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Introduction

The first reporting showing that the direct injection of naked plasmid DNA carrying 

eukaryotic genes into the mammalian muscle leads to endogenous expression of and 

to a specific immune response against the encoded protein were published some 25 

years ago and provided the basis for the development of DNA-vaccines [1-3]. These 

experiments DNA-based immunization has been developed further into a promising 

tool for the fight against many important challenges to human and animal health, in-

cluding infectious diseases, cancer or allergy. The advantages of this technology over 

existing methods include safety (the plasmids used are non-replicating in eukaryotic 

cells), the possibility to stimulate potent cellular immune responses (due to MHC I-

mediated presentation of the antigen which is made by the transfected cells), rapid 

adaptation to antigenic variants (by simple cloning techniques), simple production 

systems (amplification and purification in Escherichia coli is uncomplicated and rela-

tively cheap), the possibility of combinatory vaccines (only by mixing different DNA 

molecules [4]), and the potential to be used in settings devoid of a cold chain (due to 

the high stability of DNA).

  DNA vaccines usually consist of DNA plasmids, which express antigens following 

their transfer into a vaccinee. They thereby mediate the endogenous production of a 
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foreign protein, including its natural conformation and ap-

propriate post-translational modifications. This is of major 

importance since endogenous expression appears to be fa-

vorable for the induction of neutralizing antibodies and a 

balanced cellular immune response. In this context, DNA 

immunization has been shown to be able to induce potent 

Th1-mediated cellular immune responses, which is different 

to existing techniques such as inactivated pathogens or re-

combinant subunit vaccination [5]. Such advantages are 

commonly accepted and underlined by the fact that some 

DNA vaccines are already licensed in the veterinary sector. In 

addition to serving as a vaccination platform on its own, DNA 

immunization was also shown to induce powerful priming 

immune responses in combination with other vaccine tech-

niques as booster immunizations, such as viral vectors, re-

combinant proteins or virus-like particles.

  Until now DNA vaccines have only been licensed in the 

veterinary sector, including one application as immune ther-

apy for melanoma in dogs (Oncept), a vaccine for the preven-

tion of rhabdovirus disease in fish (Apex-IHN), and a West 

Nile virus (WNV) vaccine for horses (West-Nile-Innovator). 

The forth DNA plasmid licensed is not a vaccine, but it en-

codes the growth hormone releasing factor for breeding sows 

and is licensed for the food production industry resulting in 

more alive piglets in their litters and higher weight of these 

piglets [6]. The WNV-DNA vaccine has been tested in mice, 

birds and horses. Interestingly, the vaccine induced striking 

protective immune responses after a single application of 

DNA electroporation (EP) device from Genetronic Inc. (now: 

Inovio Inc.) of 100 µg or even 0.1 µg DNA in mice measured 

by intraperitoneal and mosquito challenge [7]. However, hors-

es were immunized only by intramuscular application of 1 

mg DNA in 1 mL phosphate buffered saline without EP, since 

horses appear to be intolerant to electric pulses. The absence 

of an uptake enhancement might be the reason of the low im-

mune responses in the horses after DNA vaccination [7]. The 

same WNV DNA vaccine was experimentally applied in a va-

riety of bird species using different formulations and delivery 

methods [8-10]. The first genetic DNA vaccination on the mar-

ket however was against the infectious hematopoietic necro-

sis virus (IHNV) in the rainbow trout [11]. In a later DNA vac-

cine study Sockeye salmon with a mean weight of 150 g were 

injected with 25 µg of naked DNA resulting in high neutraliz-

ing antibody titers. In this study also Rainbow trout with mean 

weight of 2 g were immunized by intramuscular injection of 1, 

5, or 10 µg DNA vaccine resulting in a nearly complete sur-

vival after challenge with IHNV in all vaccinated groups [12]. 

The immunotherapeutic DNA vaccine for dogs was licensed 

in 2010 to treat malignant melanoma. The application showed 

effective antibody responses and prolonged survival. The DNA 

was transferred intramuscularly by needle free injection (Bio-

jector 2000) with of a total of four vaccinations in 2-week in-

tervals ranging between 100 and 1,500 µg per dose [13]. 

  However, despite these licensed veterinary applications, 

DNA vaccination is still facing limitations in immunogenicity, 

which have until today prevented its use on a global scale, most 

importantly in humans. Promising results from small rodent 

models were hardly seen in larger species including non-hu-

man primates or humans. In the following we will discuss me

thods which aim to overcome these limitations by increasing 

immunogenicity of DNA vaccines against infectious diseases. 

Several of these strategies are currently being used in clinical 

trials to develop the first DNA vaccines for the use in humans. 

Improving Immunogenicity of DNA Vaccines

In the last few years several studies have been published on 

DNA sensing by cytosolic proteins, and the understanding of 

the innate immune mechanisms triggered by recognition of 

DNA is increasing. The inflammatory signal upon cytosolic 

DNA recognition is adjuvanting the DNA vaccination per se 

via the activation of two major types of proinflammatory path-

ways. These sensor molecules for cytosolic DNA identified so 

far include AIM2, IFI16, DDX41, and cGAS [14-18]. The inter-

play of these recognition molecules is orchestrated by a ma-

jor key molecule which transfers the signal to the innate im-

mune response: stimulator of interferon gene (STING) [19,20]. 

It is very likely that the understanding of the mechanisms of 

DNA recognition by the sensor molecules and of the signal-

delivery to STING, which initiates an interferon (IFN) response 

will in future improve the usage of DNA as vaccine.

  However, in order to on the one hand strongly trigger such 

innate immune mechanisms and on the other hand ensure 

an optimal expression of the antigen, it is essential that DNA 

is efficiently delivered into the cells and transferred into the 

nuclei [21]. As a consequence, the inefficient transfer of plas-

mid DNA into mammalian cells and nuclei in vivo is still one 

of the major obstacles in DNA vaccinology. A striking differ-

ence of the immunogenicity after transfer of naked DNA was 

observed when small rodent models were compared to larger 

animal species, especially non-human primates. This differ-

ence was thereafter named “simian barrier” because many 
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DNA studies in non-human prinates and the first human clin-

ical trials were carried out without or with only little induc-

tion of immune response [22-24]. The reasons for the lack of 

reproducibility of many results obtained in mice after the ap-

plications in larger animals are still not fully understood. Pos-

sible explanations may be differences in the ratio of applied 

DNA versus body weight or differences in the DNA-uptake of 

target cells. A large number of different strategies are being 

employed to overcome these problems (reviewed in Kutzler 

and Weiner [25]). In early studies bombardment with gold 

particles was used to increase the delivery efficiency of plas-

mid DNA [26]. Since then sophisticated physical DNA deliv-

ery methods have become an important area for vaccine re-

search. In vivo EP combines the injection of DNA with elec-

tric pulses into the side of injection (Fig. 1) [24], and different 

in vivo EP technologies have been analyzed during the last 

years [27]. Currently intramuscular and intradermal EP are 

the predominant technologies used to deliver DNA vaccines 

in clinical trials. Several cell types were used for the analysis 

of in vivo uptake efficiency. Most of them express the trans-

ferred plasmids only for a few days [28]. In contrast, mature 

muscle cells express the plasmid-encoded protein for months 

[29,30]. Therefore, to date intramuscular DNA EP has proven 

the most effective delivery strategy [31]. In contrast, intrader-

mal DNA vaccination is leading to immunogenicity most like-

ly because of the high presence of antigen-presenting cells in 

the skin. These cells include Langerhans cells in the epider-

mis and dendritic cells in the dermis [32,33].

  Other physical DNA-delivery technologies include the afore-

mentioned bombardment via gold particles (gene gun) [34,35] 

jet stream DNA injection (Biojector 2000) [35,36], intradermal 

EP using different devices [37-40], plate applicator for transcu-

taneous EP [41], and DNA tattooing [23,41-43]. Hence, until 

today a variety of different methods for the delivery of DNA 

vaccines have been developed. However, no side-by-side in-

vestigations were performed to compare immunogenicity and 

efficacy of these different technologies, in fact most of the vac-

cine studies only compare one newly established device to a 

control group and not to other devices. Therefore we have ana-

lyzed in an non-human primates the immunogenicity of a 

A B

Fig. 1. Different electroporation delivery devices. Schematic view on DNA immunization by intramuscular and intradermal electroporation. (A) 
For intramuscular electroporation an array of needle electrodes carry an electrical current to the cells in the muscle layer. After an electronic 
pulse the cell membrane of muscle cells is temporarily permeable, allowing DNA plasmid to enter the cell. (B) For the intradermal electropora-
tion the needle electrodes are placed on or introduced into the skin. The DNA plasmids are taken up by the dendritic cells (Langerhans cells) of 
the skin upon the electronic pulses.
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DNA encoding the fusion protein of the respiratory syncytial 

virus delivered by intramuscular EP, intradermal EP, DNA-

tattooing or by intramuscular injection without any adjuvants 

[41]. In this study, we showed that the humoral immune re-

sponse was induced to high levels by immunization via both 

intramuscular and intradermal EP and DNA-tattooing. In 

contrast, only the intramuscular EP induced convincing sys-

temic cellular responses to the vaccine antigen. Moreover, the 

induction of mucosal T-cell responses was polyfunctional only 

in an additional group which received an adenoviral boost 

expressing the same antigen [41].

DNA Vaccines and Adjuvants

Adjuvants are a powerful technique to enhance the immuno-

genicity of vaccines. They are part of several vaccines, espe-

cially those containing inactivated pathogens or protein sub-

unit antigens. The overall principle is the enhancement of 

immune responses due to mechanisms such as causing a lo-

cal inflammatory response, the direct induction of specific 

cytokines or the slow release of antigen from antigen-adju-

vant complexes. Two major groups of adjuvants are being 

tested together with DNA vaccines. First, the “classical” ones, 

i.e., chemical compounds that are also used with established 

vaccine technologies. Secondly, “genetic adjuvants;” i.e., pro-

teins encoded by the same or another DNA plasmid. In con-

trast, compounds which enhance the immunogenicity by 

optimizing the delivery of the DNA and thereby antigen ex-

pression are not counted as adjuvants here, because their ef-

fect on the immune system is not a direct one. 

Chemical Adjuvants

When using classical adjuvants together with DNA vaccines, 

several aspects are different to using adjuvants with estab-

lished vaccine technologies. For example, in many cases the 

adjuvant is mixed with the antigen before administration of 

the vaccine. This enables a physical interaction of antigen 

and adjuvant, which in many cases generates a “depot-effect” 

upon application, i.e., the slow release of the antigen and lon-

ger interaction with the immune cells. In contrast, the plas-

mid of DNA vaccines is not the physical antigen but its cod-

ing sequence, and as a consequence no such direct interac-

tion can be generated. In addition, when antigen and adju-

vant are co-injected, both come into contact with the immune 

system at the same place and at the same time. However, af-

ter DNA-application, there is a lag phase of several hours to 

days, which is caused by the time needed for the transfected 

cells to produce sufficient amounts of antigens for  stimula-

tion of the immune system. Since many adjuvants work im-

mediately after application, their effect might already have 

passed its peak or even disappeared at the time the antigen is 

present. On the other hand, plasmid DNA is usually produced 

in bacteria and therefore contains unmethylated CpG mo-

tives. These have an adjuvant effect by themselves via stimu-

lating the innate immune system through Toll-like receptor 

(TLR) 9 [44], which could even be enhanced by adding addi-

tional CpG sequences into the plasmid [45]. 

  Several chemical adjuvants have been tested together with 

DNA vaccines, however, most studies were performed in small 

rodent models [46-50]. Since in mice DNA vaccines are usu-

ally quite immunogenic and do not need a significant enhance

ment by adjuvants, these data obtained are not directly trans-

ferable to larger animal species. This is exemplified by studies 

with aluminium salts (also referred to as alum), probably the 

most widely used chemical adjuvant which is also licensed 

for the use in humans. The effect of alum on DNA vaccination 

was systematically studied [51,52]. A clear increase in humoral 

immune responses was seen with aluminium phosphate in 

mice. However, in non-human primates the differences to 

the non-adjuvanted controls were far less pronounced, espe-

cially when compared to the effect of alum on a recombinant 

protein antigen in the same animal species [51,53]. The posi-

tive effect of alum in mice was attributed to the boosting of 

the immune response elicited by the antigen expressed, hence 

not to a direct interaction with alum and the DNA plasmid 

[51]. In larger animals such as large birds or dogs, alum have 

so far been used in a few DNA vaccine trials [54-56]. There 

were no control groups without the adjuvant included in these 

studies, hence it is not possible to judge whether there was 

any benefit of alum. However, in a study of the WNV DNA 

vaccine in American crows no difference in immunogenicity 

was observed between birds immunized with or without alu-

minium phosphate [10]. Likewise, in humans, aluminium 

phosphate showed no effect on the performance of a human 

immunodeficiency virus (HIV) type 1 (HIV-1) DNA vaccine 

[57]. Therefore, it seems that, at least in larger animal species, 

alum do not work when co-injected with DNA vaccines to 

the same extend as they do with recombinant antigens. Alum 

are detectable for months at the injection sites [58,59], which 

could indicate that the failure of alum as adjuvant for DNA 

vaccines is not due to the slow appearance of DNA-delivered 
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antigens, but rather to the lack of a direct interaction between 

adjuvant and antigen before injection.

  An adjuvant that was developed to boost particularly DNA 

immunizations is the cationic lipid formulation Vaxfectin [60]. 

Although cationic lipids are known to efficiently deliver DNA 

to cells, the adjuvant effect of Vaxfectin is not induced by en-

hancing the in vivo transfection efficiency. In contrast, a direct 

modulation of immune pathways by the compound seems to 

be more crucial for the increase in immunogenicity [61]. The 

adjuvant is also being tested with other vaccine techniques, 

such as inactivated pathogens [14-18,62]. Vaxfectin has been 

successfully used together with a variety of DNA vaccines in 

small animal models [63-65]. In non-human primates, it sig-

nificantly enhanced the antibody response to a DNA vaccine 

against measles virus, whereas there was no effect on virus-

specific IFN-γ producing T-cells [66]. The adjuvant has also 

been tested with an influenza DNA vaccine in a human phase 

I trial and was well tolerated [67]. However, due to the absence 

of a non-adjuvanted control group, the effect of Vaxfectin on 

the human immune response could not be determined. A 

clinical phase I study with a DNA vaccine against dengue vi-

rus including such a control group is currently running (NCT 

01502358). 

  The WNV DNA vaccine licensed for use in horses was for-

mulated with MetaStim, an oil-in-water emulsion [68], but it 

was not published whether the adjuvant had an effect on im-

munogenicity. The TLR3-agonist poly ICLC, a stabilized poly 

I:C analogue, was proven a successful adjuvant with protein 

vaccines in mice [69]. However, no effect was seen in combi-

nation with a simian immunodeficiency virus DNA vaccine 

in rhesus macaques [70].

  Taken together, several chemical adjuvants have been used 

with DNA vaccines in large animals and humans so far, but  

the actual effect of the adjuvants were not investigated in all 

of these studies. For the majority of chemical adjuvants un-

der development, their usefulness in DNA vaccination needs 

to be addressed in more detail, especially by using animal mo

dels different from rodents. 

Genetic Adjuvants

Instead of using chemical compounds, which lead to the stim-

ulation of certain cytokines, these cytokines can also be de-

livered directly with the DNA vaccine, either on the same or 

on a separate expression plasmid. This enables the appear-

ance of the cytokine at the same time and in the same area as 

the vaccine antigen. The effects of plasmids encoding cyto-

kines such as interleukin (IL)-10, IL-12, or IFN-γ together with 

DNA vaccines have been studied in a variety of animal and 

disease models, up to clinical trials in humans, and in many 

cases significant improvements in immunogenicity have been 

achieved (recently reviewed by Flingai et al. [71].

  In addition to the co-delivery of cytokine genes, an increas-

ing number of studies describe the usage of plasmids coding 

for immune signaling molecules, either as partial or as full-

length genes. Many adjuvants function by activating the in-

nate immune system via binding to TLRs. An alternative to 

using TLR ligands is the expression of proteins which medi-

ate signaling directly downstream of activated TLRs. This was 

tested by incorporating two genes, MyD88 and TRIF, into DNA-

vaccine plasmids against influenza or rabies [72,73]. Both ge-

netic adjuvants were able to enhance the resulting immune 

responses.

  Another innate immune mechanism, which is being ex-

plored for improving DNA vaccination is the sensing of viral 

infections via the two pathogen recognition receptors RIG-1 

and MDA-5. Both proteins detect the presence of viral RNA in 

the cytosol. Co-delivery of the coding sequence of MDA-5 on a 

vaccine plasmid against influenza in chicken resulted in signifi-

cantly higher antibody titers as compared to the non-adjuvant-

ed controls. The genetic adjuvant also led to increased protec-

tion of the animals in a H5N1 challenge [74]. Similarly, the pro-

tein virus-induced signaling adapter (also named mitochon-

drial antiviral-signaling protein), which is activated by RIG-I, 

was able to enhance cellular immune responses to an influen-

za DNA vaccine [75]. Co-expression of an RNA-based RIG-I 

agonist led to an improved antibody avidity after DNA vaccina-

tion with an influenza hemagglutinin-coding plasmid [76].

  Other strategies for genetic adjuvants include components 

of the complement system, protein aggregation domains, che-

mokines, or co-stimulatory molecules [50,77,78].

  Hence, whereas DNA plasmids encoding certain cytokines 

have already entered clinical testing in humans, studies with 

many other genetic adjuvants were mostly performed in mice. 

Therefore, it remains to be seen to what extent these promis-

ing results can be transformed into powerful strategies to boost 

DNA vaccines in larger animals and humans.

Examples for Clinical Trials Involving DNA 
Vaccines

Besides several clinical studies of DNA immunization in the 
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context of cancer and autoimmune disease in humans, DNA 

vaccines have also been clinically tested against infectious vi-

ral diseases, most prominently HIV, hepatitis C virus, and cy-

tomegalovirus (CMV). Initially one criticism for the usage of 

DNA vaccines in humans was the possibility of stable integra-

tion of DNA into the genome, which could lead to unwanted 

side effects even up to oncogenesis. However, so far several 

studies have demonstrated that the rate of DNA integration 

in vivo is actually lower than the rate of spontaneous muta-

genesis [79]. In addition, no negative effects such as induction 

of autoimmunity or transfer of antibiotic resistance markers 

could be demonstrated. At present hundreds of volunteers 

have already received DNA vaccines without any known sig-

nificant adverse event. However, the limitations as stand-alone 

platform for the induction of immune responses were also 

apparent in many studies completed to date. Nevertheless, 

until now several clinical trials with DNA vaccines delivered 

by intradermal or intramuscular EP have been performed 

and have shown both humoral and cellular immune respons-

es which persists for several years [80,81]. 

  One recent trial, HVTN 505, was a phase 2 study enrolling 

around 2,200 individuals to test the safety and efficacy of a 

biojector-delivered intramuscular DNA prime followed by an 

adenovirus vector serotype 5 (Ad5) boost vaccination [82]. The 

outcome was comparable to that observed after the STEP 

study published in 2008 [83], namely that the vaccinated in-

dividuals had a higher probability of HIV infection than the 

placebo group (reviewed by Odondo [84]). Hence, although 

clearly immune responses were elicited in the vaccine group 

these immune responses could apparently not protect against 

the virus infection. Whether this is an effect of reverting the 

protective towards a more susceptible immune response via 

“enhancer CD4+ cells” or a suppressive effect of the immune 

response is still under discussion [85,86].

  In another HIV DNA vaccine clinical trail the level of HIV 

specific immune responses was increased 70-fold by using 

intramuscular in vivo EP as compared to intramuscular de-

livery alone [87]. A subsequent analysis showed that the anti-

body responses were directed towards the V2 loop of HIV env 

which was previously shown to correlate with protective effi-

cacy [88,89].

  In addition to these results in the HIV field, several trials 

were performed to study DNA vaccine technologies for the 

prevention of other infection diseases. One clinical trial phase 

3 is currently starting to determine the ability of the therapeu-

tic CMV vaccine TransVax. This DNA is a bivalent vaccine 

that contains plasmids encoding tegument phosphoprotein 

65 and the surface glycoprotein B of CMV, to produce protec-

tive immune responses and provide clinical benefit in CMV-

seropositive recipients for hematopoietic stem-cell transplan-

tations. The plasmids are formulated with poloxamer CRL 

1005 and with benzalkonium chloride, compounds which 

enhance the delivery of DNA [90]. The phase 2 trial showed 

that the DNA-vaccine was safe and well tolerated. Further-

more the vaccine significantly reduced the occurrence of vire-

mia and prolonged the time to viremic episodes compared to 

the placebo group in the follow-up [91].

  Many studies with DNA vaccines showed that by using vi-

ral vectors as heterologous boost vaccination, immunogenic-

ity could be increased [92] and this consequently led to het-

erologous prime-boost strategies in clinical trials. Vectors 

employed for these developments include modified vaccinia 

Ankara (MVA) [93-95], NYVAC [96], fowlpox [97], and canary-

pox (ALVAC) viruses [98] as well as adenoviral vectors [82,99, 

100]. 

Outlook

A lot of effort has been put into the improvement of DNA vac-

cines. Several clinical trials involving sophisticated delivery 

technologies, including DNA EP, are currently being execut-

ed. It will be of highest interest whether the results obtained 

point towards clear improvements in immunogenicity and 

protection. 

  It also seems very important to transfer results obtained 

with one antigen/target disease to other applications. A DNA 

vaccine delivered via one method can be very immunogenic 

but still fail in protecting against a certain infection, due to 

factors such as escape mutants or intrinsic requirements for 

immunity. Nevertheless, a DNA vaccine delivered with the 

same method can be very protective against another disease. 

Therefore, crosstalk between researchers in the field of DNA 

vaccinology seems essential to push DNA vaccine develop-

ment further and transform a promising technology into real 

vaccines.
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