LP
AR2

IT
GB5

SSH2

TM
SB4X

IT
GA6

EZR
FN1

IT
GB4

IT
GA5

GSN

IT
GA3

M
YH9

IQ
GAP1

M
YL1

2A

CXCR4

RRAS

IT
GB1

ACTN1
M

SN

RRAS2
VCL

ARPC1B

GSN

IT
GA3

LP
AR2

M
YH9

W
ASF1

IQ
GAP2

M
YL1

2A
M

SN

IT
GB1

ACTN1

IT
GA2

EZR

IQ
GAP1

ARPC1B

RRAS2
VCL

TM
SB4X

CXCR4

RRAS
SSH2

R

–1

B 1

0R

–1

C

D E F

1

–1
–1

–1

1

1

lo
g(

po
ly

 (
ra

tio
))

log(nm (ratio))

–1
–1 1

1

–1
–1 1

1

lo
g1

0(
nc

(r
at

io
))

lo
g1

0(
po

ly
(r

at
io

))

log10(nm(ratio)) log10(nm(ratio))

log(nc (ratio))

1

0R

–1

red (p<0.05)

red (p<0.05)

red (p<0.05)

MES CL PN
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slightly linearly correlated with motor-clutch number in (D) (actin = motor*0.3 (P = .01) + clutch*0.3 (P = .07) + 0.01). The clutch number is signif-
icantly correlated with the motor number in (E) (clutch = motor (P < .001) + 0.01). Actin polymerization rate is significantly correlated with motor 
number in (F) (actin = motor*0.7 (P < .001) + 0.01).

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
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genes (5 actin genes, 4 motor genes, and 6 clutch genes), 
we estimated the physical parameter ratios for each Mayo 
PDX line, plotted in the 3D CMS parameter space of (nm

, nc, vpoly) (Figure 5D) with 2D projections (Figure 5E and 
F). MES lines (red dots in Figure 5) had higher (nm, nc, vpoly
) compared with PN lines (blue dots in Figure 5), with CL 
lines having intermediate values (green dots in Figure 5). 
The trends of the highly balanced motor and clutch number 
with correlated F-actin polymerization (Figure  5D–F) do 
not change when a smaller focused subset of 3 genes 
was chosen for each parameter (Supplementary Figure 8). 
Even a single gene can largely reflect this same trend 
(Supplementary Figure 9).

We also acquired RNAseq normalized TPM values from 
TCGA (151 patients, 20 531 genes) and applied Cox re-
gression analysis on migration gene expression and pa-
tient survival for both Mayo and TCGA patients, and we 
found 17 genes were significantly correlated with patient 
survival, and TCGA patients have more correlated genes 
than Mayo patients (Supplementary Figure 10). Within 
these genes, MYL12A and ITGB1 can be regarded as rep-
resentative motor and clutch genes, which is the possible 
mechanism driving the correlation with patient survival. 
There are fewer correlated genes in MES (Supplementary 
Figure 11) and PN (Supplementary Figure 12) patients, with 
larger patient variation, due to the limited number of pa-
tients. In the end, our approach is an integration of mecha-
nistic modeling and data science approaches.

Discussion

In this study, we used the physics-based motor-clutch 
model, termed here the CMS26 (Figure 1A), to mechanis-
tically parameterize and predict glioblastoma cell migra-
tion mechanics and speed. We reduced the 11-dimensional 
parameter space of the CMS (see Table 1) into 3 dimen-
sions based on their parameter sensitivities (Figure 1B) 
and identified 3 fundamental physical parameters: motor 
number, clutch number, and actin polymerization rate that 
can uniquely govern cell migration (Figure 1C and D). We 
found significant heterogeneity in glioblastoma patient 
cell migration across subtypes and sources (Figure 2) and 
derived the physical parameter values for each cell line 
by fitting their cell migration with the CMS predictions 
(Figure 3). Despite their heterogeneity, glioblastoma cells 
had balanced motor/clutch ratios (nc/nm ∼ 0.75) to pro-
duce robust cell migration and traction force (Figures 1C 
and 3A). In addition, we found consistent trends by molec-
ular subtype, with Mayo MES cells having higher motor-
clutch number and F-actin polymerization rate relative to 
Mayo PN cells (Figure 3), resulting in higher motility and 
F-actin flow (Figure 2E). Similarly, UCSD MES cells had a 
higher F-actin polymerization rate relative to the UCSD PN 
cells (Figure 3) resulting in faster migration (Figure  2E). 
Moreover, the CMS accurately predicted the differential 
sensitivities between MES and PN cells to cytoskeletal 
drug perturbations (Figure 4). Finally, we derived a list of 
motor-clutch-associated genes in the Mayo cells having 
mRNA expression correlating with the physical param-
eters of Mayo cells, which can be used to predict CMS cell 

migration parameters and speeds. Overall, we describe a 
simplified 3D physics-based framework for mechanically 
parameterizing individual glioblastoma patients and con-
necting biomechanics to clinical transcriptomic data, which 
can potentially be used to predict cell migration and drug 
responses in glioblastoma cells.

Our present study used 2D measurements with a range 
of stiffnesses that have been reported for brain tissue (1–10 
kPa).36 In addition, our recent studies find that 2D meas-
urements are predictive of 1D confined migration in vitro37 
and of migration in 3D brain tissue ex vivo.5,8 Our previous 
studies showed that the motor-clutch model is relevant to 
glioblastoma cell migration in brain tissue.5,7,831 We also 
note that the 2D in vitro migration speeds are predictive of 
clinical MRI features.31 Therefore, we have evidence that the 
2D biomechanical measurements we are making here will 
be directly relevant to 3D migration in brain. We found that 
glioblastoma MES cells have faster migration than PN and 
CL cells on 2D compliant PA gels, which is consistent with 
the 3D invasion of glioblastoma spheroids in Munthe et 
al..38 Piao et al.39 similarly found the glioblastoma cell lines 
similar to the MES subtype had higher invasive capacity 
and motility compared with other subtypes. To provide 
the biophysical mechanisms of the differential cell mo-
tility, we parameterized the cell migration of glioblastoma 
cells with the CMS and found the higher F-actin polymeri-
zation rate best explained the faster migration of the MES 
cells relative to the PN cells (Figures 3 and Supplementary 
Figure 4). In the CMS simulation, a higher F-actin polym-
erization rate promotes cell protrusion dynamics, with 
longer protrusion length and highly fluctuating traction 
force, causing highly unbalanced protrusion forces, highly 
polarized cell morphology, and hence faster migration 
(Figure 1C and D). Adebowale et al.28 applied the CMS sim-
ulation coupled with viscoelastic substrate and also con-
firmed that the significant filopodia dynamics with longer 
filopodia length and lifetime resulted in faster cell migra-
tion of fibrosarcoma cells on fast-relaxing viscoelastic gels, 
demonstrating the protrusion dynamics promoting cell 
motility in vitro. Therefore, F-actin polymerization becomes 
a potential target to alter glioblastoma cell motility, and the 
CMS can potentially predict the patient-specific cell mo-
tility and treatment responses.

The subtype definitions/classifiers have shifted over 
time since the original classification by Phillips et al.14 
(PN, Proliferative, and MES) and we are using the pub-
lished classifications for these PDX collections, following 
Wang et al.16 (PN, CL, and MES), which was itself an up-
date from earlier work by Verhaak et al.15 (PN, Neural, CL, 
and MES). Wang et al.16 concluded that the Neural sub-
type was likely due to contamination from adjacent brain 
tissue. The recent single-cell RNAseq work (Neftel et al.40) 
has supported the view of 4 subtypes, rather than 3, along 
with both intratumoral heterogeneity and plasticity. Even 
so, Neftel et al.40 described how their classification can be 
mapped onto the previous Wang-Verhaak classification,16 
with oligodendrocyte-progenitor/neural-progenitor (OPC/
NPC) being associated with PN, astrocyte being associated 
with the CL subtype, and the same MES subtype. Overall, 
for the past 15 years, the field has had a PN (OPC/NPC) to 
MES axis, with the CL (AC) subtype being a robust inter-
mediate substate. Hence the PN/CL/MES classification 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae184#supplementary-data
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used in our study is very much in line with the current 
standard in the field, and the subtypes for the Mayo PDX 
and UCSD PD lines have been published.32,33 In the present 
study, we account for the variability on a patient-by-patient 
basis. Heterogeneity and plasticity are clearly potential 
confounders of simple categorizations. However, if these 
were strong effects, then the subtype classification of pa-
tients based on a single tissue sample would not yield con-
sistent patterns with mechanistic measurements such as 
ours, that is, a similar pattern of the model-based param-
eterization of nm, nc, vpoly throughout patient cell lines. In 
particular, we found that MES cells had higher estimated 
vpoly, which enables faster migration, and higher motor-
clutch levels (Figures 3B and 5D). Our results suggest that 
vpoly and motor-clutch ratio, and their associated genes, 
may be better predictors of functional subtype than the 
traditional PN/CL/MES classification. However, we believe 
that this will require prospective tests in more in vivo–like 
settings in the future.

By correlating with the CMS parameters, we found the 
representative actin, motor, and clutch genes in Figure 
5A–C. Based on the predicted cell migration in Figure 1C, 
we can identify patient-specific strategies to target the 
cell migration of glioblastoma. For example, for the pa-
tients with higher motor-clutch ratios (Figure 5E, orange 
dotted line), we can inhibit adhesion clutches resulting in 
free-flowing conditions (Figure 1C and D, Condition II). For 
patients with lower motor-clutch ratios (Figure 5E, brown 
dotted line), we inhibit myosin motors resulting in stalled 
conditions (Figure 1C and D, Condition III). For patients 
with a higher actin polymerization rate (Figure 5F, green 
dotted line, mostly MES lines), we then inhibit the actin 
polymerization to block the migration. We also applied the 
Cox regression analysis on the migration gene expres-
sion and patient survival in the Mayo and TCGA cohorts. 
Among the genes highly correlated with patient survival 
(Supplementary Figure 10), ITGB1, ITGA5, ITGA3 showed 
significant association with the patient survival in Malric 
et al.,41 consistent with our results. The negative correla-
tion between CD44 levels and PN patient survival aligned 
with Klank et al.’s.7 Collagen (COL9A2, COL6A2, COL4A1, 
COL4A2) enrichment is associated with poor prognosis of 
glioblastoma patients.42–44 Overall, these genes are signif-
icantly hazardous to patient survival, and some of them 
(ITGB1, CD44) are also closely associated with the CMS 
parameters, which makes them potential markers and tar-
gets to enhance patient survival based on patient-specific 
transcriptomic information.

Our study has some limitations and points to future 
work. While we would expect that the faster migration 
speed in MES cells may contribute to the lower survival 
found in MES patients vs. CL or PN,15,16 we suspect that 
other confounding variables need to be included in the fur-
ther analysis, such as age2 and immune response15,16 in 
order to better predict patient survival. While we had hoped 
to identify genes that are associated with the F-actin po-
lymerization rate, we found only 1 statistically significant 
correlation. It is likely that we will need a larger cohort of 
patient cells with greater sequencing depth in actin, motor, 
and clutch genes. In order to be of clinical utility, future 
work will need to prospectively test transcriptomic pre-
dictions in terms of cell migration and drug sensitivities, 

rather than the retrospective relationships identified in the 
present study. Even so, the overall results provide a proof 
of concept that CMS-based mechanical biomarkers can be 
used to describe cell migration dynamics, predict differen-
tial drug sensitivities, and identify correlations with mech-
anistically relevant mRNA transcript levels. This platform 
allows us to predict on a patient-by-patient basis the most 
effective intervention (ie intervention with the greatest 
predicted sensitivity) to suppress cancer cell migration, 
similar to how migration speed can be estimated via ma-
chine learning–based detection of features in clinical MRI 
images.31

Supplementary material

Supplementary material is available online at Neuro-
Oncology Advances (https://academic.oup.com/noa).
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