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Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM) is widely expressed in the
immune system. Abnormal expression of CMTM is associated with the development of various diseases. This article summarizes the
relevant research on the role of the CMTM family in immune disorders. This information will increase our understanding of
pathogenesis and identify promising targets for the diagnosis and treatment of autoimmune diseases. The CMTM family is highly
expressed in peripheral bloodmononuclear cells. CKLF1may be involved in the development of arthritis through its interaction with
C-C chemokine receptor 4. CKLF1 is associated with the pathogenesis of lupus nephritis and psoriasis. Both CMTM4 and CMTM5
are associated with the pathogenesis of systemic lupus erythematosus. CMTM1, CMTM2, CMTM3, and CMTM6 play a role in
rheumatoid arthritis, systemic sclerosis, Sjögren syndrome, and anti-phospholipid syndrome, respectively. The CMTM family has
been implicated in various autoimmune diseases. Further research on the mechanism of the action of CMTM family members may
lead to the development of new treatment strategies for autoimmune diseases.
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Introduction

The chemokine-like factor super family (CKLFSF), a new
class of chemokines, was discovered by Peking University
HumanDisease Gene Research Center. CKLF1, which was
isolated from phytohemagglutinin (PHA)-stimulated U937
cells, was the initial member of the CKLFSF.[1] Subsequent
studies identified CKLFSF1-8 using a combination of
bioinformatics and reverse transcription polymerase chain
reaction techniques. The CKLFSF consists of nine genes,
CKLF and CKLFSF1-8.[2,3] The characteristics of their
gene products lie somewhere between classical chemokines
and members of the transmembrane 4 super family
(TM4SF).[2] According to their structural features, the
Human Gene Nomenclature Committe recommended
denominating CKLFSF1-8 as CKLF-like MARVEL trans-
membrane (CMTM)1-8 [Figure 1].[4] The CMTM family
members are widely expressed throughout the immune
system and they are associated with autoimmune dis-
eases.[2] Therefore, CMTM members may represent
promising targets for the diagnosis and treatment in
autoimmune diseases. This article summarizes the relevant
research on the role of the CMTM family in the immune
system and autoimmune diseases.
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CMTM Family Members and the Immune System

CKLF1

CKLF1 is located on chromosome 16q 22.1 and has four
exons and three introns. There are at least three alternative
RNA splicing forms: CKLF2, CKLF3, and CKLF4. The
expression of CKLFs in tissues is variable. CKLF1
expression is similar to that of CKLF2, but higher than
that of CKLF4. CKLF3 expression is comparatively the
lowest. CKLF1 and CKLF3 are secreted proteins, while
CKLF2 and CKLF4 are transmembrane proteins. CKLF2
and CKLF4 are primarily located on the cell periphery.[1]

CKLF1 is different from classical chemokines. CKLF1 has
a CC motif, but lacks the additional C-terminal cysteines
as compared with the other classical CC sub-family
members.[1] However, the key amino acids surrounding
the CKLF1 motif are similar to those of thymus-and
activation-regulated chemokine (TARC)/C-C class chemo-
kines (CCL) 17 and macrophage-derived chemokine
(MDC)/CCL22.[2] Previous studies have shown that both
TARC/CCL17 and MDC/CCL22 are specific ligands for
C-C chemokine receptor 4 (CCR4).[5,6] Several in vitro
experiments found that CKLF1 induced calcium flux in
CCR4-transfected HEK293 cells and desensitized CCR4
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Figure 1: The composition of the CMTM family. The characteristics of CMTMmembers lie between that of classical chemokines and transmembrane 4 super family (TM4SF) members. CCL:
C-C class chemokines; CMTM: Chemokine-like factor (CKLF)-like MARVEL transmembrane; CX3CL: CX3C chemokine ligand; MDC: Macrophage-derived chemokine; TARC: Thymus-and
activation-regulated chemokine.
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transfectants to subsequent TARC/CCL17 treatment.
Meanwhile, the internalization of CCR4 receptors was
significantly increased following treatment with CKLF1 in
pCCR4-enhanced green fluorescent protein transfected
cells.[7] CKLF1 is a novel functional ligand for CCR4.[8]

CCR4 is a chemokine receptor that has been shown to
promote recruitment, homing, and education of activated
leukocytes (mainly CD4+ Th2 lymphocytes).[6,9] More-
over, CCR4 is expressed on dendritic cells (DCs),
basophils, T cells, and platelets.[10] This suggests that
the interaction of CKLF1 with CCR4 might play a role in
autoimmune diseases.

CKLF1 has a broad spectrum of chemotactic activity for
many cells including lymphocytes, macrophages, and
neutrophils.[11] Li et al[12] reported that CKLF1 expression
was increased in activated CD4+ and CD8+ lymphocytes.
They further explored the kinetic expression of CKLF1 in
PHA-stimulated (specific for T lymphocytes) peripheral
blood lymphocytes and found that CKLF1 was signifi-
cantly increased in a time-dependent manner. This was
similar to the expression of CD25 (an activation marker of
T cells).[12,13] These studies suggest that CKLF1 could be
involved in T lymphocyte activation.[14] Previous studies
have shown that CKLF may exhibit chemotactic activity
and activate neutrophils through mitogen-activated pro-
tein kinase (MAPK) pathway. Anti-CKLF1 antibody
decreased the production of the inflammatory factors
tumor necrosis factor (TNF)-a, interleukin (IL)-1b,
macrophage inflammatory protein-2 and IL-8 as well as
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the adhesion molecules, intercellular adhesion molecule 1
and vascular cell adhesion molecule 1.[15] In addition,
CKLF1 was found to be highly expressed in monocytes.
Shao et al[16] reported that, during DCs differentiation,
CKLF1 was increased on day 2 and decreased on days 3 to
5. The expression of CKLF1 in DCs activated by stimuli
was demonstrated to be lower compared with immature
DCs.[16] DC maturation requires the activation of nuclear
factor (NF)-kB transcription.[17] In a recent study,
researchers demonstrated that IMM-H004 (a novel
coumarin derivative screened from a CKLF1/C-C CCR4
system) protects against ischemic stroke-induced inflam-
mation through a CKLF1 pathway in coordination with
NF-kB.[18-20] Thus, the function of CKLF1 in DC
maturation may involve the NF-kB pathway.[16] Further-
more, GC-Th cells were shown to significantly up-regulate
the expression of C-X-C motif chemokine ligand (CXCL)
13, CKLF1 and inducible co-stimulator, which are
important costimulatory molecules in the humoral im-
mune response and germinal center formation.[21]

CKLF1 has two secreted forms at the C-terminus, known
as C19 and C27.[22] The C19 peptide lacks eight amino
acids at its N-terminus compared with the C27 peptide.
This truncated region is important for receptor chemotaxis,
calcium flux, and heparin binding.[23] Both C19 and C27
can interact with CCR4, whereas C27 exhibits more
activity than C19. C27 acts as an agonist of CCR4, whereas
C19 acts as an antagonist.[22] Furthermore, C19 and
C27 inhibit stromal cell-derived factor-1 (SDF-1)-induced
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C-X-C motif chemokine receptor (CXCR) 4-mediated
chemotaxis by binding to CCR4 and activating phosphati-
dyl inositol 3-kinase /protein kinase C pathway-mediated
cross desensitization.[24] Both C19 and C27 may increase
the capacity of immature DCs to induce proliferation
and interferon (IFN)-g production by T cells. C19 and C27
also up-regulate the expression of HLA-DR and the
production of IL-12 in immature DCs.[25] Zheng et al[26]

reported that intranasal treatment with large doses of C19
significantly reduced the numbers of Th2 cells. Finally, the
expression of CKLF1 is up-regulated in various autoim-
mune diseases.[27]
CMTM1–5

CMTM1–4 is located in a gene cluster on chromosome
16q22.1.[28]CMTM1 consists of seven exons, six introns,
and consists of 23 isoforms that are highly expressed
in testis and tumor tissues. CMTM1 may play a role in
spermatogenesis or testicular development and tumor-
igenesis.[29,30]CMTM2 is tightly linked with CMTM1,
which is also highly expressed in testis, located in
spermatogonia and secreted into the seminiferous tubules.
Meanwhile, CMTM2 is expressed in bone marrow and
peripheral cells, including CD4+T cells.[31] Intra-cellular
CMTM2 can negatively regulate HIV-1 transcription in
Jurkat (lymphoblastoid T-cell line) and U937 (human
monocyte cell line) cells by targeting the AP-1 and cyclic
adenosine monophosphate (AMP) response element
binding (CREB) signaling pathways. CMTM2 may have
unknown immune related functions.[32]

CMTM3 is highly expressed in the immune system and the
male reproductive system.[4] Previous study reported that
CMTM3 was highly expressed in peripheral blood
mononuclear cells (PBMCs).[2] In a cDNA library prepared
from peripheral blood, CMTM3 was predominantly
expressed in resting B lymphocytes. CMTM3 is also
highly expressed in CD4+ T lymphocytes and monocytes.
These studies suggest that CMTM3 has a significant
function in the immune system.[4] Moreover, CMTM3 can
be released via exosomes.[33] CMTM4 has three transcript
variants, CMTM4-v1, CMTM4-v2 and CMTM4-v3.
CMTM4 is a regulator of the programmed cell death-
ligand 1 (PD-L1) protein.[34]

CMTM5 is located on chromosome 14q11.2.[35] While
studying granulopoietic gene expression, Liu et al[36] found
that CMTM5was expressed in the granulocyte system and
is up-regulated during the process of differentiation.
CMTM5 may have immune related functions. CMTM5-
v1 is secreted via a vesicle-mediated secretory pathway.[37]
CMTM6–8

CMTM6–8 is located in a gene cluster on chromosome
3p22. CMTM6 is a widely expressed protein.[38] Studies
have shown that CMTM6 regulates anti-tumor immunity
by maintaining the expression of PD-L1.[39] Interference
with CMTM6 expression resulted in impaired PD-L1
protein expression in all tested tumor cell types and
primary human DCs.[39] Murine CMTM7 is highly
expressed in immune cells.[40] Thus, CMTM7 may play
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an important role in the immune system. CMTM7 links B
cell receptor (BCR) and B-cell linker protein (BLNK), and
initiates BLNK-mediated signal transduction in B cells.[41]

Zhang et al[40] demonstrated that CMTM7 plays a specific
role in BCR expression and survival of B-1a cells. A recent
study reported thatCmtm7 controls B-1a cell development
at the transitional stage.[42] Moreover, increased numbers
of B-1a cells are often associated with autoimmunity.[43]

CMTM8 is more structurally similar to TM4SF11[2] and
is a negative regulator of epidermal growth factor (EGF)-
induced signaling.[44]
CMTM Members and Autoimmune Diseases

Autoimmune diseases represent a series of diseases,
ranging from organ-specific diseases (antibodies and
T cells react to localized autoantigens in specific tissues)
to organ-non-specific or systemic diseases (characterized
by reacting to antigens distributed throughout various
tissues).[45] According to previous studies, CMTM mem-
bers are highly expressed in the immune system.[2] Here,
we discuss the relationship between the CMTM and
autoimmune diseases.
CKLF1

Systemic lupus erythematosus (SLE) is a systemic autoim-
mune disease characterized by an autoimmune response to
self-antigens which can affect organs and tissues such as
the brain, blood, and kidneys.[46,47] Lupus nephritis (LN)
is a major risk factor for morbidity and mortality in SLE
patients.[48] Previous studies have suggested that the
pathogenesis of LN was associated with neutrophil
activation. In a model of SLE, researchers reported that
the disease may initiate pre-clinically with an IFN response
followed by differentiation of B cells into plasmablasts.[49]

As mentioned above, CKLF1 was associated with neutro-
phil activation, IFN production, and B cell function.
CKLF1 may play a role in the pathogenesis of LN. The
expression of the CKLF gene was found to be associated
with the development of LN in a study of the molecular
mechanism of renal inflammation during the progression,
remission, and recurrence of LN in mice.[50] High
expression of CKLF1 may be related to the excessive
involvement of inflammatory cells in chemotaxis and
CKLF1 may mediate the immune inflammatory reaction
process observed in LN [Figure 2]. In this experiment,
CMTM was transferred into SLE mice, resulting in high
expression of CKLF1, which increased the urine protein
level in SLE mice and aggravated the inflammatory
reaction.[51] In a clinical study, the expression of CKLF1
in lupus patients was increased and positively correlated
with the lupus active index compared with healthy
controls.[52]

Rheumatoid arthritis (RA) is a chronic inflammatory joint
disease, which can lead to cartilage and bone damage.
Early diagnosis is the key to optimal treatment.[53] T-cell
response may be involved in the pathogenesis of RA.[54] An
increase in citrulline-specific T-helper-1 cells was found in
the circulation of patients with RA, especially in patients
with early disease.[55] Leukocyte infiltration into the
synovial and chemokine network play a role in the
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Figure 2: The major mechanisms regulated by CKLF1 in autoimmune diseases. CKLF1 may mediate the immune inflammatory reaction process in LN; CKLF1 may promote development
and progression of the inflammatory response and neo-angiogenesis and inhibit cartilage cell proliferation in RA; CKLF1 may promote the proliferation of endothelial cells, participate in local
inflammation and dysregulate the function of psoriatic skin cells. CCR4: C-C chemokine receptor 4; CKLF: Chemokine-like factor; ERK: Extracellular signal-regulated kinase; IFN: Interferon;
IL: Interleukin: MAPK: Mitogen-activated protein kinase; PMNs: Polymorphonuclear leukocytes; LN: Lupus nephritis; Th: T helper cells; RA: Rheumatoid arthritis; TNF: Tumor necrosis factor.
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pathogenesis of RA.[56,57] Osteoarthritis (OA) is the
most common joint disease that affects one or several
diarthrodial joints.[58] OA is considered to be a disease of
the whole joint, including articular cartilage, subchondral
bone, ligament, articular capsule, and synovium, which
eventually leads to joint failure.[59] Ankylosing spondylitis
(AS) is a chronic inflammatory arthritis and the initiation
of AS is unknown. T cells and TNF-a are involved in the
pathogenesis of AS.[60] Chemokines play an important role
in the pathogenesis of arthritis by inhibiting the synthesis
and metabolism of articular cartilage and promoting the
degradation of the matrix.[61] Rioja et al[62] reported that
CKLF1, as measured by microarray analysis, was up-
regulated in joints in a reactivation model of SCW-induced
arthritis in Lewis (LEW/N) rats. A recent study found that
the expression of CKLF1 was up-regulated in synovium
from AS and RA patients, and CCR4 mRNA levels were
increased in RA patients, but not in OA or AS patients.
Meanwhile, this study also found that the expression
levels of CKLF1 were correlated with C-reactive protein/
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erythrocyte sedimentation rate (ESR) and ESR in RA and
AS patients, respectively.[63] Dysregulation of NF-kB plays
an important role in the pathogenesis of arthritis.[64] Keith
et al[65] reported that WAY-169916, a selective NF-kB
transcriptional inhibitor, caused a marked decrease in
CKLF1 expression in rat spleens. Consequently, CKLF
may bind to CCR4 and promote development and
progression of the inflammatory response and neo-
angiogenesis in rheumatic diseases [Figure 2].[63] Further-
more, CKLF1 may inhibit cartilage cell proliferation,
collagen, and protein polysaccharide synthesis.[66] Thus,
CKLF1 may play an important role in the pathogenesis of
arthritis.

Psoriasis is an immune-mediated genetic disease charac-
terized by hyperproliferation of the epidermis, accumula-
tion of inflammatory cells, and dilation of dermal papillary
vessels.[67] CKLF1 is associated with the pathogenesis of
psoriasis. A recent study has shown that CKLF1 andCCR4
are highly expressed in psoriatic lesions. CKLF1 may
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promote the proliferation of microvascular endothelial
cells and contribute to local inflammation. It has been
demonstrated that the MAPK/extracellular signal-regulat-
ed kinase (ERK) signaling pathway plays an important role
in the pathophysiological function of psoriatic skin cells.
Studies have shown that the C19 and C27 peptides bind to
CCR4 and activate theMAPK/ERKpathway[68] [Figure 2].
CMTM1

Calcium (Ca2+) plays an important role in the pathogenesis
of autoimmunity and inherited immunological dysregula-
tion. Ca2+, as a second messenger, regulates many cell
functions including gene transcription, apoptosis, and the
immune response.[69] Previous studies have shown that
intra-cellular Ca2+ signaling plays a role in the pathogene-
sis of RA.[70] Rheumatoid arthritis synovial fibroblasts
(RASFs) are important effector cells that cause joint
inflammation and deformities.[71] While studying the
mechanism of celastrol in RA, Liu et al[72] found that
the expression of CMTM1 was down-regulated in RASFs
from patients treated with celastrol. They further found
that celastrol treatment mobilized cytosolic Ca2+ in RASFs.
As described, a regulatory role exists for celastrol-induced
Ca2+ signaling in synovial fibroblasts of RA patients.
Wong et al[73] also reported that CMTM1 may be
suppressed by calmodulin.
CMTM2

In 2007, Kuttapitiya et al[74] used a detailed histologic and
microarray analysis to investigate knee OA bone marrow
lesions. They found that the expression of CMTM2 was
down-regulated in OA patients compared with healthy
controls.[74] Systemic sclerosis (SSc) is a chronic autoim-
mune disease characterized by progressive fibrosis of
the skin and internal organs.[75] Previous studies indicated
that SSc was associated with multiple susceptibility genes
including HLA-classII, PTPN22, IRF5, and STAT4.
While determining if polymorphisms in the C8orf13-
BLK region were associated with SSc, Gourh et al[76]

discovered that CMTM2 was differentially expressed
in SSc peripheral blood cells between rs2736340-
rs13277113 heterozygotes versus homozygotes. Pimen-
tel-Santos et al[77] used a whole-genome microarray
approach to identify candidate genes associated with AS
and to measure gene expression changes occurring during
the disease process. They discovered that CMTM2was up-
regulated in the peripheral blood of AS patients.[77]
CMTM3

Sjögren syndrome (SS) is an autoimmune disease charac-
terized by lymphocytic infiltration of the exocrine glands
resulting in significant reduction of saliva and tear
production.[78] In 2011, Hu et al[79] utilized a protein
microarray approach to identify salivary autoantibody
biomarkers for primary SS (pSS). They reported that there
was an elevated interaction of CMTM3 with autoanti-
bodies in SLE and pSS patients compared with those from
healthy control subjects.[79]
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CMTM4

Encore is an open source network analysis pipeline for
genome-wide association studies and rare variant data.
To demonstrate Encore utility in the analysis of genetic
sequencing data, Davis et al[80] analyzed the exome
resequencing data from healthy individuals and those
with SLE. They found a novel candidate gene, CMTM4,
associated with their epistasis network model of the exome
data.[80] Variability in DNAmethylation levels contributes
to recruitment and expression balance of inflammatory
cytokines and to the development of autoimmune diseases.
A better understanding of cytokine methylation variation
among autoimmune diseases will help to identify potential
epigenetic biomarkers and therapeutic targets.[81] Wang
et al[81] reported that the methylation status of the
CMTM4 promoter was significantly different in SLE,
RA, and pSS.
CMTM5

The pathogenesis of lupus remains unclear. Dysregulation
of gene expression, accompanied by accumulation of
abnormal transcripts, may lead to apoptosis or increased
expression of IFN-1.[82] In SLE patients, sense-antisense
duplex RNA can drive IFN-1 expression and antisense
transcripts can regulate cis transcription.[83] Shi et al[84]

found approximately 5000 coding genes had antisense
transcription strands in monocytes of SLE. The antisense
transcriptional activity of CMTM5 was much higher
compared with sense transcription in SLE patients.[84]

CMTM5 may contribute to the immunologic dysregula-
tion observed in SLE. As mentioned above, variabilities in
methylation status of inflammatory cytokines play an
important role in autoimmune diseases. Wang et al[81] also
found that CMTM5 was hypermethylated in SLE and pSS,
but hypomethylated in RA.
CMTM6

Anti-phospholipid syndrome (APS) is an autoimmune
disorder characterized by arterial and/or venous thrombo-
sis, pregnancy morbidity, and the presence of anti-
phospholipid antibodies.[85] Previous studies have sug-
gested that neutrophils are involved in the pathogenesis
of APS. Neutrophil extracellular traps (NETs) play an
important role in APS because neutrophils of APS patient
are prone to spontaneous NET release.[86] Recently,
Knight et al[87] found that CMTM6 was up-regulated in
the neutrophils of APS patients.
CMTM7, CMTM8

At present, CMTM7 and CMTM8 have been identified
primarily in tumor and cardiovascular diseases.[88-90]

There are no relevant reports with respect to their
involvement in immunologic diseases.

Several studies have indicated that CMTMs have a
significant association with tumorigenesis and metastasis.
For example, CMTM7 promotes the internalization of
epidermal growth factor receptor (EGFR) and inhibits cell
proliferation andmetastasis.With respect to protein kinase
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(AKT) and ERK activation, Liu et al[91] found that
CMTM7 down-regulated AKT phosphorylation and
inhibited ERK activation in KYSE180 cells, thus inhibiting
EGFR activation of downstream targets.[91] Previous
studies concluded that cancer and autoimmune diseases
represent fundamentally different pathological conditions.
The fact that cancer and autoimmune diseases may
sometimes occur in the same person indicates that there
may be a connection between these two different clinical
conditions.[92] The “internal pathway” occurring in tissue
cells links cancer with inflammation, thus genetic events
that activate oncogenes or inhibit tumor suppressor genes
may also lead to the induction of inflammatory proteins.
For example, EGFR activation can activate cyclooxygen-
ase-2 by activation of transcription factors Sp1 and p38-
MAPK.[93] Therefore, more studies are needed to define the
relationship between CMTM and autoimmune diseases.

At present, a large number of studies have shown that
CMTM is closely related to the function of the immune
system. CMTM plays an important role in the pathogene-
sis of many autoimmune diseases. Previous studies have
reported that CMTM is highly expressed in the immune
system and participates in T cell and B cell activation.
However, as a member of the chemokine superfamily,
studies on the role of CMTM in autoimmune diseases are
limited. The relationship between other family members
and autoimmune diseases exists primarily at the level of
expression, except for CKLF1 which has been studied in
autoimmune diseases. The number of studies showing that
CMTM is involved in the occurrence and development of
autoimmune diseases has increased. CMTMmay be useful
as a new prognostic factor or therapeutic target in the
future. This will require further understanding of how
CMTM participates in the pathogenesis of autoimmune
diseases.
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