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Background: Liver cirrhosis, as the terminal phase of chronic liver disease fibrosis, is associated with high 
morbidity and mortality. Traditional methods for assessing liver function, such as clinical scoring systems, 
offer only a global evaluation and may not accurately reflect regional liver function variations. This study 
aimed at evaluating the diagnostic potential of whole-liver histogram analysis of gadobenate dimeglumine 
(Gd-BOPTA)-enhanced magnetic resonance imaging (MRI) for predicting the progression of cirrhosis. 
Methods: In this retrospective study, 265 consecutive patients with cirrhosis admitted to the Department of 
Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University from August 2012 
to September 2019 were enrolled. After the exclusion criteria were applied, 117 patients (84 males and 33 
females) were divided into Child-Pugh A cirrhosis (n=43), Child-Pugh B cirrhosis (n=49), and Child-Pugh 
C cirrhosis (n=25). After correction for liver signal intensity with the spleen was completed, 19 histogram 
features of the whole liver were extracted and modeled to evaluate liver function, with the Child-Pugh class 
being incorporated as a clinical parameter. Receiver operating characteristic (ROC) curves were used to 
assess the diagnosis capability and determine the optimal cutoffs after a mean follow-up of 42.3±19.1 (range, 
8–93) months. The association between significant histogram features and the cumulative incidence of 
hepatic insufficiency was analyzed with the adjusted Kaplan-Meier curve model. 
Results: Among 117 patients (12%), 14 developed hepatic insufficiency through a period of follow-up. Five 
features, including the median (P<0.01), 90th percentile (P<0.01), root mean squared (P<0.01), mean (P<0.01), 
and 10th percentile (P<0.05), were significantly different between the groups with and without hepatic 
insufficiency according to the Kruskal-Wallis test; in the ROC curve analysis, the area under the curve (AUC) 
of these features was 0.723 [95% confidence interval (CI): 0.653–0.793], 0.722 (95% CI: 0.652–0.792), 0.722 
(95% CI: 0.652–0.792), 0.721 (95% CI: 0.651–0.791), and 0.674 (95% CI: 0.600–0.748) after correction, 
respectively (all P values <0.05). Median, 90th percentile, root mean squared, and mean were found to 
be significant factors in predicting liver insufficiency. The adjusted Kaplan-Meier curves revealed that 
patients with a feature level less than the cutoff, as compared to those with a level above the cutoff, showed 
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Introduction

Liver cirrhosis, as the terminal phase of chronic liver disease 
fibrosis, is associated with high morbidity and mortality (1). 
The advancement of cirrhosis from a compensated state to 
a decompensated state progresses at an annual rate of 5–11% 
and is marked with severe complications, including variceal 
bleeding, ascites, jaundice, and encephalopathy (2,3). 
Compared with the compensated state, decompensated 
cirrhosis is characterized by a lower quality of life and 
a poorer median survival of ~2 versus >12 years (4).  
Fortunately, cirrhosis progression can be reversed in 
a variety of liver diseases with close follow-up and the 
administration of effective therapies—specifically antiviral 
therapy—at the early stage (5,6). Identifying patients at 
a high risk of disease progression may be beneficial for 
clinical practice in developing varied monitoring schedules 
and tailored therapeutic strategies. Thus, it is critical to 
evaluate liver function and predict the progression of 
adverse outcomes for patients with cirrhosis (7,8).

Traditional methods for measuring liver function 
include the indocyanine green clearance test and clinical 
scoring systems, such as Child-Pugh score and the Model 
for End-Stage Liver Disease score (9-12). However, 
these measurements only offer a global assessment, and 
regional hepatic function may differ substantially across 
individuals with chronic hepatic disorders, which could 
lead to potentially inaccurate assessments of liver-related 
conditions. Noninvasive methods based on imaging have 
been investigated and proven to be comparable with 
conventional clinical measurements (13,14). Therefore, the 

quantitative assessment of regional liver function is being 
increasingly studied (15-17).

Gadobenate dimeglumine (Gd-BOPTA) is widely 
accepted and commonly used as a cost-effective hepatocyte-
specific contrast agent in both academic research and 
clinical practice (18). Several studies have confirmed that 
hepatobiliary-specific contrast agent-enhanced hepatic 
parenchyma magnetic resonance imaging (MRI) is an 
effective noninvasive method for assessing liver function 
and predicting the prognosis of patients with conditions 
such as liver fibrosis (18-22). One study reported that the 
liver ratio enhancement calculated using Gd-BOPTA-
enhanced MRI was clinically effective in evaluating liver 
function in a noninvasive manner, as the intracellular uptake 
of Gd-BOPTA decreased with impaired liver function (23). 
Therefore, hepatocyte-specific contrast-enhanced MRI is 
widely regarded as providing superior estimation of liver 
function from both global and regional perspectives (24). 
However, the routine Gd-BOPTA-enhanced liver MRI 
measurements have focused predominantly on calculating 
the mean value of signal intensity (SI)—a method that fails to 
consider the inherent spatial heterogeneity of the tissue (25). 

Histogram analysis using MRI reflects the SI distribution 
and quantifies the heterogeneity of pathological changes (26).  
Histogram parameters, such as skewness and kurtosis, 
mitigate the loss of diagnostic information that often occurs 
with the use of a single index or two-dimensional (2D) 
imaging methods. Given the uneven distribution of liver 
function (27), histogram analysis of whole-liver MRI SI has 
great potential to characterize both the overall and regional 
characteristics and better depict the liver function. To our 

a statistically shorter progression-free survival and higher incidences of hepatic insufficiency for significant 
features of median (cutoff =26.001; 21.28% versus 5.71%; P=0.02), 90th percentile (cutoff =86.263; 20.41% 
versus 5.88%; P<0.01), root mean squared (cutoff =1,028.477; 19.15% versus 7.14%; P=0.049), and mean 
(cutoff =27.484; 19.15% versus 7.14%; P=0.049). Patients with a 10th percentile less than −39.811 also 
showed a higher cumulative incidence of hepatic insufficiency than did those with a value higher than the 
cutoff (0.18% versus 7.46%; P=0.22).
Conclusions: Whole-liver histogram analysis of Gd-BOPTA-enhanced MRI may serve as a noninvasive 
analytical method to predict hepatic insufficiency in patients with cirrhosis.
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knowledge, the utility of whole-liver histogram analysis of 
hepatocyte-specific contrast-enhanced MRI in patients with 
liver cirrhosis has not been extensively reported. Therefore, 
this study aimed to investigate the diagnostic value of 
whole-liver histogram analysis of Gd-BOPTA-enhanced 
MRI in evaluating liver function and predicting progression 
in patients with cirrhosis. We present this article in 
accordance with the STARD reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-24-109/rc).

Methods

Study population

This study was registered in the Chinese Clinical Trials 
Registry Center (https://www.chictr.org.cn/indexEN.
html; registration number: ChiCTR2300072395) and was 
approved by the ethics committee of Shandong Provincial 
Hospital Affiliated to Shandong First Medical University 
(SWYX: No. 2021-399). This study was conducted in 
accordance with the guidelines of the Declaration of 
Helsinki (as revised in 2013). Due to the retrospective 
nature of this study, the requirement for informed consent 
was waived by the ethics committee. In this retrospective 
study, 265 consecutive patients with cirrhosis who 
underwent Gd-BOPTA-enhanced MRI admitted to the 
Department of Radiology, Shandong Provincial Hospital 
Affiliated to Shandong First Medical University from 

August 2012 to September 2019 were enrolled (the study 
execution time was from October 10, 2021, to May 1, 2022). 
The inclusion criteria were as follows: (I) complete Gd-
BOPTA-enhanced MR images; (II) results of pathological 
sections available [hematoxylin and eosin (HE) staining 
and immunohistochemical staining]; and (III) complete 
clinical data potentially related to liver function, including 
age, gender, Child-Pugh scores, and other clinical indexes. 
Meanwhile, the exclusion criteria were the following: 
(I) patients with hepatic tumors (n=52), (II) a history of 
surgery (n=34), (III) renal impairment (n=2), (IV) s lack of 
biochemical metric information (n=43), and (V) excessive 
motion artifact or absence of hepatobiliary phase images 
(n=17). Finally, a cohort of 117 patients (84 males and 33 
females) were included in the study (Figure 1). Clinical 
characteristics potentially related to liver function were 
systematically retrieved from the electronic medical records. 
According to surgical resection or an amalgam of clinical 
manifestations and radiological characteristics, individuals 
with hepatic cirrhosis were categorized as Child-Pugh A 
cirrhosis (n=43), Child-Pugh B cirrhosis (n=49), or Child-
Pugh C cirrhosis (n=25). The clinical data for all patients 
are summarized in Table 1. 

Patients were monitored for the development of hepatic 
insufficiency with a period of follow-up. The onset of 
hepatic insufficiency was defined as the presence of gross 
ascites, uncontrolled hepatic encephalopathy, jaundice, or 
death. 

Patients admitted to our hospital with 
liver cirrhosis who underwent Gd-BOPTA 

contrast-enhanced MRI, from August 
2012 to September 2019 (n=265)

Inclusion criteria:
•	 Complete Gd-BOPTA contrast-enhanced MRI 
•	 Available results of pathological sections 
•	 Complete clinical data potentially related to 

liver function

Exclusion criteria:
•	 Diffuse or multinodular hepatic tumors (n=52)
•	 Surgery history (n=34)
•	 Missing biochemical parameter data (n=43) 
•	 Image quality issues (n=17)
•	 Renal impairment (n=2)

Patients for estimation of liver function and prediction of clinical outcomes (n=117)

Child-Pugh A
 (n=43)

Child-Pugh B 
(n=49)

Child-Pugh C 
(n=25)

Figure 1 Flow diagram of the study population. Gd-BOPTA, gadobenate dimeglumine; MRI, magnetic resonance imaging. 

https://qims.amegroups.com/article/view/10.21037/qims-24-109/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-109/rc
https://www.chictr.org.cn/indexEN.html
https://www.chictr.org.cn/indexEN.html
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Table 1 Characteristics of the study population

Characteristic Value (N=117)

Demographic data

Gender: male/female 84/33

Age (years)*

Male 49.7±9.4 (30–83)

Female 54.5±11.3 (33–72)

Causes of liver cirrhosis, n (%)

Hepatitis B virus 95 (81)

Hepatitis C virus 3 (3)

Alcohol intake 26 (22)

Autoimmune hepatitis 6 (5)

NAFLD 2 (2)

Cryptogenic 10 (9)

Antiviral treatment 94 (80)

Serum markers* 

Total bilirubin (μmol/L) 68.1±95.6 (8.5–581.5)

Albumin (g/L) 35.4±6.0 (16.4–50.0)

Prothrombin time (s) 15.4±2.8 (10.7–23.9)

Prothrombin time (INR) 1.3±0.3 (0.9–2.5)

Creatinine (μmol/L) 68.0±18.2 (30.0–146.0)

Aspartate aminotransferase (U/L) 63.7±40.4 (15.0–272.0)

Alanine aminotransferase (U/L) 60.0±46.4 (10.0–269.0)

Glutamyltransferase (U/L) 76.6±65.7 (10.0–335.0)

Child-Pugh class, n (%)

A 43 (36.8)

B 49 (41.9)

C 25 (21.4)

MELD score, n (%)

≤10 52 (44.4)

11–20 55 (47.0)

>20 10 (8.5)

Hepatic insufficiency, n (%) 14 (12)

Intractable ascites, n (%) 5 (4)

Hepatic encephalopathy, n (%) 6 (5)

Mortality, n (%) 8 (7)

Liver transplantation, n (%)  1 (1)

*, data are the mean ± standard deviation with ranges in 
parentheses. NAFLD, nonalcoholic fatty liver disease; INR, 
international normalized ratio; MELD, model for end-stage liver 
disease.

MRI acquisition

MRI was performed using a 3T MR imaging scanner 
(MAGNETOM Verio or Prisma, Siemens Healthineers, 
Erlangen, Germany) outfitted with a phased-array body coil. 
The axial fat-saturated T1-weighted volumetric interpolated 
breath-hold examination sequence was obtained prior to 
and 90 minutes following the administration of contrast 
material during the hepatobiliary phase. The MRI settings 
were as follows: repetition time, 3.31 ms; echo time, 1.3 ms;  
slice thickness, 3 mm; number of partitions, 72; field of 
view, 380×308 mm; acceleration factor, 1; flip angle, 9°; 
and bandwidth, 450 Hz/pixel. For enhanced MR imaging, 
Gd-BOPTA was injected in a single dose of 0.05 mmol/kg  
(0.1 mL/kg) body weight intravenously, which was followed 
by a saline flush of 20 mL.

Image correction process

(I)	 Data  loading:  a l l  or ig ina l  MRI images of  the 
hepatobiliary phase were loaded onto ITK-SNAP 
software (http://www.itksnap.org/) (28).

(II)	 Region of interest drawing: the hepatic Gd-BOPTA-
enhanced MR images were read independently 
by two experienced radiologists (observer 1 and 
observer 2, with 10 and 15 years of abdominal imaging 
experience, respectively) who were blinded to the 
clinical information. The regions of interest (ROIs), 
including the whole liver and spleen, were manually 
delineated slice by slice in the axial plane. The visible 
blood vessels and imaging artifacts were carefully 
excluded, and thus the ROI markers did not extend 
to the edge of the areas. The final three-dimensional 
(3D)-segmented volumes created on the original 
images were automatically propagated (Figure 2). 

(III)	 Image correction: to minimize the errors resulting 
from scanners, three approaches for correcting the SI 
of each patient’s liver were assessed, with the patient’s 
spleen being used as an internal reference. First, we 
regarded each patient’s liver and spleen SI values read 
from the 3D MRI image as two 3D tensors, denoted 
as liverSI  and spleenSI . The mean and standard deviation 
(SD) were calculated as the global mean and global SD 
values. 𝓙 was defined as a 3D tensor the same size as 

liverSI , with all elements equal to 1. The widely adopted 
liver-to-spleen contrast ratio (LSC) is denoted in the 
format of Eq. [1] (29). Expanding upon this concept, 

http://www.itksnap.org/
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the three corrected signal intensities were given by 
the three subsequent equations (Eqs. [2–4]) (30). After 
our correction process, the resulting outputs of the 
corrected signal intensities (CSI), denoted as 1CSI , 

2CSI , 3CSI , retained the form of the image tensors. 

( )
( )

liver

spleen

Mean SI
LSC

Mean SI
= 	 [1]

( )1 liver spleenCSI SI Mean SI J= − ⋅ 	 [2]

( ) ( )( )2 liver spleen
spleen

1CSI SI Mean SI
SD SI

J= ⋅ − ⋅ 	 [3]

( ) ( )( )3 liver spleen
spleen

1CSI SI Mean SI
Mean SI

J= ⋅ − ⋅ 	 [4]

For convenience, we referred to 1CSI , 2CSI , and 3CSI  as 

mean-corrected, SD-corrected, and mean-mean-corrected 
SI values, respectively.

Feature extraction

Histogram feature extraction was performed using the 
Pyradiomics 3.0 package (Python 3.7.9, Python Software 
Foundation, Wilmington, DE, USA) (31). Before and after 
the three different methods of correction were applied to 
images, a total of 19 histogram features were calculated, 
including 10th percentile, 90th percentile, energy, entropy, 
interquartile range, kurtosis, maximum, mean, mean 
absolute deviation, median, minimum, range, robust mean 
absolute deviation, root mean squared, skewness, SD, total 
energy, uniformity, and variance. Table 2 provides a concise 
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Figure 2 Representative MRI of patients with different Child-Pugh grades. (A-C) One slice of the hepatocyte-specific contrast-enhanced 
MRI with manual labels. (D-F) Corresponding 3D segmentation. (G-I) Density histograms of the whole liver and spleen signal intensity. 
The blue represents the liver region, and the orange represents the spleen. MRI, magnetic resonance imaging; 3D, three-dimensional. 
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Table 2 Description of histogram features

Histogram feature Description

10th percentile Only 10% of the data points less than this SI value

90th percentile Only 10% of the data points more than this SI value

Energy Measure of the squared magnitude of SI values within all data points

Entropy Measure of the inherent randomness in the SI values within all data points

Interquartile range Measure of the spread of the distribution of SI values, defined as the difference between the 75th and 25th 
percentile

Kurtosis Measure of the “peakedness” of the distribution of SI values within all data points

Maximum The maximum SI value within all data points

Mean The average SI value within all data points

Mean absolute deviation Mean distance of all SI values from the mean value of the image array

Median The SI value below 50% of all data points

Minimum The minimum SI value within all data points

Range Measure of the difference between the highest and lowest SI values

Robust mean absolute 
deviation

The average separation of all SI values from the average value calculated on the subset of the image array 
with SI values in between, or equivalent to the 10th and 90th percentile

Root mean squared The square root of the average of all the squares of SI values

Skewness Measure of the asymmetry of the distribution of SI values around the average value

Standard deviation Standard deviation measure for the amount of variation

Total energy The value of the energy feature scaled by the volume of the voxel in cubic millimeters

Uniformity Measure of the homogeneity in the SI values within all data points

Variance The squared distances of each SI value from the mean

SI, signal intensity.

description of each extracted feature (32).

Statistical analysis

All statistical analyses were performed with R software 
version 4.0.2 (The R Foundation for Statistical Computing) 
and SPSS version 26.0 software (IBM Corp., Armonk, NY, 
USA). Four commonly used machine learning classifiers, 
including support vector machine (SVM), k-nearest 
neighbor (KNN; with k=5), random forest (RF; with 100 
randomized trees), and Gaussian naïve Bayes (GNB), were 
applied with stratified fivefold cross-validation. Using cross-
validation in lieu of a separate test set could ensure robust 
model evaluation in the context of our dataset’s size, which 
was justified within the context of our study. Consequently, 
direct comparisons between classifiers were not conducted. 
Discrimination ability was qualified using receiver operating 

characteristic (ROC) curve analysis and the area under the 
curve (AUC). Features were min–max normalized to 0 and 1. 
The performance of classifiers were evaluated according to 
whether the histogram features could effectively distinguish 
individuals classified as Child-Pugh A from those classified 
as Child-Pugh B or Child-Pugh C. Features computed 
from original images and corrected images were also 
compared to assess the efficacy of correction. The approach 
with the best classification performance was selected as the 
final correction method, and the corresponding histogram 
features were used to analyze the development of clinical 
outcomes. 

The characteristics of participants across various groups 
were assessed with the Student’s t-test for continuous 
variables and the chi-squared test for categorical variables. 
Data following a normal distribution were evaluated with 
the one-way analysis of variance test, while nonnormally 
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distributed data were examined using the Kruskal-Wallis 
test. All 19 features were compared separately for images 
before and after correction via the Kruskal-Wallis test. 
For each histogram feature with a two-sided P value <0.05 
indicating statistical significance, nonparametric ROC 
curve analysis was carried out individually to evaluate the 
diagnostic capability and determine the optimal cutoff. 
The cutoff was defined as the threshold of the equal error 
rate point on ROC curves, in which the false-positive rate 
equaled the false-negative rate.

According to the cutoff of a significant feature, patients 
were classified into two groups to determine the relationship 
between this feature and clinical progression. The endpoint 
event was the development of hepatic insufficiency. The 
adjusted Kaplan-Meier curve model was applied to analyze 
the cumulative incidence of hepatic insufficiency between 
the two groups. 

A workflow of the study process is shown in Figure 3.

Results

Clinical characteristics of patients

Among 117 patients (mean age, 51.05±10.14 years; 33 
females) included in the final study, 43 (36.8%) were 
grouped in the Child-Pugh A, 49 (41.9%) in the Child-
Pugh B, and 25 (21.4%) in the Child-Pugh C. The clinical 
data for all patients are summarized in Table 1. After the 

follow-up [42.3±19.1 (8–93) months], hepatic insufficiency 
occurred in 14 patients (12%), resulting in 8 deaths.

Performance of classification models using histogram 
features

The ROC curves of four classifiers built on 19 histogram 
features before and after correction are shown in Figure 4. 
For four classifiers built on uncorrected image histogram 
features, the average AUC values of fivefold cross-validation 
spanned from 0.83 [95% confidence interval (CI): 0.75–
0.91] to 0.87 (95% CI: 0.81–0.94). Four classifiers built on 
mean-corrected ( 1CSI ) features obtained the highest AUCs, 
with a range from 0.89 (95% CI: 0.82–0.95) to 0.92 (95% 
CI: 0.87–0.97). Histogram features extracted from SD-
corrected ( 2CSI ) and mean-mean–corrected ( 3CSI ) images 
achieved AUCs ranging from 0.84 (95% CI: 0.78–0.92) to 
0.87 (95% CI: 0.80–0.94) and from 0.82 (95% CI: 0.75–
0.90) to 0.87 (95% CI: 0.79–0.93), respectively. Therefore, 
subsequent analyses employed the features derived from the 
mean-corrected ( 1CSI ) method.

For different classifiers and feature groups, the 
comparisons of accuracy, sensitivity, and specificity are 
listed in Table 3. The classification models built on mean-
corrected ( 1CSI ) features outperformed those of the others, 
with substantially higher accuracy and sensitivity and 
comparable specificity. 

Study population

Kaplan-Meier analysis

Image correction Feature extraction

ROC analysis Statistical tests Machine learning

117 cirrhotic patients who 
underwent Gd-BOPTA 

contrast-enhanced MRI

Liver signal intensity 
corrected with the spleen 

in 3 different ways

19 features from images 
before and after three 

different ways of correction

Association 
between each 

significant feature 
and the clinical 

progression

Cutoffs of 
each chosen 

feature

Statistically 
significant 
features

The final 
correction 
method

Statistical analysis

Figure 3 A workflow of the study. Gd-BOPTA, gadobenate dimeglumine; MRI, magnetic resonance imaging; ROC, receiver operating 
characteristic.
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Figure 4 Receiver operating characteristic curve of four classifiers with (A) uncorrected, (B) mean-corrected, (C) standard deviation-
corrected, and (D) mean-mean-corrected histogram features. SVM, support vector machine; AUC, area under the curve; KNN, k-nearest 
neighbor; RF, random forest; GNB, Gaussian naïve Bayes.

Predictive values of histogram features in hepatic 
insufficiency

As listed in Table 4, five features were significantly different 
between the groups with or without hepatic insufficiency 
according to the Kruskal-Wallis test: median (P<0.01), 90th 
percentile (P<0.01), root mean squared (P<0.01), mean 
(P<0.01), and 10th percentile (P<0.05). The nonparametric 
ROC analyses demonstrated the association between each 
of those five features before and after mean correction and 
the development of hepatic insufficiency (Figure 5). In the 
comparison of these histogram features extracted from 
original and mean-corrected images, the diagnostic ability 
of five features improved after correction. Specifically, the 
AUCs for median, 90th percentile, root mean squared, 
mean , and 10th percentile were 0.723 (95% CI: 0.653–
0.793), 0.722 (95% CI: 0.652–0.792), 0.722 (95% CI: 
0.652–0.792), 0.721 (95% CI: 0.651–0.791) and 0.674 (95% 

CI: 0.600–0.748), respectively, for the corrected images; 
meanwhile, for the original images, the AUCs were 0.583 
(95% CI: 0.504–0.662), 0.59 (95% CI: 0.511–0.669), 0.58 
(95% CI: 0.501–0.659), 0.58 (95% CI: 0.501–0.659), and 
0.527 (95% CI: 0.447–0.607), respectively (all P values 
<0.05).

To clarify the association of mean-corrected histogram 
features and clinical outcomes of hepatic insufficiency, the 
cutoff of each significant feature at the equal error point was 
calculated, and the total cohort was then categorized into 
two groups according to the cutoff. The adjusted Kaplan-
Meier curves of how histogram features were correlated 
with the incidence of hepatic insufficiency are shown in 
Figure 6. Patients with a feature level less than the cutoff, 
as compared to those with a level above the cutoff, showed 
a statistically shorter progression-free survival and higher 
incidences of hepatic insufficiency for significant features 
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Table 3 Classification performance of four classifiers for features before and after correction

Correction Classifier Accuracy Sensitivity Specificity AUC (95% CI)

Uncorrected SVM 0.83 0.72 0.89 0.83 (0.75–0.91)

KNN 0.79 0.63 0.89 0.87 (0.81–0.94)

RF 0.79 0.67 0.86 0.87 (0.80–0.93)

GNB 0.79 0.72 0.82 0.84 (0.77–0.92)

Mean corrected SVM 0.81 0.70 0.88 0.90 (0.84–0.95)

KNN 0.80 0.63 0.91 0.92 (0.87–0.97)

RF 0.79 0.72 0.84 0.89 (0.82–0.95)

GNB 0.84 0.74 0.89 0.90 (0.84–0.96)

SD corrected SVM 0.82 0.58 0.96 0.87 (0.80–0.94)

KNN 0.81 0.58 0.95 0.86 (0.79–0.93)

RF 0.80 0.67 0.88 0.86 (0.79–0.93)

GNB 0.81 0.67 0.89 0.84 (0.78–0.92)

Mean-mean corrected SVM 0.74 0.53 0.86 0.83 (0.75–0.91)

KNN 0.76 0.51 0.91 0.82 (0.75–0.90)

RF 0.79 0.65 0.86 0.87 (0.79–0.93)

GNB 0.79 0.60 0.89 0.85 (0.77–0.92)

AUC, area under the curve; CI, confidence interval; SVM, support vector machine; KNN, k-nearest neighbor; RF, random forest; GNB, 
Gaussian naïve Bayes; SD, standard deviation.

Table 4 Results of Kruskal-Wallis test for the mean-corrected 
features 

Feature H-statistic P value

Median 7.27 0.007 

90th percentile 7.22 0.007

Root mean squared 7.22 0.007

Mean 7.18 0.007

10th percentile 4.44 0.035

Interquartile range 3.48 0.062 

Robust mean absolute deviation 3.26 0.071 

Mean absolute deviation 2.36 0.124 

Kurtosis 2.21 0.137 

Maximum 1.87 0.171 

Minimum 1.63 0.202 

Standard deviation 1.59 0.208 

Variance 1.59 0.208 

Skewness 1.30 0.253 

Table 4 (continued)

Table 4 (continued)

Feature H-statistic P value

Uniformity 1.27 0.260 

Energy 1.03 0.310 

Total energy 1.03 0.310 

Entropy 0.650 0.420 

Range 0.376 0.540 

of median (cutoff =26.001; 21.28% versus 5.71%; P=0.02), 
90th percentile (cutoff =86.263; 20.41% versus 5.88%; 
P<0.01), root mean squared (cutoff =1,028.477; 19.15% 
versus 7.14%, P=0.049), and mean (cutoff =27.484; 19.15% 
versus 7.14%; P=0.049). Patients with a 10th percentile less 
than −39.811 also showed higher cumulative incidences of 
hepatic insufficiency than did those with a 10th percentile 
greater than the cutoff (0.18% versus 7.46%; P=0.22); 
however, the difference in survival rates between the cohorts 
did not reach statistical significance.
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Figure 5 Receiver operating characteristic curves of significant features before (original) and after mean correction (mean) for differentiating 
patients with hepatic insufficiency. (A) Median, (B) 90th percentile, (C) root mean squared, (D) mean, and (E) 10th percentile. Cutoffs are 
marked in red crosses. AUC, area under the curve.
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Figure 6 Adjusted Kaplan-Meier curve showing the cumulative incidences of hepatic insufficiency in (A) 47 patients with median <26.001 
compared with 70 patients with median ≥26.001, (B) 49 patients with 90th percentile <86.263 compared with 68 patients with 90th 
percentile ≥86.263, (C) 47 patients with root mean squared <1,028.477 compared with 70 patients with root mean squared ≥1,028.477, (D) 
47 patients with mean <27.484 compared with 70 patients with mean ≥27.484, and (E) 50 patients with 10th percentile <−39.811 compared 
with 67 patients with 10th percentile ≥−39.811.

Discussion

In this study, we employed a radiomics approach that used 
whole-liver histogram analysis of Gd-BOPTA-enhanced 

MRI to evaluate liver function and predict progression in 

patients with cirrhosis. Radiomics, a rapidly evolving field 

in medical imaging, involves the extraction and analysis of a 
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large number of quantitative features from medical images 
to uncover hidden information and patterns that may not 
be discernible to the naked eye (33). Histogram features, 
including median, 90th percentile, root mean squared, 
mean, and 10th percentile, were significantly different 
between groups with and without hepatic insufficiency. 
The ROC curve demonstrated the diagnostic ability of 
these five features was improved after correction of SI via 
the subtraction of the mean value of the spleen. Median, 
90th percentile, root mean squared, and mean were 
four significant factors for predicting liver insufficiency. 
To verify the performance of each feature, the simplest 
method was employed: each of these features was used 
to independently to predict the prognosis of cirrhosis. 
The median, without being skewed by outliers, was found 
capable of providing a robust measure. Meanwhile, the root 
mean squared was more sensitive to outlier regions to the 
mean and median, thereby potential providing information 
on fibrotic development. Finally, the 90th percentile was 
able to capture the higher-intensity values indicative of 
contrast enhancement or tissue heterogeneity, which 
are often associated with pathological changes. In liver 
cirrhosis, these features might reveal the presence of fibrotic 
nodules or inflammatory activities, which frequently exhibit 
heightened contrast compared to healthy tissue (34).

Histogram analysis involves the analysis of the SI 
distribution of ROIs. Kim et al. stated that histograms would 
be more suitable for evaluating liver function and achieve 
more consistent quantification of SI distribution compared 
to the degree of enhancement (35). Studies on histogram 
analysis have examined T1 maps (36) and hepatocyte-
specific contrast-enhanced MRI (25,35) with limited ROIs 
drawn on only one representative slice for predicting liver 
function and fibrosis; however, few studies have attempted 
to predict liver prognosis in patients with cirrhosis. In this 
study, the histogram analysis was performed on the whole 
liver region to better depict the uneven SI distribution of 
the liver. 

Our study focused not on a direct comparison of 
the performance of four widely used machine learning 
classifiers but rather on the validation and efficacy 
of a proposed calibration method. We evaluated the 
classification effectiveness by comparing various feature-
correction approaches. Specifically, we distinguished 
patients diagnosed with Child-Pugh A cirrhosis from 
those with more advanced Child-Pugh B or C cirrhosis, 
as illustrated in Figure 4 and detailed in Table 3. The 

model built on mean-corrected features outperformed 
others, with much higher AUCs spanning from 0.89 
(95% CI: 0.82–0.95) to 0.92 (95% CI: 0.87–0.97). Its 
accuracy and sensitivity surpassed those of others on each 
classifier while its specificity was also not substantially 
inferior. The performance of the diagnostic ability of five 
features improved after correction as compared to the 
original images. Therefore, the mean-corrected method 
was employed since the mean of the spleen region for 
calibration is more meaningful for quantitatively evaluating 
the liver function. This result is similar to the study of Park 
et al. (37), in which SI normalization was performed based 
on the spleen, and a higher predictive accuracy was achieved 
for liver fibrosis staging. Nonetheless, the study employed 
a singular calibration approach. Our evaluation infers that 
the intrinsic relative nature of MRI SI values may render 

normalization by division with the spleen’s SD ( spleenSD SI   )  
suboptimal for discernible efficacy. In our study, the 
median, 90th percentile, root mean squared, and mean from 
the whole-liver histogram analysis were clearly shown to be 
four significant factors in predicting hepatic insufficiency. For 
each feature, patients with feature levels less than the cutoffs 
showed higher incidences of hepatic insufficiency, providing 
crucial prognostic information for patients with cirrhosis. 

Furthermore, notwithstanding the absence of patients 
with severe hepatic iron overload within our study cohort, 
the potential impact of mild iron overload on T1-weighted 
MRI SI warrants consideration. To quantify liver iron 
concentration (LIC), three MRI methods have been 
validated: SI ratio and R2- and R2*-based relaxometry (38). 
Including iron overload as a quantifiable metric is likely to 
bolster the precision of prognostic models.

In the future, our approach holds the potential to serve 
as a supplementary method alongside standard clinical 
measures such as the Child-Pugh score or indocyanine 
green retention test at 15 minutes (ICG-15) for the 
management of diseases in patients with cirrhosis. By 
integrating automatic segmentation technology (39), 
our method may enable the automated transformation 
of patient MRI data into corrected features. Through 
using cutoff standards derived from the analysis of a large 
sample set, it would be possible to assess the risk of disease 
progression in individual patients. The adoption of this 
methodology could lead to the generation of automated 
recommendations that support clinical decisions, providing 
a more robust prognostic tool that complements traditional, 
more subjective assessments.
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Limitations

The limitations to this study were as follows. Only 117 
samples from a single hospital were collected in this 
retrospective study. Given the imbalanced distribution of 
samples among various Child-Pugh scores, the classification 
of patients was examined by grouping those diagnosed as 
Child-Pugh A separately from those diagnosed as Child-
Pugh B or Child-Pugh C. Our experimental results still 
need further validation on multicenter external datasets. 
Moreover, while using cross-validation in lieu of a separate 
test set aimed at discerning the most effective correction 
method for optimal classification performance was deemed 
appropriate, this involved some limitations. Furthermore, 
the potential impact of mild iron overload on T1-
weighted MR SI warrants consideration. In addition, the 
manual delineation of ROIs was laborious, and automatic 
segmentation algorithms that can relieve doctors from time-
consuming labeling should be investigated.

Conclusions

This study provides evidence that Gd-BOPTA-enhanced 
hepatobiliary phase MRI histogram analysis holds potential 
for evaluating hepatic function and prognosing the 
progression in patients with cirrhosis. Our technique for 
correcting liver SIs relative to the spleen has enhanced the 
diagnostic accuracy of key imaging features. This approach 
shows considerable promise as a noninvasive technique 
for the clinical evaluation and management of cirrhotic 
conditions.
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