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Detection and Attribution of 
Atmospheric Precipitable Water 
Changes since the 1970s over China
Jingpeng Zhang1,2, Tianbao Zhao   3*, Aiguo Dai   4 & Wenyu Zhang5

Atmospheric water vapor increases as air temperature rises, which causes further warming. Thus, 
understanding the underlying causes of atmospheric water vapor change is vital in climate change 
research. Here, we conducted detection and attribution analyses of atmospheric precipitable water 
(PW) changes from 1973–2012 over China using an optimal fingerprinting method by comparing the 
homogenized radiosonde humidity data with CMIP5 model simulations. Results show that the increase 
in water vapor can be largely attributed to human activities. The effect of anthropogenic forcing (ANT) 
can be robustly detected and separated from the response to the natural external forcing (NAT) in the 
two-signal analysis. The moistening attributable to the ANT forcing explains most of the observed PW 
increase, while the NAT forcing leads to small moistening. GHGs are the primary moistening contributor 
responsible for the anthropogenic climate change, and the effect of GHGs can be also clearly detected 
and successfully attributed to the observed PW increases in a three-signal analysis. The scaling factor 
is used to adjust the CMIP5 model-projected PW changes over China and the observation-constrained 
future projections suggest that atmospheric water vapor may increase faster (slower) than that 
revealed by the raw simulations over whole (eastern) China.

As the most dominant greenhouse gas in the atmosphere1–3, water vapor plays a crucial role in the global energy 
and hydrological cycles and atmospheric circulation4,5. It affects our weather and climate6–10 as well as the bio-
sphere11. According to the theoretical principles12, model simulations2,13,14 and observations12,15–19, atmospheric 
water vapor is expected to increase as air temperature rises, at a rate of ~7%/K approximately following the 
Clausius-Clapeyron equation for saturation vapor pressure12. However, how much or to what extent the increase 
in atmospheric water vapor can be attributed to anthropogenic influence and external natural forcing during the 
past several decades has not been well quantified so far.

Detection and attribution of climate change to quantify the relative contributions from human activities and 
natural forcing remain a scientific challenge20,21. Many previous studies on various climatic variables indicated 
that human activities are a major contributor to the recent climate change22–24. With respect to atmospheric water 
vapor, the last assessment report of the Intergovernmental Panel on Climate Change pointed out that an anthro-
pogenic influence on increases in surface specific humidity has already been detected with medium confidence25. 
This is mainly based on Willett et al.26, who identified a significant increase in global surface specific humidity 
from 1973–1999 that is largely attributable to human influences. At the same time, Santer et al.27 analyzed lower 
tropospheric moisture content from 1988 to 2006 derived from satellite observations and found that the anthro-
pogenic fingerprint in atmospheric water vapor simulated by a set of 22 different climate models was identifiable 
with high statistical confidence. Further study showed that the detection and attribution of anthropogenic influ-
ence on atmospheric water vapor is not sensitive to models used28.

Detection and attribution of regional climate changes are more challenging due to the lower signal-noise 
ratio that occurs at smaller spatial scales14,20. Over China, contributions of human activities to historical climate 
changes have been widely investigated in recent studies, most of them have focused mainly on temperature and 
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precipitation22–24,29–32. Few studies have quantified anthropogenic impacts on recent water vapor changes. A lack 
of reliable humidity data has been a major inhibitor in the detection and attribution studies of atmospheric water 
vapor changes20,25. Dai et al.33 developed a new approach and applied to homogenize twice-daily radiosonde 
humidity data to produce a homogenized long-term data set. The homogenized humidity data performs well in 
exhibiting spatially coherent long-term trends, comparing more favorably with GPS PW than the raw radiosonde 
data10,33. This homogenized humidity data set has been used to quantify recent water vapor changes3,33–35.

In this article, we firstly utilized the multi-model simulations from the Phase 5 of the Coupled Model 
Intercomparison Project36 (CMIP5) together with the homogenized radiosonde humidity data to investi-
gate the contributions by human activities and natural forcing to the observed recent changes in atmospheric 
precipitable water (PW) over China. Then, the detection and attribution results were applied to produce 
observation-constrained future projections that may be more realistic than the raw model output. See Materials 
and Methods section for detailed information about the datasets and methods.

Observed and Model-Simulated Trends
We first investigate the interannual variations and long-term changes of PW over China during 1970–2012. The 
PW variations over eastern China (east of 105°E) are highly consistent (correlation coefficient r = 0.96 and 0.99 
that are statistically significant at the 5% level, respectively) with those over whole China in both observations 
and model simulations (Fig. 1). The observed mean PW (black line in Fig. 1) exhibits a clear upward trend, which 
is ~0.29 mm decade−1 over whole China and 0.32 mm decade−1 over eastern China (statistically significant at 
the 5% level). These are slightly higher than the PW trend (0.24 mm decade−1 is statistically significant at the 5% 
level) over 1973–2011 derived using global radiosonde data35. The PW increases are accelerated since the mid-
1980s, with the upward trend of ~0.34 and 0.38 mm decade−1 from 1986–2012 for whole China and eastern China 
(statistically significant at the 5% level), respectively. It should be emphasized that the PW changes for the recent 
decades may partly result from internal decadal-multidecadal variability besides externally forced changes. On 
interannual time scales, the maximum value around 1998 results largely from the 1997/1998 El Niño event. The 
PW decrease during 1991–1992 is caused by the Pinatubo volcanic eruption in June 19914.

Figure 1.  Annual mean PW anomalies for (a) whole China and (b) eastern China (east of 105°E) from 
observations (black line) and multi-model ensemble mean under ALL (red line), GHG (green line), NAT (blue 
line) and ANT (yellow-green line) forcing during 1970–2012. Pink and blue shadings show the 5–95% ranges of 
the individual model simulations from ALL and NAT experiments, respectively. The dark pink color indicates 
the overlapped area by the other two colors.
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The steady rise of PW in ALL experiments (red line in Fig. 1) agrees well with the observations, with an 
upward trend of 0.25 and 0.31 mm decade−1 over whole China and eastern China (statistically significant at the 
5% level), respectively. The observed PW is well within the 5–95% ranges (pink shading in Fig. 1) of the individ-
ual ALL model simulations, which also reproduce the PW decrease after the Pinatubo volcanic eruption in 1991. 
Compared with the ALL case, the GHG-induced PW change (green line in Fig. 1) shows smaller variations with 
a nearly linear upward trend of ~0.27 and 0.34 mm decade−1 for whole China and eastern China (statistically 
significant at the 5% level), respectively. Similar to the GHG case, the ANT case also shows a steady upward 
trend of ~0.19 and 0.24 mm decade−1 for whole China and eastern China (statistically significant at the 5% level), 
respectively. In contrast, the NAT forcing (blue line in Fig. 1) contributes little to the PW change from 1970–2012, 
with a trend of 0.06 and 0.07 mm decade−1 for whole China and eastern China, respectively, except for the drop 
after the Pinatubo eruption in 1991. This result indicates that the NAT forcing cannot explain the PW increase 
over China, as the observed variations and changes are outside its 5–95% range (Fig. 1). Since atmospheric water 
vapor content depends strongly on air temperature, recent PW trends in observations and model simulations are 
consistent with temperature changes over China3,32,34,37.

Figure 2 shows the spatial distributions of the PW trends over China from observations and model simula-
tions under the ALL, GHG, and NAT forcings during 1970–2012. The observed PW trend patterns are consistent 
with earlier findings in Zhao et al.34. The ALL simulations capture the broad patterns of increasing trends seen 
in the observations, which may contain sampling noises and effects of internal variability that likely contributed 
to larger spatial variations in Fig. 2a. The PW trend patterns from ALL and GHG simulations are similar, with a 
maximum in Southeast China and decreasing towards the Northwest (Fig. 2b,c). However, the PW trend magni-
tude from GHG forcing is larger than that from the ALL case over southeastern China. Compared with ALL and 
GHG simulations, the NAT forcing results in little PW change over China, with a slight increase over southeastern 
China (Fig. 2d).

Detection and attribution analysis.  Using the ROF approach, we performed detection and attribution 
analyses of the PW changes over China during 1973–2012 using ALL experiments in the single-signal analysis 
and ANT and NAT experiments in the two-signal analysis of the time series of non-overlapping 5-year means of 
PW anomalies over whole China and eastern China. The scaling factors and their 90% confidence intervals for the 
ALL case and the ANT and NAT case are shown in Fig. 3a,c and Table 1. The best estimate of the scaling factor for 
the ALL case from the single-signal analysis is 1.13 (90% confidence interval is 0.77~1.49) for whole China and 
0.93 (0.53~1.33) for eastern China. These results indicate that the ALL forcing-induced PW trend is detectable 

Figure 2.  Annual trends (mm decade−1) of PW during 1970–2012 as computed from (a) observation and 
multimodel-simulated responses to (b) ALL, (c) GHG, and (d) NAT forcings. The red dots in (a) represent 
the 78 radiosonde stations used in this study, and the stippling in (b–d) indicates at least 80% of the individual 
simulations agree on the sign of the trend.
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in the PW over China, and that the observed and model-simulated changes are consistent with each other, as the 
90% confidence interval contains 1.0 but not zero. For China as a whole, the best estimate of the scaling factor 
exceeds one, which indicates the model-simulated response underestimates the observed PW changes by about 
12% [=100 × (1/β − 1)]. For eastern China, however, the model-simulated response overestimates the observed 
PW changes by about 7.5%.

From the two-signal analysis, it is clear that, the effect of the ANT forcing is clearly detectable (i.e., β exceeds 
zero), and the observed and ANT forcing-induced PW changes are consistent with each other (i.e., β includes 
one) for both whole and eastern China, although the best estimate of the scaling factor from ALL forcing is closer 
to the observed than that from ANT forcing (Fig. 3a,c). However, the effect of the NAT forcing is undetectable 
since the minimum β is less than zero, and the best estimate of β is close to zero over eastern China (Fig. 3c). This 
indicates that the observed PW changes over both whole and eastern China can be largely attributed to the ANT 
forcing, while the NAT forcing has little contribution, although their combination (i.e., ALL) produces a better 
match with the observed trends.

The contributions from ALL, ANT and NAT forcings to the observed PW trends, which are calculated using 
the “robust-fit method” that considers the effects of outliers and end points38, can be quantified by multiplying 
the model-simulated trend by the scaling factors and their 90% confidence intervals. These estimated PW trends 
attributable to the ALL, ANT and NAT forcings are shown in Fig. 3b,d and Table 1. Their best estimates for the 
ALL forcing case are 1.19 and 1.24 mm/40 yr over whole China and eastern China, respectively, which are slightly 
less than the trends from observations (which contain contributions from internal variability), which are 1.23 
and 1.31 mm/40 yr. The ANT forcing explains most of the observed PW changes, accounting for 1.11 (0.67∼1.55) 
and 1.23 (0.74∼1.72) mm/40 yr over whole and eastern China, respectively; while the trends attributed to the 
NAT forcing are quite small, accounting for only 0.12 (−0.10∼0.34) and 0.04 (−0.22∼0.30) mm/40 yr for the two 
regions, respectively (Fig. 3b,d). Thus, we conclude that the long-term PW changes in China during 1973–2012 is 
mainly due to the contribution from anthropogenic forcing rather than natural forcing.

To determine whether GHG is the most important factor among the anthropogenic forcings, we also con-
ducted a three-signal detection analyses using GHG, ANTnoGHG, and NAT experiments. Figure 4a,c show that 
the GHG is not only clearly detected but also attributed successfully for China as a whole and its eastern region, 
and the magnitude of the scaling factor and its 90% confidence interval for GHG is larger than that for ANT in the 
two-signal analysis (Fig. 3a,c and Table 1). However, the effect of the other anthropogenic forcing (ANTnoGHG, 

Figure 3.  (left) Best estimates (the middle point) of the scaling factors using the regularized optimal fingerprint 
method and their 90% confidence intervals and (right) corresponding re-scaling trends and their 90% 
confidence intervals from a single-signal (ALL) analysis and a two-signal analysis (ANT and NAT) of 5-year 
mean PW during 1973–2012 over whole China (a,b) and eastern China (c,d). In the single-signal analysis, the 
observed PW is regressed onto the model-simulated response to ALL forcing. In the two-signal analysis, the 
observed PW is regressed using the total least squares algorithm onto the model-simulated responses to ANT 
and NAT simultaneously41. Trends for observations and model simulations are estimated based on linear least 
square regression.
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90% confidence interval of β: −0.60~1.44 and −0.40~1.84 for whole and eastern China) and NAT (90% confi-
dence interval of β: −0.38~1.46 and −0.81~0.99) cannot be significantly detected. After re-scaling using β, the 
GHG forcing causes a PW increase of 1.64 (0.79~2.49) and 2.39 (1.12~3.66) mm/40 yr respectively for the two 
regions, whereas the PW trend induced by ANTnoGHG is mostly negative with −0.12 (−0.41~0.17) and −0.29 
(−0.75~0.17) mm/40 yr for the two regions. Similar to the result of two-signal detection analysis, the trend attrib-
utable to the NAT forcing is relatively small (0.14 and 0.03 mm/40 yr for the two regions).

Observation-constrained future projections.  From the single-signal detection based on ALL forcing, we 
found that the CMIP5 model-simulated PW underestimates for the PW change over whole China but overestimates 
it for eastern China. Thus, it is desirable to correct this systematic bias when using the CMIP5 model projections 
for future PW changes. To estimate future projections more accurately, we adjust the multi-model ensemble mean 
projection under the RCP4.5 and RCP8.5 scenarios for 2013–2100 by the best estimate of the scaling factors for the 
ALL forcing case; that is, the multi-model ensemble-mean projections are multiplied by the best estimate of the 
scaling factor. Figure 5 shows that the best estimates of the observation-constrained future PW projections are sub-
stantially higher than that projected by the raw simulations over whole China, but for eastern China, the results are 
just the opposite. For China as a whole, the best estimate of the PW increase in 2050 under the RCP4.5 and RCP8.5 
are 2.17 mm (90% confidence interval: 1.48~2.86 mm) and 2.90 (1.98~3.82) mm, respectively, which are larger than 
the 1.92 mm and 2.57 mm in the raw simulations. For eastern China, the best estimate of the PW increase in 2050 
under the RCP4.5 and RCP8.5 are 2.29 (1.31~3.27) mm and 3.03 (1.73~4.33) mm, respectively, which are less than 
the 2.46 mm and 3.26 mm in the raw simulations. The effect of the adjustment increases with time (Fig. 5).

Regions

Scaling factors Trends (mm/40 yr)

single-signal two-signal three-signal

OBS

single-signal two-signal three-signal

ALL ANT NAT GHG ANTnoGHG NAT ALL ANT NAT GHG ANTnoGHG NAT

Whole China 1.13
(0.77~1.49)

1.40
(0.85~1.95)

0.46
(−0.40~1.32)

1.52
(0.73~2.31)

0.42
(−0.60~1.44)

0.54
(−0.38~1.46) 1.23 1.19

(0.81~1.57)
1.11
(0.67~1.55)

0.12
(−0.10~0.34)

1.64
(0.79~2.49)

−0.12
(−0.41~0.17)

0.14
(−0.10~0.38)

Eastern China 
(east of 105°E)

0.93
(0.53~1.33)

1.25
(0.75~1.75)

0.11
(−0.65~0.87)

1.71
(0.80~2.62)

0.72
(−0.40~1.84)

0.09
(−0.81~0.99) 1.31 1.24

(0.71~1.77)
1.23
(0.74~1.72)

0.04
(−0.22~0.30)

2.39
(1.12~3.66)

−0.29
(−0.75~0.17)

0.03
(−0.27~0.33)

Table 1.  Scaling factors and PW trends estimated from single-signal analysis, two-signal analysis and three-
signal analysis over China during 1973–2012. The PW trends are adjusted by the corresponding scaling factors, 
and the values in parentheses are their 90% confidence interval. All of the underlined values denote that the raw 
(unadjusted) trends both of observations and simulations are statistically significant at the 5% level.

Figure 4.  Same as Fig. 3, but for GHG, ANTnoGHG, and NAT signals in three-signal analysis.

https://doi.org/10.1038/s41598-019-54185-z


6Scientific Reports |         (2019) 9:17609  | https://doi.org/10.1038/s41598-019-54185-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Summary and Discussion
Based on the CMIP5 multi-model simulations and homogenized radiosonde data, we analyzed the PW trends in 
China for the past few decades since the 1970s, and the relative contributions from external natural and anthro-
pogenic forcings to the observed PW changes were also quantified. Then, we used the scaling factors from the 
detection and attribution analyses to produce observation-constrained future projections of PW change over 
China. The results showed that PW exhibits a clear increase, with an upward trend of 0.29 mm decade−1 for China 
as a whole and 0.32 mm decade−1 for eastern China during 1970–2012; and the trend has accelerated since the 
mid-1980s, with a positive trend of 0.34 mm decade−1 during 1986–2012 for China and a more rapid growth of 
0.38 mm decade−1 for eastern China. The PW changes over China for the recent decades may be related to large 
internal climate variability and various external natural forcings, such as El Niño events and volcanic eruption.

The model-simulated PW changes under the ALL forcing can reproduce the increase pattern seen in the 
observations but cannot display the observed local characteristics. Compared with the ALL forcings, the 
GHG-induced PW changes lead to larger increases. By contrast, the NAT forcing contributes little to PW change 
from 1970 to 2012, although they do capture the effect associated with large volcanic eruptions. This finding indi-
cates that the NAT forcing cannot explain the recent PW increase over China.

Utilizing the ROF approach, we performed detection and attribution analyses on the PW changes from 1973–
2012 using ALL experiments for single-signal analysis and ANT and NAT experiments for two-signal analysis. 
The best estimate of the scaling factor β for ALL forcing in the single-signal analysis is 1.13 and 0.93 over whole 
China and eastern China, respectively, which indicates the model-simulated response underestimates (over-
estimates) the observed PW change from 1973–2012 for whole (eastern) China by about 12% (7.5%). In the 
two-signal analysis, the 90% confidence interval of the scaling factor β for ANT not only exceeds zero but also 
includes one, while it includes zero for NAT; which indicate that the observed PW increase over China can be 
mainly attributable to the ANT forcing, which can be separated from the NAT signal. After re-scaling PW trends 
using the scaling factors, the ANT forcing explains most of the observed PW changes, with the best estimate 
around 1.11 and 1.23 mm/40 yr from 1973–2012 over whole China and its eastern region. In contrast, the PW 
trends attributed to the NAT forcing are quite small, only around 0.12 and 0.04 mm/40 yr for the two regions.

Figure 5.  Time series of annual PW anomalies (relative to the 1970–1999 mean) over (a) whole China and 
(b) eastern China during 1970–2100. Future projections are based on the multi-model ensemble means under 
RCP4.5 (blue line) and RCP8.5 (red line). The light blue line and vivid red line represent the best estimates of 
the observation-constrained future PW projections under RCP4.5 and RCP8.5 scenarios, respectively. Pink 
and blue shadings show the spreads of 5–95% of the individual model simulations from RCP4.5 and RCP8.5 
scenarios, respectively, while the dark pink color represents the overlapped areas of the two shadings.
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In the three-signal detection analysis, the GHG forcing is clearly detected and attributed successfully (90% 
confidence interval of β: 0.73~2.31 and 0.80~2.62 for whole and eastern China), with a PW trend induced by 
GHG of 0.79~2.49 and 1.12~3.66 mm/40 yr for whole China and eastern China, respectively. This means that 
the GHG forcing is the most important factor among the anthropogenic forcings for the PW change over China 
during 1973–2012.

Based on the best estimate of scaling factor β for the ALL forcing case in the single-signal analysis, we calcu-
lated the observation-constrained future projections for PW over China. The adjusted future projections show 
substantially larger increases in atmospheric water vapor than that suggested by the raw simulations over whole 
China, but slower increases eastern China.

It should be recognized that our results likely contain uncertainties associated with model deficiencies in 
simulating climate response to a given external forcing, as well as uncertainties existed in the estimated historical 
forcings used by the CMIP5 model simulations. Furthermore, observational data over western China are sparse, 
especially for atmospheric humidity derived from radiosonde records33. Even for surface air temperature and 
precipitation, twentieth-century global trends estimated from different datasets can differ noticeably39,40. Thus, 
observational uncertainties may exist in our estimated PW changes, and hamper the detection and attribution 
results. In addition, the uncertainties in cloud microphysics and convective parameterizations applied in each 
climate model are considered as a major source for model errors and uncertainties in the accuracies of simula-
tions of the PW. Further investigations are clearly needed into the uncertainties in the influence of anthropogenic 
forcings on climate variability.

Materials and Methods
Homogenized radiosonde humidity data.  We used the homogenized twice-daily radiosonde humidity 
data from Dai et al.33. The homogenized humidity data are available for around 100 stations within China with 
over 80% of the time with observations during 1970–2012 (data after 2012 require new homogenization and thus 
are not used here). We selected 78 of these Chinese stations that had at least 90% of the time with observations 
during 1970–2012. The spatial distribution of the 78 stations is shown in Fig. 2a. Visual inspection suggests that 
these radiosonde stations are roughly uniformly distributed over most of China except the western region. 
Besides examining trend maps, we also analyzed the PW time series averaged over whole China and eastern 
China (east of 105°E), which has better station coverage (Fig. 2a) and is influenced heavily by the East Asian mon-
soon. Here, we focus on the changes and variations in column-integrated PW, which is concentrated mainly in the 
lower troposphere. The PW is calculated by integrating the specific humidity from the surface to 300 hPa using 

∫= .PW qdp
g

p0 1
300

s , where PW is in mm, g (=9.8 m s−2) is the acceleration of gravity, ps is surface pressure in hPa, 
q is specific humidity in g kg−1, and p is air pressure in hPa.

CMIP5 Model simulations.  CMIP5 model simulations were used to estimate the PW response to external 
forcings and the spread caused by internal climate variability. Here we utilized 68 historical simulations from 22 
climate models to represent the response to all external forcings (ALL), 44 simulations from 10 models under 
greenhouse gas forcing (GHG) only, and 56 simulations from 11 models under natural forcing (NAT) only. The 
low-moderate representative concentration pathway (RCP4.5) simulations for 2006–2012 were used to extend 
the ALL forcing simulations as the historical simulations ended in 2005, while the GHG and NAT runs ended in 
2012. We estimated the response to anthropogenic forcing (ANT) by differencing ALL and NAT cases, i.e., our 
ANT = ALL − NAT. Further, we derived another ANT case without the GHG effect (ANTnoGHG) by differenc-
ing ANT and GHG: ANTnoGHG = ANT − GHG. Additionally, we used pre-industrial control (CTL) simula-
tions from 22 models to estimate the internal climate variability. These CTL simulations were divided into 289 
segments of 40 years (the length of 1973–2012). Furthermore, the detection and attribution results were applied 
to constrain 21st century projections under the RCP4.5 and RCP8.5 (a high emissions) scenarios from 22 models. 
The CMIP5 model simulations used here are listed in Table 2, more details can be seen at the CMIP5 website: 
http://cmippcmdi.llnl.gov/cmip5/.

Detection method.  The optimal fingerprint method, which has been extensively used in detection and attri-
bution studies9,23,37,41–43, is applied here to quantify the relative contributions from each individual external forc-
ing. As an extension of the optimal fingerprinting method, the regularized optimal fingerprint (ROF) provides a 
more objective and accurate implementation of detection and attribution with a specific estimate of the covari-
ance matrix44. This method assumes that the climate response signal and the internal noise are linearly additive25; 
that is, the observed changes are the sum of externally-forced change and internally-generated variations. We 
first conducted a single-signal analysis, with the observed PW variations regressed onto the model-simulated 
response to ALL forcing for whole China and eastern China (thus, no spatial patterns were used in the analysis). 
The ALL-forcing signal is estimated using the multi-model ensemble mean, as the uncorrelated internal varia-
tions are largely smoothed out in the ensemble averaging. We then performed a two-signal analysis by regress-
ing the observed spatio-temporal variations onto the response patterns from the ANT and NAT simulations, 
in which ANT = ALL − NAT, to examine the relative contributions of anthropogenic and natural forcing to the 
observed PW changes. Finally, we also conducted a three-signal analysis using GHG, NAT and ANTnoGHG (i.e. 
ANT-GHG) signals to estimate the relative contributions of the individual external forcings. In these analyses, the 
observed regional PW series is regressed against the model-simulated PW series:

β ε= +PW PW (1)OBS ALL ALL

https://doi.org/10.1038/s41598-019-54185-z
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β β ε= + +PW PW PW (2)OBS ANT ANT NAT NAT

= +PW PW PW (3)ALL ANT NAT

β β β ε= + + +PW PW PW PW (4)OBS GHG GHG ANTnoGHG ANTnoGHG NAT NAT

= + +PW PW PW PW (5)ALL GHG ANTnoGHG NAT

where PWOBS is the regionally-averaged PW (see section 2.3 for more details) from observations; PWALL, PWANT, 
PWNAT, PWGHG and PWANTnoGHG denote the regional PW response to ALL, ANT, NAT, GHG and ANTnoGHG 
forcing, respectively; βALL, βANT, βNAT, βGHG and βANTnoGHG are the unknown regression coefficients or scaling 
factors, and ε represents regression residual term. In detection and attribution analysis, the observational data 
series may not be independent and identically distributed (i.i.d). For such cases, the covariance structure of the 
observation data is needed in the linear regression, and CTL run data are often used to estimate such covar-
iance matrix41. Here we used half of the CTL data segments for estimating the covariance in order to derive 
the β factor. The other half was used to estimate its confidence interval. Equations (1, 2 and 4) represent the 
single-, two- and three-signal attribution analysis, respectively. It should be noted that βNAT estimated in the 
two-signal analysis (Eq. 2) and three-signal analysis (Eq. 4) may be different. To account for the sampling error in 
the model-simulated externally-forced PW signals as they are estimated from a limited number of ensemble runs, 
the total least squares algorithm41, which accounts for uncertainties in both variables of the regression, was used 
to estimate the scaling factor β in these equations.

The above method provides a technique to determine whether the signal from the anthropogenic and natural 
forcings could be detected and whether the influence of the anthropogenic forcing, especially greenhouse gas 
increases, could be separated from the naturally-forced signal and the internal variability. We used the resid-
ual consistency test proposed by Allen and Tett45 to evaluate whether the model-simulated variability is small 
enough. If the 90% confidence internal of the scaling factor differs from zero, it means this forcing factor is 
successfully detected. And if the detected factor’s 90% confidence internal includes unity and above zero, then 

Model Name ALL GHG NAT CTL RCP

ACCESS1-0 1 12 1

ACCESS1-3 1 3 3 12 1

BCC-CSM1-1 1 1 1 1

CanESM2 5 5 5 24 1

CCSM4 6 12 1

CNRM-CM5 6 6 21 1

CSIRO-MR-3-6-0 10 10 10 12

GFDL-CM3 3 12 1

GFDL-ESM2G 1 12

GFDL-ESM2M 1 12

GISS-E2-H 10 5 10 13 1

GISS-E2-H-CC 1 6 1

GISS-E2-R 10 5 10 13 1

GISS-E2-R-CC 1 6 1

HadGEM2-CC 1

HadGEM2-ES 4 4 4 14 1

INM-CM4 1

IPSL-CM5A-LR 4 4 3 25 1

IPSL-CM5A-MR 1 3 7 1

IPSL-CM5B-LR 1

MIROC5 1

MIROC-ESM 1 15 1

MIROC-ESM-CHEM 1 6 1

MPI-ESM-MR 3 25

MRI-CGCM3 1 12 1

NorESM1-M 1 1 1 12 1

NorESM1-ME 1 6

SUM(models) 68(22) 44(10) 56(11) 289(22) 22(22)

Table 2.  List of multi-model simulations used in this study. Numbers represent the ensemble sizes for the ALL, 
GHG, and NAT forcing and RCP scenarios. For the CTL simulations, numbers represent the number of 40-year 
chunks.
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the observed change is consistent with the simulated response to this external forcing. The deviation of β from 
unity is often used to infer the mean bias in the models in simulating the forced signal, under the assumption that 
internal variations in observations do not contribute to the estimated forced component (the right-hand terms in 
Eqs. 1, 2 and 4 except ε). If the best estimate of β is above (below) unity, then the models underestimate (overes-
timate) the forced signal in observations22,32.

Data processing.  The forced response or signal is represented using the multi-model ensemble mean, which 
is an equally weighted arithmetic average of the ensemble mean of the simulations from individual models. To 
facilitate the analysis and comparison, PW anomalies (relative to the 1970–1999 climatology) from observations 
and model simulations were re-mapped onto a common 1° lat × 1° lon grid. The Cressman interpolation tech-
nique46 with a maximum influence radius of 1000 km was used in the gridding of the station PW anomalies, while 
bi-linear interpolation was used to remap the model data. In the detection and attribution analysis, for each grid 
box we converted the annual PW data into a series of non-overlapping five-year means over 1973–2012 (i.e., 
for 1973–1977, 1978–1982, …, 2008–2012) to shorten the time dimension and to reduce the variability in the 
observations and noise in the climate signals. To further shrink the noise, following Wen et al.22, the 5-year mean 
PW data were projected onto empirical orthogonal functions (EOFs). We included only those leading EOFs in 
our subsequent detection and attribution analysis that together explained about 80% of the total variance. The 
grid boxes without observations were masked out in analyzing the model data, so that the spatial sampling is 
the same for the observations and model data. Weighted by cosine of the latitude at the center of each grid box, 
we constructed the regional averages over whole China and eastern China using the EOF-reconstructed data to 
increase the signal-to-noise ratio47, and these regional PW data series were used in Eqs. (1–5). To estimate the 
noise from natural variability and for statistical testing of the estimated scaling factor, we derived 289 segments 
of non-overlapping 40-year chunks from the CTL simulations by 22 models. We similarly averaged the 40-year 
data series into 5-year means and split the 289 chunks into two halves, with one used for optimization (i.e., for 
estimating the noise term ε in Eqs. (1, 2 and 4), and the other for statistical testing of the estimated slopes in these 
equations22.
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