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Abstract: Hyaluronic acid (HA) is a glycosaminoglycan that was first isolated and identified from the
vitreous body of a bull’s eye. HA is ubiquitous in the soft connective tissues of animals and therefore
has high tissue compatibility for use in medication. Because of HA’s biological safety and water
retention properties, it has many ophthalmology-related applications, such as in intravitreal injection,
dry eye treatment, and contact lenses. Due to its broad range of applications, the identification and
quantification of HA is a critical topic. This review article discusses current methods for analyzing
HA. Contact lenses have become a widely used medical device, with HA commonly used as an
additive to their production material, surface coating, and multipurpose solution. HA molecules
on contact lenses retain moisture and increase the wearer’s comfort. HA absorbed by contact lenses
can also gradually release to the anterior segment of the eyes to treat dry eye. This review discusses
applications of HA in ophthalmology.

Keywords: hyaluronic acid; contact lenses; ophthalmology

1. Introduction

Hyaluronic acid (HA) is a natural high-molecular-weight biopolymer. It belongs to the
group of long linear nonsulfated glycosaminoglycans (GAGs) with repeating disaccharide
units of glucuronic acid and acetylglucosamine [1–3] (Figure 1). HA contains multiple
hydrophilic functional groups, including carboxyl, hydroxyl, and acetamido groups [4,5].
The abundant hydroxyl groups form a hydrogen bond with water, leading to a high
capacity to retain water in a spiral chain [6]. HA’s biocompatibility is because of its high
structural homology with endogenous HA in humans [7]. When dissolved in aqueous
solution, HA swells and the chains of HA entangle and become random coils, leading to
its unique viscoelasticity [6,8,9]. Because of its advantageous characteristics, such as high
water retention, high biocompatibility, and viscoelasticity [10], HA has a wide range of
applications for medicine, aesthetic medicine, and cosmetics.

Various biological functions of HA are related to its level of polymerization. High-
molecular-weight HA (≥106 Da) inhibits inflammation through its interaction with the
cluster of differentiation 44 (CD44) cell surface receptor and the HA-mediated motility
receptor [4,11]. High-molecular-weight HA can also form a film on the skin’s surface
that retains water and prevents water loss [1,12]. Conversely, low-molecular-weight HA
(<106 Da) promotes the macrophage inflammatory process by macrophage activation
to remove infectious materials from the wound site [4,13]. Low-molecular-weight HA
has a high capacity to penetrate skin that ensures a strong moisturizing ability [1,12].
Reducing the molecular weight of high-molecular-weight HA through physical or chemical
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methods can increase HA’s potential applications. Physical pretreatment methods, such as
ultrasonic degradation [14,15], ozone treatment [16], electron beam [17], gamma ray [13] or
microwave irradiation, and thermal treatment [17], do not destroy the chemical structure
of HA. However, chemical methods such as enzymatic [18] and acid degradation [15] break
the structure of HA.
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HA is synthesized in humans by HA synthases, including hyaluronan synthase 1,
hyaluronan synthase 2, and hyaluronan synthase 3, mostly present in the extracellular
matrix of vertebrate tissue [4,5,19]. HA is present in the umbilical cord (4100 µg/g),
synovial fluid (1400–3600 µg/g), dermis (200 µg/g), vitreous body (140–338 µg/g), and
brain (35–115 µg/g) [20–23]. HA was originally extracted from animal tissue [4,24,25], but
the process is tedious and complicated and the quality uncontrollable, with potentially
low yield and a risk of protein and virus pollution [6,26]. Microbial fermentation has
been widely used to produce HA but the safety and compatibility with the human body
of such HA is of the utmost concern [4,6,24–26]. Numerous toxicity assays of HA have
demonstrated that in terms of cytotoxicity, L929 mouse fibroblast cells have no toxic effect [7,
27–29]. The carcinogenicity of HA was tested by the mouse, and no tumor growth was
observed after delivered through oral administration of 200 mg/day for 4 weeks [7,30,31].
Concentrations of 670 mg/kg/day HA in rats and 50 mg/kg/day HA in rats and rabbits
delivered through oral administration and subcutaneous administration have exhibited no
adverse effects in reproductive and developmental toxicity assays [7,31–33]. These results
have demonstrated the safety of HA.

HA exhibits good versatility in application. Because it retains water well, it can
be employed to increase tear film stability to treat dry eye disease [34]; it can be added
to contact lens during production [35] and contact lens care solutions [36] to increase
comfort; and it can be used in skin care products [37] or added to health food to reduce
dry skin [38,39]. Due to its high biocompatibility, HA can enhance tissue growth to heal
wounds when combined with receptors on the cell surface [13] or form dermal fillers to
improve wrinkles [40]. HA’s high viscoelasticity can decrease friction on the ocular surface
during blinking to treat dry eye [34] and keratoconjunctivitis sicca [41] or improve synovial
fluid quality and reduce joint friction in the treatment of osteoarthritis [42].

2. HA Identification and Quantification Methods

Despite its already numerous applications in various fields, it is necessary to prop-
erly inspect and confirm HA’s physical properties, such as its structure type, molecular
weight, and concentration, to determine its ideal use. HA extracted from animals and
microorganisms alike requires multiple purification steps [14,43–45]. The identification
and quantification of purified HA requires various pretreatments to prepare HA for further
analysis, including enzymatic degradation [18,46,47], acid hydrolysis [48], labeling [48],
acid digestion [49], and derivatization [46,48].

After pretreatment, the HA can be detected through traditional electrophoresis of a
membrane [50] or gel [18,44,47] matrix. Compared with membrane or gel electrophoresis,
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advanced capillary electrophoresis is simple, rapid, and sensitive, with high separation
efficiency [51–53]. Scientists use high-performance liquid chromatography (HPLC) with
ultraviolet or mass detection to analyze HA in complicated biological samples [48,54,55].
Although HPLC columns are expensive, this technique is effective for analyzing HA
quantitatively and qualitatively with high detection sensitivity. Other analytical techniques
applied to HA analysis include Fourier transform infrared spectroscopy [15–17], circular
dichroism [15], ultraviolet–visible absorption spectroscopy [15–17], and nuclear magnetic
resonance spectroscopy [13,16,56]. Quantitative and qualitative methods of analyzing HA
are summarized in Table 1.

Table 1. Methods of analysis applied to hyaluronic acid (HA).

Analysis Method Hyaluronic Acid
Characterization Sample Linear Range LOD Detection Range

FTIR

1. 3412–3435 cm−1 (O-H and
N-H stretching)

2. 2916-2919 cm−1 (C-H
stretching)

3. 1632–1653 cm−1 (amide I),
1553–1563 cm−1 (amide II), 1320

cm−1 (amide III)
4. 1617 cm−1 (asymmetric C=O

stretching)
5. 1411–1416 cm−1 (symmetric

C-O stretching)
6. 1150 cm−1 (O-bridge of

C-O-C group), 1079 cm−1 (C-O,
C-C groups), 1042 cm−1 (C-OH

group)
[15–17]

2 mg [44,45] - - -

CD

1. 183 nm (carboxyl π–π*
transition).

2. 187 nm (π–π* transition of
GlcNAc)

3. 210 nm (π–π* transition
carboxyl group) [15]

0.5 mg/mL [15] - - -

UV-Vis
1. ~210 nm (carbonyl-or

carboxyl groups) [43]
2. 265 nm (double bond) [13,17]

0.5–2 mg/mL [13,15] - - -

NMR

1. 25, 57, 63, 71, 76, 79, 83, 85,
103, 106, 177 ppm (13C) [45]

2. 171 ppm (carboxylate
carbon), 175 ppm (acetamido

carbonyl carbon (13C) [13]
3. 1.89 (CH3-group), 3.70

(CH2-group), 3.69 (NH-group),
4.3–4.4 (OH-group) ppm

(1H) [56]

- - - -

Carbazole 516 [56] or 540 nm [44] - - - 0.03–1.7 g/L [44] or
6–10 g/L [56]

ELISA 450 nm [50] - - - 150–250 ng⁄µg [50]

Gel EP
1. 515 nm (ANTS-label) [18]

2. Alcian blue with silver and
Stains-all stain [44,47]

- ~25–500 kDa
[44,47] - 4–20-mer [18]

Membrane EP Polysaccharides in Alcian blue
stain [50] - - - -

CE 200 nm [51,53], 195 nm [52] -
50–150 ppm [52]

or
0.02–3.0 ppm [53]

1 ppm [52]
9 ppm [53] -
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Table 1. Cont.

Analysis Method Hyaluronic Acid
Characterization Sample Linear Range LOD Detection Range

HPLC coupled with
MALS - 0.05–0.1 mg [14,47] - -

75–1000 kDa [15]
or

510 kDa [51]

HPLC coupled with
VD - 0.1 mg [14] - - 470–1600 (mL/g) [14]

HPLC coupled with
RID - 0.1–2 mg [13,14,43] 270–2000 kDa

[43] -
60–23,000 kDa [13]

or
180–1100 kDa [14]

HPLC coupled with
FL

λex = 428 nm, λem = 525 nm
[46] - 1.6–47 µg [46] 2.7 ng [46] -

HPLC coupled with
MS

Positive ionization mode [48,49]
Negative ionization mode

[46,54]
-

0.5–500 pmol [54]
or

0.01–1.0 mg/mL
[48]

0.6 g/mL [49]
0.1 ppm [48] -

HPLC coupled with
UV 205 nm [55] - 0.01–0.15 mg/mL

[55] 0.45 ppm [55] -

Analysis instrument abbreviations: Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), ultraviolet–visible absorption
spectrum (UV–Vis), nuclear magnetic resonance spectroscopy (NMR), enzyme-linked immunosorbent assay (ELISA), electrophoresis
(EP), 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS), capillary electrophoresis (CE), high-performance liquid chromatography (HPLC),
multi-angle light scattering (MALS), viscometer detector (VD), refractive index detector (RID), fluorescence (FL), excitation wavelength
(λex), emission wavelength (λem), and mass spectrometry (MS). The limit of detection abbreviation is LOD.

Agarose gel electrophoresis [44], HPLC with a refractive index detector [13,14,43], or a
multi-angle light scattering detector [15,47,51] can be applied to identify the molecular
weight of HA after extraction from animals, microbial production, or degradation. To
reconfirm HA’s molecular weight, HPLC with a viscometer detector and multi-angle light
scattering detector can used to detect changes in HA’s viscosity and molecular radius [14].
These methods can be used to compare the antioxidant [14,43] and antiglycation activ-
ities [14] of HA of various molecular weights, identify HA in mouse plasma [51], and
prepare low-molecular-weight HA [15,47] to promote skin wound healing [13].

HA quantitation can be performed through a carbazole method [44,56], enzyme-
linked immunosorbent assay [50], capillary electrophoresis [51–53], or HPLC, coupled
with triple quadrupole mass spectrometry [48], fluorescence [46], mass spectrometric
detector [49,54], or an ultraviolet–visible detector [55], to determine the quantification
and detection limit [46,48,49,54,55]. The detection limit of capillary electrophoresis is
1–15 ppm [51–53]. The detection limit of HPLC coupled with fluorescence or different
mass spectrometry is 2.7 ng [46] and 0.11-4 ppm [48,49]. HPLC with an ultraviolet–visible
spectrum reached a detection limit of 0.45 ppm [55]. These methods can also be applied to
verify the labeled and declared content of HA [46], quantitatively compare HA in edible
fish intestines and liver [48], quickly quantify HA in biological and cosmetic products [52],
quantify HA in contact lens multipurpose solution, and analyze the release behavior
from contact lenses [55]. HA is also used in highly diverse and complex samples; thus,
developing improved methods of sensitivity detection is vital. Although each method has
its unique purpose, current HA analysis requires simple sample preparation, swift data
acquisition, and high sensitivity.

3. Applications of HA in Ophthalmology

HA is found in various tissues in the eye, including the aqueous humor, trabecular
meshwork, and vitreous body; through the cell surface glycoprotein CD44, HA can bind
easily with the cell membrane [57]. HA also moisturizes the eye, increases biocompatibility,
and prolongs drug residence time to enhance drug delivery [37,57–60]. These properties
allow for HA’s use in artificial tears, eye drops, in situ forming hydrogels, modified
nanoparticles, intravitreal injections, and tissue engineering (Table 2).
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3.1. HA in Artifical Tears and Eye Drops

Dry eye syndrome (DES) is a common ocular disorder related to age, gender, diet,
environment, disease, or surgery or occurring as a medication side effect [61–63]. HA can
be added to artificial tears to enhance and extend the duration of moisture retention and
therefore alleviate DES [60,64–67]. In eye drops, a high content of HA stabilizes tear films
and increases conjunctival goblet cells [68]. Along with HA concentration, Kojima and
colleagues reported that high-molecular-weight HA in eye drops exerts anti-inflammatory
effects [69]. Hybridization of high and low-molecular-weight HA in eye drops can protect
against dehydration of the corneal cell and promote wound healing [70]. A clinical study
indicated that high-molecular-weight HA eye drops can be an alternative treatment for
patients with severe dry eye [64].

HA can take different forms in eye drops and can be used in combination with another
compound, act as a vehicle for drug delivery, or form a bifunctional peptide polymer. HA
can be used with triglycerides, phospholipids, vitamin B12, coenzyme Q10, hydroxypropyl
guar, antibiotics, or steroids. HA used with above compound could increase tear film
thickness [71], improve oxidative stress in the conjunctival epithelium of patients with dry
eye [72], sustains ocular surface [73,74], and reduce DES symptoms [67,75,76]. Eye drops
containing HA are effective DES pharmaceutical vehicles [77]. HA can be combined
with other compounds or peptides to heal wounds [41] and to sustain ocular surface
lubrication [78].

3.2. In Situ Forming Hydrogel

Ointment is a more viscous topical treatment than eye drops and increases the resi-
dence time on the ocular surface to enhance drug absorption, although blurred vision is an
unwelcome side effect [79]. In situ gel has the advantages of both an aqueous solution and
an ointment. In situ gel is thermosensitive; it is an aqueous solution at low temperature
and, as temperature rises, becomes gelatinous. High viscosity prolongs ocular residence
time, which is a convenient property for ophthalmologic use [79–81]. HA is a natural
polysaccharide with viscous properties, and it can be used to adjust in situ gel viscosity
and degradation time [57,79–83].

Fungal keratitis, a type of cornea infection caused by a fungus, can lead to blind-
ness [84]. Hydrophobic ketoconazole is an effective treatment for fungal keratitis, but has
low solubility in aqueous solutions. Zhu and coworkers developed an in situ gel utilizing
poly(N-isopropylacrylamide) and HA as a vehicle for ketoconazole. To improve biocom-
patibility and ocular surface residence time, in situ gel with HA was used to prolong drug
release, with no irritant reaction exhibited in the rabbit eye tests. As well as creating a more
viscous gel, HA can increase the lower critical solution temperature to body temperature
for ease of use [79]. The sol–gel temperature also depends on HA concentration [83]. Re-
searchers have demonstrated that in situ gel aids drug absorption and drug delivery [80,81]
and improves eye comfort [82].

3.3. HA-Modified Nanoparticles

Using nanoparticles (NPs) is a practicable method to increase drug absorption. NPs
can be used as drug carriers for hydrophobic or unstable drugs. NPs interact with the
corneal epithelium and enter corneal cells to decrease drug degradation [57,85]. After mod-
ification by HA, the use of NPs leverages such advantages as improved lubrication, long
ocular residence time, and enhanced drug absorption [85,86]. Additionally, HA is prone
to bind with the cellular receptor CD44, rendering HA–NPs a suitable vector for gene
therapy [57].

Huang and coworkers used HA to modify gelatin loaded with epigallocatechin gallate
(GEH), a green tea polyphenol that can decrease inflammation on the ocular surface [87].
The modified gelatin NPs were added to eye drops to improve DES in rabbits. HA increases
the concentration of NPs on the cornea to enhance drug absorption. Following 3 weeks of
topical administration, clinical tests indicated that GEH reduced inflammatory cytokines
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(tumor necrosis factor alpha, interleukin 6, interleukin 1 beta and interleukin 8) in the
cornea and improved dry eye symptoms [85].

An HA–NP eye drop for glaucoma can achieve the drug absorption effect too. Patients
with glaucoma experience high intraocular pressure leading to optic atrophy, whereby
peripheral vision is gradually lost, eventually resulting in blindness [88,89]. Treatment for
glaucoma has low bioavailability and drug retention time, with more frequent adminis-
tration leading to adverse effects. Wadhwa and colleagues used HA-modified chitosan
(a biodegradable polysaccharide) nanoparticles (CS–HA–NPs) loaded with medicine to
improve drug retention time and reduce side effects from frequent administration [89].

Poly(lactic-co-glycolic) acid NPs coated with HA were applied to encapsulate lutein
to treat age-related macular degeneration [90]. Because the macula contains high concen-
trations of lutein to protect photoreceptor and retinal pigment epithelium cells, properly
suppling lutein prevents this degeneration [91]. Lutein is hydrophobic and easily degraded
by light and heat, but NPs can enhance its bioavailability, physical stability, and decrease
degradation. Furthermore, after modification of NPs with HA, HA–NPs can deliver lutein
without difficulty due to binding with CD44 [90].

Nanomicelle is a surfactant that can easily encapsulate hydrophobic drug that cannot
formulate in solution, but the toxicity and irritation to eye structure are disadvantages [92,93].
HA can prolong the drug duration time and increase the bioavailability to protect cornea
from the toxicity and irritation caused by surfactant. Terreni, E. and coworkers used HA to
modified nanomicelle to prolong drug resident time and decrease surfactant toxicity [94].

3.4. HA Application in Intravitreal Injections

Intravitreal injections can be used for the administration of drugs, gene therapy,
or the artificial vitreous humor. These injections can break through barriers that affect
drug absorption such as corneal tissue, tear flushing, tear secretions, or drug delivery
to target area located in the posterior eye [95,96]. Disadvantages of intravitreal injection
include an increase of intraocular pressure and the necessity of repeated injections due
to rapid drug release [96,97]. These drawbacks are burdens on the patient and may
induce complications [98–100]. The high biocompatibility, biodegradability, and capacity
to prolong drug release of HA make it ideal as an artificial vitreous material or intravitreal
injection drug component.

Drug intravitreal injections are widely used in ophthalmology, but the short-lived
effect of the drugs results in a need for repeated injections, which can cause side effects. Yu
and coworkers encapsulated bevacizumab, a treatment for ocular neovascularization, into
a hydrogel mixed with HA and dextran to slow drug release. The results demonstrated
that the gel was highly biocompatible, facilitated a more stable release of drugs compared
with a bolus injection, and could sustain drug effects for more than 6 months [99]. NPs
can also be administered through intravitreal injection [101–103]. NPs protect drugs from
degradation, extend the drug releasing duration, and reduce the frequency with which
injections must be administered. After modification with HA, NPs can effectively combine
with the affected cell through the binding of HA and CD44. Connexins, a 43-kDa mimetic
peptide, was loaded into HA–NPs to treat retinal disease, and their injection into Wistar
rats’ injured eyes improved drug duration and cell uptake [102].

Gene therapy uses intravitreal injection to break through barriers and reach the target
area [95]. The eye is suitable for gene therapy because of its immune privilege—the
inflammatory immune response is avoided to preserve its function [104,105]. Martens
and coworkers used cationic N,N’-cystaminebisacrylamide-4-aminobutanol modified with
HA as a vehicle loaded with anionic plasmid DNA for gene therapy. HA enhanced the
connection between vehicle and target cells (ARPE-19) by binding to CD44. The researchers
reported that low-molecular-weight HA can enhance the intravitreal injection of gene
therapy [95].

HA is a vitreous humor component and can therefore be used for artificial vitreous
humor [106,107]. HA can replace the silicone oil in vitrectomy and prevent side effects,



Molecules 2021, 26, 2485 7 of 15

cytotoxicity, silicone oil emulsification, or second surgery because of its biocompatibility
and biodegradability [108]. Raia and colleagues combined HA and silk fibroin through
enzymatic crosslinking, using horseradish peroxidase and hydrogen peroxide to increase
stability. Their study demonstrated that silk–HA hydrogel possesses biocompatibility and
stability as a vitreous substitute [106].

3.5. Tissue Engineering

HA is a critical component in the extracellular matrix. The extracellular matrix assists
in cell migration, adhesion, and the proliferation [109,110] of such cells as adipose-derived
stem cells and limbal epithelial stem cells [111,112]. These cells aid in corneal regener-
ation; specifically, by making a tissue-adhesive scaffold, corneal wound healing can be
promoted [113]. Because of HA’s capacity for promoting cell growth and wound healing,
Liu and coworkers crosslinked collagen and gelatin with HA to fabricate a film. An opti-
mized ratio of HA, collagen, and gelatin has better tensile strength, elongation strength,
water absorption, and contact angle. The morphology and methylthiazol tetrazolium assay
demonstrated the growth and proliferation of human corneal epithelium cells, demon-
strating that collagen–gelatin–HA (ratio 6:3:1) has appropriate biocompatibility for tissue
engineering [110]. HA hydrogel can also be used in corneal tissue engineering. Overrun-
processed porous HA hydrogels act as cell carriers for corneal endothelium cells and can
reconstruct the corneal endothelium. HA hydrogels exhibit biocompatibility with rabbit
corneal endothelium cells. In in vivo transplant tests, HA hydrogels were implanted into
the anterior chamber of an injured rabbit eye. The results indicated a significant increase
in endothelium cells after 4 weeks of treatment. The slit-lamp biomicroscopic image also
revealed a transparent cornea [114], indicating that the HA hydrogel had successfully
reconstructed the injured cornea. These results demonstrate that HA can be a scaffold for
tissue engineering.

Table 2. Applications of HA in Ophthalmology.

Ophthalmology Application Target HA Function

Artificial tear and eye drop Ocular surface

1. Increase the moisture retention [60,64–67]
2. Better tear film stability, ocular surface regularity, and quantity of

conjunctival goblet cells [68]
3. Anti-inflammatory effect [64,69]

4. Protect corneal cell dehydration [70]
5. Increase tear film thickness [71]

6. Improve dry eye patients’ conjunctival epithelium oxidative stress [72]
7. Have more effective treatment [73]

8. To reduce the DES symptom [67,75,76]
9. As DES pharmaceutical vehicle [77]

10. Heal wound [41,70]
11. Sustain ocular surface lubricated [74,78]

In situ gel Ocular surface

1. Adjust the viscosity and degradation time [57,79–83]
2. Increase the lower critical solution temperature for thermosensitive in

situ gel [79]
3. Help the drug absorption and drug delivery [80,81]

4. Provide better eye comfort [82]

Nanoparticles Ocular surface and
Retinal

1. Better lubricating, ocular residence time, and drug absorption
[85,86,89,90]

2. Increase mucoadhesion [89]
3. Increase cellular targeting by CD44 [57,89,90]

4. Decrease surfactant toxicity [94]

Intravitreal injection Vitreous humor
1. Increase cellular targeting by CD44 [95,102]

2. Biocompatibility and biodegradable for vitreous humor substitute
[100,106–108]

Tissue engineering Corneal 1. Benefit of cell growth and wound healing [110,114]

Abbreviations: dry eye syndrome (DES), cluster of differentiation 44 (CD44).
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4. Applications of HA on Contact Lenses

HA is biocompatible and effective at retaining moisture on contact lens. HA has been
applied in the contact lens field for almost 20 years, and the applications of HA include
incorporation into the lenses, surface modification, multipurpose solution supplementation,
stabilization of eye medication, and drug release sustainment (Table 3).

4.1. HA-Modified Contact Lenses Exhibit Enhanced Comfort

Contact lenses are divided into two classes based on their material, namely, hydrogel
and silicon hydrogel lenses. Silicon hydrogel contact lenses have better oxygen permeabil-
ity, but their hydrophobic characteristics may irritate eyes. When contact lenses soaked in
multipurpose solution absorb HA, HA can decrease the surface roughness of the lens [115].
HA-modified contact lenses exhibit enhanced surface water retention [116], reduce protein
adsorption [117,118], and slow tear removal, which considerably increases comfort. More-
over, the surfaces of contact lenses are coated with HA to enhance its biocompatibility with
human corneal epithelial cells [119].

4.2. HA Adsorption and Desorption on Contact Lenses

Because wearing contact lenses for prolonged periods may cause dry eye, HA-soaked
contact lenses retain moisture, thus solving this problem. In our previous study, we demon-
strated that contact lenses soaked in a higher-concentration HA solution released more
HA, although most HA was rapidly released in the first 30 min. When immersed in the
same concentration of HA solution, methafilcon A food and drug administration, (FDA),
Group IV, high water content, ionic polymer) contact lenses demonstrated the highest
attachment ability, and the polymacon (FDA Group I, low water content, nonionic polymer)
demonstrated the slowest release rate [55]. Scheuer and colleagues revealed that soaking
lenses in multipurpose solution containing HA overnight can promote retention of HA
on the lenses and that different contact lens materials that include hydrogel (four group,
including low/high water content and nonionic/ionic polymer) and silicon hydrogel have
different HA release rates [120]. Absorbed HA on contact lenses is typically released in the
first 2–3 h [121,122].

4.3. HA Release on Contact Lenses

The treatment of ocular diseases usually involves the administration of eye drop
medicine to the anterior eye, but this method requires application several times a day and
is burdensome to older patients or those with chronic disease. According to researchers,
approximately 5% of drugs reach the cornea through this administration method [7].
Because contact lenses are widely used, convenient, and inexpensive, they can act as the
medical delivery vehicle of continuous-release drugs. The incorporation of HA into contact
lenses not only aids the treatment of dry eye but also serves as a wetting or comfort agent.

HA is the foremost molecule in the treatment of dry eye through contact lenses. The
release rate of HA on HA-soaked contact lens is rapid in the first 6 h and then slows [123].
HA incorporated into contact lenses can be continuously released for 48 h [124]. Although
a higher HA concentration has a relatively high initial release percentage, an increase in
HA concentration does not extend release time duration [123]. For HA-laden contact lenses
that entrap HA to prolong release duration [125], the HA release time was up to 15 days in
a rabbit tear fluid test [123]. A molecular imprinting technique controls the release of HA
from hydrogel contact lenses at the rate of 6 µg/h for 24 h [126].

In regards to HA as a wetting or comfort agent applicate to contact lenses, Weeks
and coworkers reported that HA incorporated into hydrogel and silicone hydrogel contact
lenses continuously released HA for at least 3 weeks [127]. HA or drugs can be implanted
into contact lenses to avoid changing lens properties. HA is used as a comfort agent with
various antibiotic and glaucoma drug treatments to make patient wear more comfortable.
Contact lenses implanted with HA can sustain the release of HA up to 96 h to achieve
healing effects [128–130].
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4.4. Application of HA in Medical Lenses

HA assists in controlled drug release on contact lenses. Nguyen and coworkers
fashioned contact lens discs containing HA and drugs. Contact lenses containing HA
incorporate and release more of the drug, especially hydrophobic drugs, for 6 days [131].
HA is also used as an additive to hold timolol, a drug for the treatment of glaucoma.
When silicon hydrogel contact lenses were loaded with HA, the drug quantity on the
lens increased as did the release by approximately 2 days [132]. HA can be prepared as a
film to coat contact lenses and to temporarily adhere to cells, whose viability can then be
maintained to repair corneal damage [133].

Table 3. Applications of HA on Contact Lens.

Application HA Attach Contact Lens Manner Release Time Other Drugs

Comfortability Surface modification - -

Moisturization Immerse in HA-contain solution - -

molecule of treatment dry eye

Immerse contact lens in
HA-contain drug solution or
incorporate in contact lens

24 h (6 µg/h) [126], 48 h [124] and
96 h [125], 15 days [123] -

Wetting or comfort agent 96 h [128] and at least 3 weeks
[127]

Timolol [128,130]
Bimatoprost [130]

Drug release control 2 [132] and 6 [131] days
Ciprofloxacin-HCl and

dexamethasone phosphate [131]
Timolol [132]

Cell adhesion for corneal
damage repair

HA-contain film coating in
contact lens inner surface - -

5. Conclusions

HA reveals outstanding properties of hydrophilic, safety, compatibility, and special
viscoelasticity. It has been widely used in the field of ophthalmology. The applications of
HA in artificial tear and eye drop, in situ gel, nanoparticles, intravitreal injection, and tissue
engineering enhance eye comfortable and cure eye diseases. Moreover, HA applied in
contact lenses can improve wearing comfort, control drug release, and even be the molecule
to treat eye-related disease. Because HA is a macromolecule with flexible molecular weight,
manufacturing specific sizes of HA molecules may enhance the stability in the versatile
application. In the future, chemical medication of HA can further change the properties to
adapt the applications in the medical field. More importantly, HA is also a biodegradable
material, which can be used without increasing the burden to the environment.
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