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Abstract

Trends in time series generated by physiological control systems are ubiquitous. Determin-

ing whether trends arise from intrinsic system dynamics or originate outside of the system is

a fundamental problem of fractal series analysis. In the latter case, it is necessary to filter

out the trends before attempting to quantify correlations in the noise (residuals). For over

two decades, detrended fluctuation analysis (DFA) has been used to calculate scaling expo-

nents of stride time (ST), stride length (SL), and stride speed (SS) of human gait. Herein,

rather than relying on the very specific form of detrending characteristic of DFA, we adopt

Multivariate Adaptive Regression Splines (MARS) to explicitly determine trends in spatio-

temporal gait parameters during treadmill walking. Then, we use the madogram estimator to

calculate the scaling exponent of the corresponding MARS residuals. The durations of ST

and SL trends are determined to be independent of treadmill speed and have distributions

with exponential tails. At all speeds considered, the trends of ST and SL are strongly corre-

lated and are statistically independent of their corresponding residuals. The averages of

scaling exponents of ST and SL MARS residuals are slightly smaller than 0.5. Thus, con-

trary to the interpretation prevalent in the literature, the statistical properties of ST and SL

time series originate from the superposition of large scale trends and small scale fluctua-

tions. We show that trends serve as the control manifolds about which ST and SL fluctuate.

Moreover, the trend speed, defined as the ratio of instantaneous values of SL and ST

trends, is tightly controlled about the treadmill speed. The strong coupling between the ST

and SL trends ensures that the concomitant changes of their values correspond to move-

ment along the constant speed goal equivalent manifold as postulated by Dingwell et al. 10.

1371/journal.pcbi.1000856.

Author summary

During treadmill walking, the subject’s stride time (ST) and stride length (SL) must yield

a stride speed (SS) which can fluctuate over a narrow range centered on the treadmill

belt’s speed. The fact that both ST and SL are persistent is an intriguing property of

human gait. For persistent fluctuations any deviation from the mean value is likely to be

followed by a deviation in the same direction. To trace the origin of such persistence, we

used a novel approach to determine trends in spatio-temporal gait parameters. We find
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that the trends of ST and SL of a subject are strongly correlated and are statistically inde-

pendent of their corresponding residuals. Moreover, the trend speed, defined as the ratio

of instantaneous values of SL and ST trends, is tightly controlled about the treadmill

speed. The persistence of gait parameters stems from superposition of large scale trends

and small scale fluctuations.

Introduction

Over two decades ago Hausdorff et al. [1, 2] discovered long-range, persistent correlations in

stride duration (time) of human gait. Their choice of fractional Brownian motion (FBM) [3]

for modelling such correlations has significantly influenced the way in which fluctuations of

spatio-temporal gait parameters (SL, ST, and SS) were subsequently quantified and inter-

preted. Determining the source of ubiquitous trends observed in physical, social, or biological

systems is a recurring problem in fractal time series analysis. In other words, one needs to

establish whether trends arise from the intrinsic dynamics of a system or have an external ori-

gin. In the latter case, a possible approach is first to recognize trends and then filter them out

before attempting to quantify correlations in the noise (residuals). In their original study

Hausdorff et al. applied detrended fluctuation analysis (DFA) [4] to estimate the scaling

(Hurst) exponent which characterizes properties of fractal time series. Their choice of DFA

implied that a stride duration time series was made up of persistent (scaling exponent greater

than 0.5) fractal fluctuations superposed on trends which are irrelevant from the point of view

of fractal analysis.

The papers of Hausdorff et al. spurred significant interest in the emerging field of fractal

physiology [5, 6]. In particular, they focused research on the intrinsic variability of physiologi-

cal time series and their persistence [7]. Some argued that persistent fluctuations are a manifes-

tation of the adaptability of underlying control systems and the absence of long-range

correlations, or anti-persistence, indicates disease or pathology [8–10]. Delignières and Torre

demonstrated that when healthy humans walk over ground in sync with a metronome, their

stride times become anti-persistent [11]. During treadmill walking, a subject’s stride time (ST)

and stride length (SL) must yield a stride speed (SS) that fluctuates over only a narrow range

centered on the treadmill belt’s speed. It turns out that subjects’ SS is anti-persistent, while the

other two gait parameters, ST and SL, are persistent. On the other hand, all three parameters

are anti-persistent during treadmill walking with either auditory [12] or visual [13] cueing

(alignment of step lengths with markings on the belt). In light of these latter experimental find-

ings, anti-persistence, rather than being a manifestation of pathology, seems to be indicative of

tight control.

While persistence of ST and SL during treadmill walking is intriguing, an even more puz-

zling property of gait dynamics is the weak coupling between stride time and stride length

measured by cross-correlation. The coefficient of correlation between these dynamical vari-

ables for uncued treadmill walking is 0.28 and doubles to approximately 0.55 under the influ-

ence of a persistent fractal metronome [14]. Herein, we employ an explicit algorithm to

determine trends in spatio-temporal gait parameters and examine their statistical properties as

well as those of the corresponding residuals. In the process, light is shed on the origin of ST

and SL persistence.
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Results

ST and SL trends

The examples of stride time, length and speed time series are given in Fig 1. The solid, thick

lines in this figure represent trends approximated using the piecewise linear variant of the

MARS model.

The Kruskal-Wallis test showed that the durations of normalized trends (durations divided

by the subject’s mean value of stride time or stride length) were independent of treadmill

speed (pST = 0.30, pSL = 0.81). Therefore, we aggregated data from all the trials. In Fig 2 we

present the probability density functions (PDFs) of 1607 ST and 1396 SL trend durations. The

Kolmogorov-Smirnov test showed that the distributions of both gait parameters were not dif-

ferent (p = 0.81). The average values and standard deviations of trend durations were close to

each other (23.2 and 26.3 for ST, and 25.2 and 35.5 for SL).

The fundamental property of the exponential distribution, whose probability density func-

tion (PDF) is equal to exp(−λx)λ, is that its average value and standard deviation are both

equal to 1/λ. Therefore, in Fig 2 we also present the exponential PDFs fitted to the experimen-

tal data. For both ST and SL, λ = 0.043. It is apparent from the probability plots, presented as

insets in Fig 2, that the exponential distribution fairly approximates the tail of the experimental

distributions.

We defined a normalized slope of a trend as the change of gait parameter normalized by the

product of average value of this parameter during the trial and the normalized trend duration.

The normalized slopes were independent of the treadmill’s speed. Consequently, for both ST

and SL, we merged the data from all trials. In Fig 3 we present the PDFs of normalized ST and

SL slopes. While the the Kolmogorov-Smirnov test showed that ST and SL slopes were drawn

from the same distribution (p = 0.16), the Anderson-Darling test indicated just the opposite

(p = 0.04). The thick lines in this figure are the Cauchy’s PDFs fitted to experimental data. The

probability plots indicate that the fits are of good quality. The Kolmogorov-Smirnov test con-

firmed that the ST (p = 0.11) and SL (p = 0.06) slopes were drawn from a Cauchy distribution.

The Anderson-Darling test gave the opposite results (p = 6 × 10−3 in both cases). The scale

parameter γ of the Cauchy distribution was equal to 1.2 × 10−3 and 1.5 × 10−3 for ST and SL,

respectively. The location parameter (location of the maximum of PDF) was equal to 8 × 10−4

for ST and 6 × 10−4 for SL.

We also analyzed the properties of MARS trends in phase-randomized SL and ST surro-

gate data. Both for SL and ST, we aggregated data from all trials and for each time series we

generated a cross-correlated SL-ST surrogate (CCS) and an independently randomized sur-

rogate (IS). For such surrogates, we built the MARS models. Then, using the Kolmogorov-

Smirnov tests we compared the distribution of the normalized trend durations of the experi-

mental data with those of CCS and IS. We repeated such comparisons using n = 50 different

realizations of surrogate data sets. The same procedure was performed for the slope of

trends.

For SL, the trend duration distribution was not statistically different from those of CCS

and IS.

For ST, the CCS and IS distributions were the same as the experimental one in 92%

and 46% cases, respectively. The observed differences were not large. For CCS, the mean

trend duration was equal to 21.4 ± 0.5, range 20.5 − 22.8. For IS, the mean was equal

to 20.9 ± 0.3, range 20.3 − 21.8. Please recall that the experimental data mean was equal to

23.2.

The trend slope distribution for SL and ST surrogate data exhibit similar properties.
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Scaling exponents

The mean values of ST, SL, and SS scaling exponents at different treadmill speeds are presented

in Table 1 along with the corresponding standard deviations. All indices that are statistically

smaller than 0.5 are marked with the dagger symbol. The parameters α(1), α(2), and α(3) are

Fig 1. Stride time, length, and speed of two healthy young subjects during treadmill walking at a preferred

walking speed: (A) subject 6, trial 2, (B) subject 1, trial 2. Thick solid lines show trends calculated using the

piecewise linear variant of the MARS model. The thin solid lines correspond to trend speed (the ratio of values of stride

length and stride time trends). Experimental data come from the study of Dingwell et al. [15].

https://doi.org/10.1371/journal.pcbi.1007180.g001
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Fig 2. Probability density function (PDF) of normalized duration of trends for: (A) stride time and (B) stride length.

Trend durations turned out to be independent of treadmill speed. Consequently, we created two aggregated data sets from

trials at different speeds. The solid curves in both subplots show the best-fit exponential PDFs. The probability plots,

presented as insets, show the differences between the experimental and exponential cumulative distribution functions

(CDFs).

https://doi.org/10.1371/journal.pcbi.1007180.g002
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Fig 3. Probability density function (PDF) of normalized slopes of trends in: (A) stride time and (B) stride length.

Slopes turned out to be independent of treadmill speed. Consequently, we created two aggregated data sets from trials at

different speeds. The solid curves in both subplots show the best-fit Cauchy PDFs. The probability plots, presented as insets,

show the differences between the experimental and Cauchy’s cumulative distribution functions (CDFs).

https://doi.org/10.1371/journal.pcbi.1007180.g003
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exponents calculated using detrended fluctuation analysis of order 1 (DFA1), 2 (DFA2), and 3

(DFA3), respectively. The parameter α(MD) was computed using the madogram estimator

(MD). Scaling analysis was performed for the raw experimental time series and time series

detrended using the piecewise linear variant of the MARS model. In the latter case, the expo-

nents have an L subscript. Fig 4 displays the results of the scaling analysis for ST and SL time

series.

In the majority of cases, the gait parameters have the following properties:

• The ST, SL, and SS scaling indices do not depend on the treadmill’s speed.

• For all three parameters, there are no statistically significant differences between the scaling

exponents α(n) and α(MD).

• The scaling exponents of ST and SL MARS residuals are significantly smaller than those of

the corresponding experimental time series.

The exceptions are listed below.

For stride speed, the differences in scaling exponents for different speeds were observed for:

• DFA1: 100% PWS vs 120% PWS (p = 0.04)

• DFA2: 80% PWS vs 100% PWS (p = 0.01), 100% PWS vs 120% PWS (p = 0.02)

• DFA3: 80% PWS vs 100% PWS (p = 0.02)

Table 1. Scaling exponents of spatio-temporal gait parameters for five treadmill speeds expressed as the percentage of preferred walking speed (PWS). PWS is the

speed at which a subject choose to walk on treadmill. α(1), α(2), and α(3) are exponents calculated using detrended fluctuation analysis of order 1 (DFA1), 2 (DFA2), 3

(DFA3), and madogram (MD), respectively. Data are presented as mean ± standard deviation. Scaling analysis was performed for the raw experimental time series and

time series detrended using the piecewise linear variant of the MARS model. In the latter case the exponents have an L subscript. All indices that are statistically smaller

than 0.5 are marked with the dagger symbol.

PWS [%] α(1) α(2) α(3) α(MD)
αð1ÞL αð2ÞL αð3ÞL αðMDÞ

L

stride length

80 0.73 ± 0.12 0.69 ± 0.12 0.68 ± 0.13 0.71 ± 0.10 0.45 ± 0.07† 0.49 ± 0.08 0.52 ± 0.08 0.49 ± 0.07

90 0.70 ± 0.11 0.67 ± 0.11 0.66 ± 0.10 0.67 ± 0.10 0.49 ± 0.08 0.52 ± 0.07 0.54 ± 0.07 0.49 ± 0.07

100 0.77 ± 0.14 0.70 ± 0.13 0.68 ± 0.14 0.69 ± 0.12 0.46 ± 0.08† 0.48 ± 0.06† 0.51 ± 0.07 0.46 ± 0.06†

110 0.75 ± 0.15 0.70 ± 0.16 0.67 ± 0.15 0.69 ± 0.11 0.43 ± 0.06† 0.47 ± 0.05† 0.49 ± 0.05 0.45 ± 0.05†

120 0.76 ± 0.14 0.71 ± 0.13 0.69 ± 0.12 0.71 ± 0.11 0.44 ± 0.07† 0.48 ± 0.07† 0.51 ± 0.07 0.49 ± 0.07

all SL 0.74 ± 0.13 0.70 ± 0.13 0.68 ± 0.13 0.69 ± 0.11 0.45 ± 0.07† 0.49 ± 0.07† 0.51 ± 0.07 0.48 ± 0.07†

stride time

80 0.81 ± 0.16 0.73 ± 0.16 0.70 ± 0.16 0.75 ± 0.12 0.44 ± 0.07† 0.47 ± 0.09† 0.50 ± 0.09 0.47 ± 0.08†

90 0.79 ± 0.11 0.75 ± 0.13 0.71 ± 0.13 0.71 ± 0.12 0.47 ± 0.08† 0.51 ± 0.08 0.54 ± 0.08 0.48 ± 0.08

100 0.85 ± 0.14 0.78 ± 0.15 0.76 ± 0.16 0.75 ± 0.12 0.45 ± 0.08† 0.50 ± 0.07 0.52 ± 0.07 0.48 ± 0.06†

110 0.81 ± 0.13 0.74 ± 0.16 0.70 ± 0.16 0.74 ± 0.12 0.46 ± 0.07† 0.50 ± 0.07 0.52 ± 0.07 0.49 ± 0.10

120 0.82 ± 0.14 0.74 ± 0.16 0.72 ± 0.16 0.75 ± 0.13 0.45 ± 0.07† 0.49 ± 0.07 0.52 ± 0.07 0.49 ± 0.09

all ST 0.82 ± 0.14 0.75 ± 0.15 0.72 ± 0.15 0.74 ± 0.12 0.45 ± 0.08† 0.49 ± 0.08 0.52 ± 0.08 0.48 ± 0.08†

stride speed

80 0.48 ± 0.07 0.50 ± 0.08 0.51 ± 0.09 0.46 ± 0.07† 0.47 ± 0.07† 0.48 ± 0.07† 0.49 ± 0.08 0.45 ± 0.07†

90 0.47 ± 0.07† 0.48 ± 0.07 0.49 ± 0.07 0.43 ± 0.09† 0.45 ± 0.06† 0.47 ± 0.07† 0.48 ± 0.07 0.42 ± 0.09†

100 0.44 ± 0.08† 0.44 ± 0.07† 0.45 ± 0.07† 0.40 ± 0.09† 0.42 ± 0.06† 0.43 ± 0.06† 0.44 ± 0.06† 0.39 ± 0.09†

110 0.46 ± 0.07† 0.46 ± 0.08† 0.47 ± 0.09 0.40 ± 0.11† 0.43 ± 0.07† 0.45 ± 0.08† 0.46 ± 0.09† 0.39 ± 0.11†

120 0.48 ± 0.07 0.49 ± 0.09 0.50 ± 0.09 0.47 ± 0.10† 0.45 ± 0.06† 0.47 ± 0.07† 0.48 ± 0.08 0.44 ± 0.08†

all SS 0.47 ± 0.07† 0.47 ± 0.08† 0.49 ± 0.09† 0.43 ± 0.10† 0.44 ± 0.07† 0.46 ± 0.07† 0.47 ± 0.08† 0.42 ± 0.09†

https://doi.org/10.1371/journal.pcbi.1007180.t001
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Fig 4. Scaling exponents of stride time (A) and stride length (B) as a function of treadmill speed. α(1), α(2), α(3), and α(MD) are

exponents calculated using detrended fluctuation analysis of order 1 (DFA1), 2 (DFA2), 3 (DFA3), and madogram estimator,

respectively. Calculations were performed for raw experimental time series and the time series detrended using the piecewise

linear variant of the MARS model. In the latter case the exponents have an L subscript. The horizontal red line delineates

persistent (> 0.5) and anti-persistent (< 0.5) scaling.

https://doi.org/10.1371/journal.pcbi.1007180.g004
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• MD: 110% PWS vs 120% PWS (p = 0.01), 100% PWS vs 120% PWS (p = 0.01).

The scaling exponents α(n) and α(MD) were statistically different for:

• 90% PWS: α(1) 6¼ α(3) (p = 0.04)

• 90% PWS: α(1) 6¼ α(MD) (p = 0.02)

• 120% PWS: α(1) 6¼ α(3) (p = 0.002).

For stride speed for 90% PWS: α(3) 6¼ α(MD) (p = 0.02).

To identify the origin of ST and SL persistence, we determined the piecewise linear MARS

trends and the corresponding residuals for each trial. We then created an ensemble of 100

composite signals constructed from the original trends and randomly shuffled residuals. We

performed DFAn and madogram analyses on such ensembles. For both gait parameters and all

treadmill speeds, α(n) and α(MD) were greater than 0.5. Thus, the outcome of scaling analysis

was not determined by the properties of the surrogate noise, which was devoid of any correla-

tions. The results of this numerical experiment for the time series from Fig 1 are displayed in

Fig 5.

We also calculated α(MD) for phase-randomized surrogates. In particular, for each time

series at a given treadmill speed we generated a CCS and an IS. Then, we used either a paired

t-test or Wilcoxon signed rank test to compare the scaling index of experimental and surrogate

data. We repeated this procedure using n = 50 different realizations of surrogates. The statisti-

cally significant differences were sporadic. For SL at the PWS, they were observed in 2% and

10% cases for CCS and IS, respectively. For ST, the corresponding values were equal to 2% and

14%.

Scaling exponent of short fractional Brownian Motion time series

In Fig 6 we show the dependence of the scaling (Hurst) exponent of fractional Brownian

motion on the length of the data window. Two ensembles of 500 random walks of length 260

with the Hurst exponent equal to H = 0.40 and H = 0.75 were generated using the Matlab func-

tion wfbm. Each trajectory was divided into non-overlapping windows of length k from k = 40

to k = 260 with step 20. For each window, the madogram estimator and detrended fluctuation

analysis of order n = 1 to n = 3 were used to compute α(MD) and α(n), respectively. The boxplots

of scaling exponents for all four methods are plotted as a function of window length for

H = 0.40 (Fig 6A) and H = 0.75 (Fig 6B). These particular values of H were chosen because

they do not differ significantly from the average value of scaling exponents of MARS residuals

and those of ST and SL time series.

We can see in Fig 6 that for short time series DFAn overestimates the Hurst exponent. For

example, for DFA1 and k = 40, the median values were equal to α(1) = 0.53 (33% difference)

and α(1) = 0.82 (9% difference) for H = 0.40 and H = 0.75, respectively. As window length

increases, the estimates of α(n) converge to the true value. For k = 260, the differences dropped

to 8% (α(1) = 0.43) and 1% (α(1) = 0.76), for H = 0.40 and H = 0.75, respectively. DFA2 and

DFA3 were less accurate. For the smallest window, we did not present the boxplots of scaling

exponents for these two methods because of the large number of outliers that would obscure

Fig 6. The madogram estimator was the most accurate algorithm. Even for k = 40, the estimates

were good: α(MD) = 0.41 and α(MD) = 0.75 for H = 0.40 and H = 0.75, respectively. For H = 0.40

and the largest window (k = 260), the medians of scaling exponents calculated using four

methods (madogram and DFAn) were different from each other (p = 1 × 10−42). For H = 0.75

and k = 260, α(MD) was significantly smaller than α(n) for all three orders of detrending. α(1)

was smaller than α(3) (p = 7 × 10−12).
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Fig 5. Boxplots of scaling exponents α(n) and α(MD) for ensembles of signals comprised of MARS trends extracted from

experimental time series and randomly shuffled corresponding MARS residuals. The red disks to the left of each boxplot

represent the values of the scaling exponents of the original time series used to generate the ensembles. The calculations were

carried out for both stride time (ST) and stride length (SL) time series shown in Fig 1A and 1B. Even though there were no

correlations in shuffled MARS residuals, the median values of the scaling exponents of composite signals were significantly

greater than 0.5 and similar to the scaling exponents of the original time series. Thus, this numerical experiment shows that DFA

detrending is incapable of removing trends from ST and SL time series. The values of the scaling exponents of the experimental

time series shown in Fig 1A were: α(1) = 1.02, α(2) = 0.84, α(3) = 0.78, and α(MD) = 0.89 for SL, and α(1) = 1.02, α(2) = 0.91, α(3) =
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Dependence of ST and SL scaling exponents on data window length

Fig 6 serves as a backdrop for the analysis of analogous calculations performed for stride time

and stride length time series. We set the length of the largest window to be smaller than the

minimal number of strides observed for the trial at a given treadmill’s speed (such lengths var-

ied from 220 to 260). Consequently, the scaling exponents from all subjects could be included

in the analysis. For brevity, we confine the presentation of results to the most accurate algo-

rithm—the madogram estimator.

Fig 7 shows the dependence of ST and SL scaling exponents on data window length for the

80% PWS experiment. We can see that for k = 40 the median of ST scaling scaling exponent

α(MD) = 0.56 is significantly smaller than α(MD) = 0.76 (p = 4 × 10−5) for the largest window

with k = 260. The same effect is observed for stride length: α(MD) = 0.58 and α(MD) = 0.71 for

k = 40 and k = 260, respectively (p = 1 × 10−4).

In the other four trials, for the smallest window with k = 40 the values of α(MD) for ST were

equal to: 0.57, 0.60, 0.62, 0.60 for 90-120% PWS, respectively. For SL, the corresponding values

were equal to: 0.57. 0.59, 0.57, 0.59. In all cases, the differences between the smallest and largest

window were statistically significant. For k = 40, the median of α(MD) calculated for all five tri-

als was equal to 0.60 and 0.58 for ST and SL, respectively.

Scaling exponents of parts of gait time series with small slope trends

Fig 8 presents the boxplots of scaling exponent α(MD) of the parts of ST and SL time series with

small slope trends. More specifically, for each trial we found all segments of MARS trends

whose normalized length was greater than 40 and the absolute value of normalized slope was

smaller than 0.001 (Fig 3 shows the distribution of ST and SL slopes). Then, we used the mado-

gram estimator to calculate the scaling exponent of the parts of experimental time series with

such trends. The boxplots show the exponents aggregated from all trials (80%-120% PWS).

There were 267 values for ST (median 0.57) and 249 values for SL (median 0.56).

In Table 2 we collected the values of α(MD) for subject 2 for whom in 6 trials the MARS algo-

rithm did not detect linear trends. The median of these values was equal to 0.56.

Correlation coefficients

Fig 9 shows the boxplots of Pearson’s correlation coefficient ρ between stride time and stride

length for all five treadmill speeds. Correlations were calculated for: experimental (raw) time

series, trends determined using the MARS algorithm, and MARS residuals (noise). ρ was inde-

pendent of speed: praw = 0.12, ptrend = 0.35, and pnoise = 0.17. For the PWS, ρraw = 0.50 ± 0.17,

ρtrend = 0.79 ± 0.22, and ρnoise = 0.21±0.10. Thus, coupling between trends was determined to

be very strong. The same holds true for the cross-correlated phase-randomized surrogates. At

the PWS, rCCStrend ¼ 0:77� 0:22 was not statistically different from ρtrend. One can see in Fig 10A

that the correlation coefficient between the piecewise linear MARS trends in the independently

phase-randomized SL and ST surrogates is close to zero.

Trend speed

The examples of time evolution of trend speed v(trend) are shown in Fig 1. The boxplots of the

trend speed control parameter TSC in Fig 11 show that v(trend) is tightly controlled about the

treadmill speed. For example, at the preferred walking speed, TSC = 0.13. For the same speed,

0.87, and α(MD) = 0.88 for ST. For time series in Fig 1B: α(1) = 0.63, α(2) = 0.67, α(3) = 0.69, and α(MD) = 0.61 for SL, and α(1) = 0.64,

α(2) = 0.57, α(3) = 0.56, and α(MD) = 0.51 for ST.

https://doi.org/10.1371/journal.pcbi.1007180.g005
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Fig 6. Dependence of scaling exponent of fractional Brownian motion on data window length. Two ensembles of 500

random walks of length 260 with the Hurst exponent equal to H = 0.40 and H = 0.75 were generated. Each trajectory was

divided into non-overlapping windows of length k from k = 40 to k = 260 with step size of 20. For each window, the

madogram estimator and detrended fluctuation analysis of order n = 1 to n = 3 were used to compute α(MD) and α(n),

respectively. The boxplots of scaling exponents for all four methods are plotted as a function of window length. Subplot (A)

shows the results for H = 0.40 and subplot (B) for H = 0.75. For the smallest window with k = 40, the boxplots for α(2) and

α(3) were not shown due to the large number of outliers.

https://doi.org/10.1371/journal.pcbi.1007180.g006
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Fig 7. Dependence of scaling exponents of stride time (A) and stride length (B) time series on data window length.

Each time series for 80% PWS experiment was divided into non-overlapping windows of length k from k = 40 to k = 260

with step size of 20. For each window, the madogram estimator and detrended fluctuation analysis of order n = 1 to n = 3

were used to compute α(MD) and α(n), respectively. The boxplots of scaling exponents for all four methods are plotted as a

function of window length. For the smallest window with k = 40, the boxplots for α(2) and α(3) were not shown due to the

large number of outliers.

https://doi.org/10.1371/journal.pcbi.1007180.g007
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the coefficient of variation of v(trend) was equal to 0.6% (see Fig 12) and was about three times

smaller than that of ST (1.6%), SL (1.8%), and SS (1.7%). For all treadmill speeds, the trend

speed COV for the cross-correlated phase-randomized surrogates was not different from that

of the experimental data and much smaller that of independently phase-randomized surro-

gates (Fig 10B).

Discussion

Detrended fluctuation analysis is one of the most frequently used algorithms for fractal analy-

sis of experimental time series. At the time of writing, the seminal paper of Peng et al. [4] has

been cited almost 1800 times. It is difficult to overestimate the importance of this method in

general and in quantitative gait analysis in particular [1, 2, 14, 16–27].

Early on, numerical investigations showed that simple non-stationarities, such as sinusoidal

periodicity or monotonic global trends [28, 29], as well as more complex sources of non-statio-

narity [30], affected DFA estimates of the scaling exponent. Bryce and Sprague correctly

pointed out that, paradoxically, rather than raising doubts about the purported universal

Fig 8. Boxplots of scaling exponent α(MD) of the parts of stride time (ST) and stride length (SL) series with small

slope trends. For each experimental time series, we found all segments of MARS trends whose normalized length was

greater than 40 and the absolute value of normalized slope was smaller than 0.001. Then, we extracted the parts of time

series with such trends. We used the madogram estimator to calculate the scaling exponent of selected parts. The

boxplots show the exponents aggregated from all trials (80%-120% PWS).

https://doi.org/10.1371/journal.pcbi.1007180.g008

Table 2. The values of α(MD) for subject 2’s trials with no MARS trends. The scaling exponents are shown for stride

length (SL) and stride time (ST).

parameter PWS [%] trial α(MD)

SL 80 1 0.58

SL 90 1 0.61

SL 100 2 0.54

SL 110 2 0.46

ST 100 2 0.60

ST 110 1 0.46

https://doi.org/10.1371/journal.pcbi.1007180.t002
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applicability of DFA for trended processes, those papers were actually used to demonstrate the

efficacy of the method [31].

In DFA, detrending is performed on the integrated signal. Consequently, global linear

trends can be eliminated using second or higher order DFA [28, 32]. Fig 1A shows that promi-

nent piecewise linear trends in stride time and stride length may appear even during treadmill

walking. Thus, it is surprising that DFA1, which cannot mitigate even global linear trends, was

used in most of the previous studies of scaling in spatio-temporal gait parameters. There are

two possible explanations for the prevalence of DFA1 in gait analysis. First, while global linear

trends distinctly manifest themselves as crossovers in DFA fluctuation function, no apparent

crossovers are observed in gait data. Second, the scaling exponents determined using DFA1

and DFA2 are not statistically different, as is evident from the data collected in Table 1, as well

as from the visualizations of their distributions in Fig 4. This agreement was presumably used

in favor of DFA1.

We demonstrated that the order of DFA detrending did not have a statistically significant

effect on the values of the scaling exponents of the experimental time series. Moreover, α(0),

α(1), and α(2) were not significantly different from α(MD). Thus, we infer that DFA detrending

is ineffective, and the observed strong persistence of ST and SL can not stem from the proper-

ties of residuals. This interpretation is supported by DFA of signals made up of the MARS

trends of experimental time series and randomly shuffled corresponding MARS residuals

(shuffled residuals are obviously devoid of any correlations). The fact that α(n) for both ST and

SL were sharply greater than 0.5 (see Fig 5A) showed that, as in the case of experimental data,

strong persistence was associated with the presence of trends.

Let us begin the discussion of significance of trends in gait dynamics with a summary of

scaling properties of gait parameters. We focus on the results obtained using the most accurate

algorithm—the madogram estimator:

Fig 9. Pearson’s correlation coefficient between stride time and stride length at five different treadmill speeds.

Correlations were calculated for: experimental (raw) time series, trends determined using the MARS algorithm, and

MARS residuals (noise).

https://doi.org/10.1371/journal.pcbi.1007180.g009
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Fig 10. (A) Correlation coefficient between the piecewise linear MARS trends in stride length and stride time. (B)

Coefficient of variation of trend speed for the same data as in the top subplot. The boxplots are shown for the original

time series, phase-randomized surrogates, and cross-correlated (SL-ST) phase-randomized surrogates.

https://doi.org/10.1371/journal.pcbi.1007180.g010

PLOS COMPUTATIONAL BIOLOGY Significance of trends in gait dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007180 October 26, 2020 16 / 25

https://doi.org/10.1371/journal.pcbi.1007180.g010
https://doi.org/10.1371/journal.pcbi.1007180


• ST and SL scaling exponents α(MD) increase with the data window length (Fig 7). For the

shortest analyzed window (k = 40), the medians of all trials are respectively equal to 0.60 and

0.58. For k = 260, fluctuations of gait parameters are strongly persistent (0.75 and 0.71).

• The median of scaling exponent of the parts of the experimental time series with small

MARS slopes are equal to 0.57 and and 0.56 for ST and SL, respectively (Fig 8, see also

Table 2).

• For both the ST and SL MARS residuals, α(MD) averaged over the treadmill speed is equal to

0.48 (Table 1).

The first two properties strongly indicate that the values of scaling indices of stride time

and length are determined by the superposition of large scale trends and small scale fluctua-

tions (note that the fractal dimension of a piecewise linear curve is 1).

We use the second and third property as evidence in support of the hypothesis that trends

serve as control manifolds about which ST and SL fluctuate.

Before we discuss the second hypothesis in detail, let us note that during treadmill walking

a subject’s stride time and stride length must yield a stride speed that fluctuates over a narrow

range centered on the treadmill belt’s speed. In principle, there are infinitely many such com-

binations which satisfy this type of constraint. These combinations form a straight line in the

ST-SL phase space—a “Goal Equivalent Manifold” (GEM) [15]. Dingwell et al. projected the

deviation vector (calculated in ST-SL space with respect to the mean values of ST and SL) onto

the GEM and the axis perpendicular to it. It turned out that fluctuations of tangential and

transverse components were persistent and anti-persistent, respectively. Moreover, the

Fig 11. Boxplots of trend speed control parameter (Eq (6)) for five treadmill speeds. The results are shown for the original time

series, phase-randomized surrogates, and cross-correlated (SL-ST) phase-randomized surrogates.

https://doi.org/10.1371/journal.pcbi.1007180.g011
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tangential variability was higher than the transverse one. Thus, these statistical properties pro-

vided the evidence that subjects did not regulate ST and SL independently but instead adjusted

them in a coordinated manner to maintain walking speed.

Herein we not only provide direct proof of such interdependence but also elucidate how

speed control during treadmill walking might actually be accomplished. The distribution of

the trend speed control parameter (TSC) in Fig 11 and coefficient of variation of v(trend) in Fig

12 show that the trend speed v(trend), defined as the ratio of instantaneous values of piecewise

linear SL and ST MARS trends, is tightly controlled about the treadmill speed. The strong per-

sistence of stride time and stride length does not impair a subject’s ability to maintain speed

because of the strong coupling between their trends (e.g. ρtrend = 0.85 at PWS). The concomi-

tant changes of instantaneous values of ST and SL trends correspond to movement along the

GEM as postulated by Dingwell et al. in their model of redundant stride speed control [33, 34].

We also calculated the correlation coefficient between ST and SL trends as well as the trend

speed control parameter using the data from the recent research of Roerdink et al. [35]. While

the strength of correlation was comparable to the values presented in this paper, the TSC
parameter was smaller, indicating even tighter control of v(trend). The detailed analysis of Roer-

dink’s data will be presented elsewhere.

Humans have an innate ability to synchronize their movements with rhythmic sound sti-

muli. Sejdic et al. argue that sound associated with bipedal gait influenced the evolution of

human auditory-motor rhythmic abilities [36]. Walking in sync with a metronome has previ-

ously been investigated as a potential rehabilitation tool in patients with Parkinson’s disease

[37] and stroke [38]. Isochronous metronome induces anti-persistence in stride time which

Fig 12. Boxplots of coefficient of variation for trend speed, stride speed, stride length, and stride time.

https://doi.org/10.1371/journal.pcbi.1007180.g012
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raises doubts about the efficacy of such rehabilitation. Application of persistent metronomes

to gait rehabilitation is an active field of research [20–23, 39].

In this work we demonstrated that the persistence of stride time and length originates from

trends that may be approximated by the piecewise linear MARS model. We are not aware of

any previous studies that explicitly analyzed the properties of trends in human gait. The nor-

malized trend durations of ST and SL have a distribution with an exponential tail. The expo-

nential distribution describes the time between events in a Poisson point process, i.e. a process

in which events occur continuously and independently at a constant average rate. Further

research is needed to verify whether this kind of process is involved in the generation of gait

trends. The scaling indices and the distributions of trend properties (durations and slopes) of

cross-correlated phase-randomized SL-ST surrogates are either the same or very similar to

those of the experimental data. This is a plausible indication that the speed control during

treadmill walking is predominately linear as suggested by [15]. We believe that better under-

standing of gait control mechanisms will pave the way for novel, more effective strategies of

gait rehabilitation.

Conclusions

Hausdorff et al. [1, 2] discovered long-range, persistent correlations in stride duration of

human gait nearly a quarter century ago. This persistence was attributed to correlated noise

superposed on trends. The evidence presented herein necessitates a fundamental revision of

such an interpretation: the statistical properties of ST and SL time series stem from the super-

position of large scale trends and small scale fluctuations. We demonstrated that the ST and SL

trends serve as control manifolds and that the trend speed is tightly controlled about the tread-

mill speed. The strong coupling between the ST and SL trends ensures that the concomitant

changes of their instantaneous values correspond to movement along the constant speed GEM

as postulated by Dingwell et al. [33, 34].

Materials and methods

Experimental data

In our analysis, we used data from the study of Dingwell et al. [15], which were available in the

Dryad repository [40]. Seventeen young healthy adults were asked to walk on a motor-driven

treadmill for five minutes, at five different speeds, determined as a percentage of a subject’s

preferred walking speed (PWS). PWS is the speed at which a subject choose to walk on tread-

mill. There were two trials for each speed (80%, 90%, 100%, 110%, 120% PWS). SL, ST, and SS

were determined using a motion capture system. A comprehensive description of the experi-

mental protocol and participants’ characteristics can be found in the original paper.

Multivariate Adaptive Regression Splines (MARS)

To model trends in spatio-temporal gait parameters we adopted MARS (Multivariate Adaptive

Regression Splines)—a nonparametric adaptive regression method proposed by J. Friedman

[41, 42]. Let fyig
N
i¼1

be a time series of experimental values observed at instances fxig
N
i¼1

. The

MARS model f is a linear combination of basis functions hm:

f ðxÞ ¼ b0 þ
XM

m¼1

bmhmðxÞ: ð1Þ

We denote by M the set of basis functions hm which are constructed in a very specific way. Let

us consider two piecewise linear functions max(0,x−t) and max(0,t-x) with a knot at t. These
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two functions (linear splines) form a so-called reflected pair. The example of such a pair is

given in Fig 13.

We begin the construction of M by creating a set C of N reflected pairs with knots equal to

values xi:

C ¼ fmaxð0; x � tÞ;maxð0; t � xÞgt2fx1 ;x2;...;xNg
: ð2Þ

The MARS model is build iteratively. A new basis function hM+1 is the product of one of the

already constructed basis functions hl and one of the reflected pairs from set C:

b̂Mþ1hlðxÞmaxð0; x � xjÞ þ b̂Mþ2hlðxÞmaxð0; xj � xÞ; hl 2M: ð3Þ

From all possible (M + 1)N products of this form, we select the one that gives the maximum

reduction in sum-of-squares residual error. Here b̂Mþ1 and b̂Mþ2 are coefficients estimated by

least squares, along with all the other M + 1 coefficients in the model. The first basis function

h0(x) is constant equal to 1. The process of adding new terms, which is often called a forward

model-building procedure (forward pass), is continued until the change in residual error is

smaller than the predefined stopping condition or until the maximum number of terms is

reached.

The model built during the forward pass is usually overfitted and needs to be pruned to

obtain better generalization ability. During each stage of a backward deletion procedure (back-

ward pass), the term whose removal causes the smallest increase in residual squared error is

deleted. In this way, we find the best model f̂ l with λ terms. The goal of the pruning process is

to minimize the value of generalized cross-validation:

GCVðlÞ ¼
PN

i¼1
½yi � f̂ lðxiÞ�

2

½1 � MðlÞ=N�2
ð4Þ

in order to estimate the optimal number of terms. M(λ) is the effective number of parameters

in the model:

MðlÞ ¼ r þ cK ð5Þ

that accounts for both the number of linearly independent basis functions r and the number of

knots K in the forward pass. c is a penalty for adding a new knot.

In this study, we used ARESLab, an open source MATLAB implementation of MARS [43],

to approximate trends in gait spatiotemporal parameters using a piecewise linear, additive

Fig 13. A pair of reflected basis functions with a knot at t = 5.

https://doi.org/10.1371/journal.pcbi.1007180.g013
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MARS model. In other words, every new basis function was just a linear combination of func-

tions which belonged to a reflected pair (maximum order of interaction was equal to 1). The

stopping condition for the forward phase was set to 0.001, and the generalized cross-validation

knot penalty c was set equal to 2, the value most commonly used for additive models [42].

Trend speed

We define a trend speed vðtrendÞi as the ratio of values of piecewise linear SL and ST MARS trends

at ith stride. To quantify deviations of the trend speed from the average stride speed < SS>
during a given trial we introduce a trend speed control (TSC) parameter:

TSC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðvðtrendÞi � < SS > Þ2

N < SS>2

s

: ð6Þ

Thus, TSC is equal to zero when the trend and mean stride speed are equal to each other dur-

ing the whole trial.

Scaling analysis

Detrended fluctuation analysis (DFA). DFA was designed to detect long-time, power-

law scaling of the second moment in the presence of additive, polynomial non-stationarity.

Given a bounded time series fyig
N
i¼1

, one creates an unbounded process:

Yt ¼
Xt

i¼1

ðyi� < y >Þ; ð7Þ

where< y> denotes the mean value of the time series. Next, Yt is divided into windows of

length n and a local least-squares polynomial fit is performed within each window. Let Pt indi-

cate the piece-wise sequence of such polynomial fits. Then, the root-mean-square deviation

from the trend, the fluctuation function, is calculated:

FðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t¼1

ðYt � PtÞ
2

s

: ð8Þ

A straight line on a log-log graph of F(n) as a function of n is considered a manifestation of

self-affinity as F(n)/ nα. For fractional Gaussian noise, the exponent (index) α varies between

0 and 1. In this case, for α< 0.5 fluctuations are anti-persistent and for α> 0.5 they are persis-

tent. The n-th order polynomial regression in the DFA family is typically denoted as DFAn. To

facilitate reproducibility of the results, we used the MATLAB function dfa from the WFDB

Toolbox [44, 45] for DFA calculations.

Madogram estimator (MD). The variogram of order p of a stochastic process with sta-

tionary increments is defined as one half times the expectation value of an increment at lag t
[46]

gpðtÞ ¼
1

2
hjYðt þ uÞ � YðuÞjpi: ð9Þ

For p = 1 we call such a structure function the madogram. As t! 0

gpðtÞ ¼ jcPtj
ap
þOðjtjðaþb=2Þp

Þ; ð10Þ

where H 2 (0, 1] and constants β and cP are positive. For one dimensional time series fYig
N
i¼1

,
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we may define the power variation of order p:

V̂ pðlÞ ¼
1

2ðN � lÞ

XN� l

i¼1

jYiþl � Yij
p

ð11Þ

and using Eq (10) derive the following estimate of fractal dimension:

D̂p ¼ 2 �
1

p
log V̂ pð2Þ � log V̂ pð1Þ

log 2
: ð12Þ

The fractal dimension D̂p and scaling exponent α are related by the following equation:

a ¼ 2 � D̂p: ð13Þ

Despite its simplicity, the madogram estimator (p = 1) turns out to be particularly robust, espe-

cially for non-Gaussian processes. Gneiting er al. [46] compare the properties of fractal dimen-

sion estimators that were implemented in the R package fractaldim.

Surrogate data

We used the program surrogates from TISEAN Nonlinear Time Series Analysis library [47] to

create SL/ST/SS independently phase-randomized surrogate time series (IS) as well as cross-

correlated (SL-ST) phase-randomized surrogates (CCS).

Statistical analysis

We used the Shapiro-Wilk test to determine whether the analyzed data were normally distrib-

uted. The significance threshold for all the statistical tests was set to 0.05.

The dependence of trend durations of stride time and stride length on treadmill speed were

examined with the Kruskal-Wallis test with Tukey’s post hoc comparisons.

We compared the values of Pearson’s correlation coefficient between stride time and stride

length (experimental values, piecewise linear trends, and MARS residuals) at different speeds

using ANOVA or the Kruskal-Wallis test (depending on normality of data). In both cases we

used Tukey’s post hoc comparisons.

For a given gait parameter and treadmill speed, the differences in scaling exponents deter-

mined using DFAn and madogram estimator were assessed with either ANOVA or the Krus-

kal-Wallis test (with Tukey’s post hoc comparisons in both cases). Such statistical analysis was

performed for both original and MARS detrended time series.

To determine whether fluctuations of spatio-temporal gait parameters were anti-persistent,

we checked whether the corresponding scaling exponents were smaller than 0.5 using left-

sided tests (t-test or the Wilcoxon signed rank test).

The Kolmogorov-Smirnov test was used to compare distributions and to verify whether a

sample was drawn from a given distribution. In a few instances, we also used the Anderson-

Darling test to show that the drawn conclusions might depend on the choice of a statistical

test.

In the presented boxplots, the black and grey dots correspond to the outliers and far outli-

ers, respectively.

The analysis of statistical properties of stride time and length trends was carried out using

Mathematica 11.3 (Wolfram Research).
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Software

GaitTrends repository [48] contains the MATLAB scripts that we developed while working

on this paper. The code which is distributed under the GNU GPL license was tested using

MATLAB R2016b and R2018a (Mathworks) on Windows 10. The included user’s manual

shows how to reproduce all the results presented in this paper.
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