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Ecological and genetic basis of metapopulation
persistence of the Glanville fritillary butterfly in
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Ecologists are challenged to construct models of the biological consequences of habitat

loss and fragmentation. Here, we use a metapopulation model to predict the distribution of

the Glanville fritillary butterfly during 22 years across a large heterogeneous landscape with

4,415 small dry meadows. The majority (74%) of the 125 networks into which the meadows

were clustered are below the extinction threshold for long-term persistence. Among the

33 networks above the threshold, spatial configuration and habitat quality rather than the

pooled habitat area predict metapopulation size and persistence, but additionally allelic

variation in a SNP in the gene Phosphoglucose isomerase (Pgi) explains 30% of variation in

metapopulation size. The Pgi genotypes are associated with dispersal rate and hence with

colonizations and extinctions. Associations between Pgi genotypes, population turnover and

metapopulation size reflect eco-evolutionary dynamics, which may be a common feature in

species inhabiting patch networks with unstable local dynamics.
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H
abitat loss and fragmentation are the main drivers of
ongoing loss of biodiversity1–3, but ecologists have made
only limited progress in predicting the consequences

of habitat loss on population viability and extinction4,5 in
quantitative terms, and in clarifying the additional effects of
fragmentation6,7. It has been suggested that framing the question
as a dichotomy between the effects of loss of pooled habitat
area versus fragmentation per se may be misleading, and that
we should instead start by considering the causal mechanisms
that underpin species’ responses to altered spatial structure of
habitat8,9. One approach that does this but is applicable only to
highly fragmented landscapes (defined below) is based on the
measure of metapopulation capacity, which integrates the effects
of habitat amount and spatial configuration (fragmentation)
into a single number.

From the viewpoint of practical conservation, it would
be critically important to be able to answer questions such as
how much habitat is sufficient for long-term persistence of
populations and species. The species-area relationship (SAR)
(ref. 10) has been used to predict extinctions due to habitat
loss11–14, but these predictions continue to be debated15.
They only provide a rough baseline prediction at best, because
SAR does not take into account the temporal population
dynamics following habitat loss, and SARs completely ignore
any fragmentation effects (but see refs 16–18). In brief, ecologists
are challenged to produce more predictive models of the
consequences of habitat loss and fragmentation. Given the great
variation in the ecological circumstances in which species
and communities occur, and the range of spatial scales from
small experimental study plots19 to the continental20 and even
global scale21, it might be advisable to develop analyses
and models for more circumscribed situations rather than
aiming for universal approaches.

One common situation in nature is represented by highly
fragmented landscapes, in which the focal habitat accounts
for only a small percentage of the total landscape area, of the
order of 1%. Very large numbers of invertebrates, plants and
fungi inhabit highly fragmented landscapes22, and human land
use makes the environment of large numbers of yet other species
increasingly fragmented23,24. In highly fragmented landscapes,
the focal habitat occurs in small patches, or fragments, which
are distributed in a more or less aggregated manner across
the landscape. The classical metapopulation approach25,
assuming frequent extinctions of small local populations and
frequent establishment of new populations in the currently
unoccupied patches, has been developed for species inhabiting
highly fragmented landscapes.

The large metapopulation of the Glanville fritillary butterfly
(Melitaea cinxia) in the Åland Islands in Finland is a model
system for the study of the ecological, genetic and evolutionary
consequences of habitat fragmentation25,26. The landscape
consists of a very large network of dry meadows with the
pooled habitat area covering about 1% of the landscape27.
Here, we analyse data for 22 years, comprising 66,527 records
of the presence or absence of the butterfly in 4,415 habitat
patches distributed among 125 semi-independent networks. Our
aim is to test the predictive power of a spatially realistic
metapopulation model28 and to examine other factors apart
from habitat area and fragmentation that may influence
metapopulation size and persistence. In particular, we analyse
the effects of habitat quality, and the effect of a well-studied
candidate gene, Phosphoglucose isomerase (Pgi), on the butterfly
metapopulation dynamics and metapopulation size.

We show that the majority of the habitat networks of
the butterfly are below the extinction threshold. Metapopulation
persistence and sizes of the networks above the extinction

threshold can be predicted by spatial configuration, habitat
quality and Pgi genotypes. In accordance with earlier work
in other systems29,30, associations between Pgi genotypes,
population turnover and metapopulation size show compelling
evidence that demographic and genetic dynamics are closely
coupled, leading to observable eco-evolutionary dynamics in
real systems at landscape scales.

Results
Extinction threshold in fragmented landscapes. The study
system covers an area of 50� 70 km (Fig. 1a), and consists
of a large network of 4,415 dry meadows with one or both of the
two host plant species of the butterfly27. The number of meadows
that have been known to us and surveyed since the beginning
of the study in 1993 has varied. Most importantly, the entire
study area was re-mapped for the habitat in 1998–1999, which
greatly increased the number of known meadows. For
the analyses in which missing data would greatly affect the
result, we have used the data set for the years 1999–2014.

Control surveys from the years 2009, 2011 and 2015 show
that the presence of the butterfly is not detected in up to
15% of occupied meadows, but the non-detection only concerns
meadows where the population is very small (Supplementary
Tables 1–3). Almost half of the 29 non-detected populations
consist of a single larval group while the mean size of the
detected populations is eight. Thus the populations that are
missed have a very small influence on the dynamics of the
metapopulation as a whole.

There is much spatial variation in the density of meadows
across the study landscape. The life-time movements of
the butterfly are mostly limited to 2–3 km31. This means that,
in any one generation, butterflies mostly move, mate and
reproduce within areas that are less than 1% of the total
landscape area. We have clustered the habitat patches into
125 semi-independent networks (Fig. 1a), which differ in terms of
the number and spatial configuration of the patches and thus
offer an opportunity to analyse the effects of landscape structure
on the dynamics and distribution of species. Metapopulations
inhabiting these networks are dynamically relatively independent
from each other, though dispersal does occur between the
networks and affects the dynamics of some of them, as will be
demonstrated below. In the analyses, we use networks and
the respective metapopulations as independent data points.

The variation in the number of patches in a network, and
variation in the total amount of habitat (pooled area of patches)
in a network explain only 9 and 11% of variation in the fraction
of patches occupied, averaged across all years and denoted
by p (Supplementary Figs 1 and 2). However, the fraction of
patches occupied (p) is not a powerful measure of regional
abundance, because it gives equal weight to small and large,
and to well-connected and isolated habitat patches, which play
very different roles in the dynamics of the metapopulation and
hence have dissimilar consequences for long-term abundance32.
Metapopulation theory28 suggests an alternative measure,
pl, which is a weighted average of patch occupancies, where the
weights describe the role of individual patches in the dynamics
of the metapopulation. In the deterministic model of patch
occupancy dynamics33, the equilibrium value of pl is given by

p̂l ¼ 1� d
lM

; ð1Þ

where d¼ e/c is the ratio of the extinction and colonization rate
parameters and is called the extinction threshold. We emphasize
that the extinction threshold is a characteristic of the species, and
hence the metapopulations in different networks are assumed to
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have the same value. lM is called the metapopulation capacity.
This measure describes the features of the networks, and hence
different networks in this study have different values.
Mathematically, lM is the leading eigenvalue of matrix M, the
elements of which describe patch-specific extinction and
colonization rates. Metapopulation capacity integrates the
effects of patch areas and their spatial locations on the capacity
of the network to support a viable metapopulation28.

To apply equation (1) to data, we need to calculate the value
of the metapopulation capacity (lM) for each network, and
to estimate the extinction threshold (d) for the species. For the
latter, there are two approaches, we may use an expression
that gives the incidence of occupancy for each habitat patch
at equilibrium, or we may use empirical data on observed

extinctions and colonizations. The first approach is based on
the equation giving the occupancy of patch i at equilibrium
as p̂i ¼ Ci=ðCiþEiÞ, where Ci and Ei are the colonization
and extinction rates. We make standard assumptions about
how landscape structure affects Ci and Ei, and add habitat
quality in the model as explained in the Methods. We thereby
derive the following equation for p̂i

p̂i ¼
1

1þ d
Ax

i yQi Si

; ð2Þ

where p̂i is the fraction of the 22 years that patch i has been
occupied, the variables Ai, Qi and Si are the area, quality and
connectivity of patch i, respectively, and x and y are two
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Figure 1 | The study system and the metapopulation capacity of the habitat patch networks. (a) The red polygons demarcate habitat patches in the 33

networks above the extinction threshold (d¼ 5.47), while the 92 light-blue polygons are networks below the threshold (the smallest ones are not visible).

The map contains shoreline data from the National Land Survey of Finland Topographic map 1:100,000 02/2015. Scale bar is 10 km. (b) Metapopulation

size (p̂l) in each network as a function of metapopulation capacity (lM). The continuous line gives metapopulation size as predicted by equation (1)

parameterized with patch-level data using equation (2). Networks above and below the extinction threshold are shown by red and light-blue dots,

respectively (n¼ 125). (c–e) The three panels give time series of metapopulation size for three networks, one of which (c) is above the threshold, one is the

island Sottunga (d) and the third one is a network below the threshold (e). The value of the metapopulation capacity is given for each network. The two

lines are the fraction of occupied patches (thin line) and p̂l (thick line), which gives more weight to the dynamically more important patches. Sottunga

was unoccupied in 1991, in which year the butterfly was translocated there. (f) A ‘winter nest’ span by fifth instar larvae at the base of the host plant

(P. lanceolata). The winter nests, inside which the larvae diapause, are sufficiently conspicuous to make the large-scale census of populations feasible.

Photograph by Sami Ojanen.
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parameters. The variable Qi includes the abundance of
host plants, the percentages of low and dry vegetation in the
patch, and the percentage of the patch area that is grazed, all of
which have highly significant effects on patch occupancy
(Table 1). We fitted equation (2) to data from large patch
networks with 450 patches and average patch occupancy 40.05,
which are likely to have viable metapopulations. There are
24 such networks with altogether 2,330 habitat patches. The
value of the extinction threshold thus estimated is d¼ 5.47,
with the 95% confidence interval from 5.00 to 5.93.

The second approach is to estimate the values of the extinction
(e) and colonization rate (c) parameters from data on
annual extinction and colonization events, and calculating the
extinction threshold as their ratio (d¼ e/c). This approach gave
the estimate d¼ 3.64 with the 95% credible interval (Cr.I.) from
3.15 to 4.22 (Table 2). Though the extinction threshold for
the latter model is different, the viable networks predicted by
the models agree with all but three cases with a posterior
probability of more than 0.95. The metapopulation capacities
are also highly correlated (0.97) (Supplementary Fig. 3). We
use the former estimate below.

Viable versus non-viable patch networks. We next use
equation (1) to calculate p̂l for the 125 networks into which
the total of 4,415 habitat patches were clustered. In a linear
regression, metapopulation capacity explains 40% of variation in
the average of the annual p̂l values (F-test: F1,123¼ 84.16,
Po10� 14 ), which is substantially more than what the simple
measures of network structure (patch number and pooled habitat
area) explained of variation in the fraction of occupied
patches (ca. 10%, above). More importantly, equation (1) predicts
p̂l as a non-linear function of lM (Fig. 1b). The model fits the
33 networks above the extinction threshold (for an example
see Fig. 1c) reasonably well (r¼ 0.42, t-test: t31¼ 2.68, P¼ 0.015),

though there is variation in p̂l, which to a large extent is due
to a strong genetic effect (below). For the 92 networks with
lMod, equation (1) predicts that the respective metapopulations
are not viable, the predicted p̂l values are negative. Contrary
to this prediction, however, many of these metapopulations
are fairly large (Fig. 1b), though only temporarily so: 79 of
the 92 networks (86%) were extinct (not a single occupied patch)
for at least 5 years out of the 22 years (for an example see Fig. 1e).
Presence of the butterfly in the ‘non-viable’ networks may be
due to dispersal from outside, which may rescue the metapopu-
lation temporarily from permanent extinction. This hypothesis
is supported by the present data: connectivity of the focal
network to patches in the surrounding networks has a significant
effect on metapopulation size (p̂l) in the 92 non-viable
networks (Supplementary Table 4).

Among the 33 networks above the extinction threshold, in
a linear regression connectivity to the surrounding networks does
not explain variation in p̂l (R2¼ 0.00, F-test: F1,31¼ 0.07,
P¼ 0.80), and hence we conclude that the dynamics of these
metapopulations are relatively independent, not much influenced
by dispersal from outside. Only 5 of the 33 networks were
extinct, or apparently extinct (due to non-detection), for at least
5 years out of the 22 years, which is a much smaller
percentage (15%) than in the networks below the threshold
(86%) (Pearson’s w2-test: w2¼ 55.1, Po0.0001). The island of
Sottunga outside the main Åland (Fig. 1a) is an informative
example. This island with an area of 9.2 km2 and 49 small
patches with the pooled area of 9.1 ha was unoccupied in 1991,
when 62 larval groups were translocated to the island from
the main Åland Island. The introduced metapopulation has
persisted ever since (Fig. 1d), though it has gone through
bottlenecks, minimally with one occupied meadow in 1999.
In Sottunga, lM¼ 6.1, which is slightly greater than the extinction
threshold (5.47). The observed dynamics are hence consistent
with the model prediction.

Table 1 | Logistic regression model for the average incidence of occupancy in the habitat patches in 24 large networks across 22
years.

Variable estimate s.e. z P value

Intercept � 3.70 0.06 �61.3 o10� 15

Predicted pi 5.07 0.09 57.2 o10� 15

Amount of host plants 1.00 0.05 19.4 o10� 15

Percentage dry 3.15 0.22 13.8 o10� 15

Percentage grazed � 1.00 0.06 � 17.6 o10� 15

Percentage low 0.50 0.10 4.7 o10� 5

The explanatory variables are the predicted patch occupancy, calculated with equation (3) and d¼ 3.91 and x¼0.51. The patch quality variables are described in the Methods section ‘Habitat patch
quality’. Parameters were estimated with maximum likelihood using the logit-link function. Adjusted R2¼0.56 for the full model, while R2¼0.45 for the model with the predicted pi as the only
explanatory variable. Finally, R2¼0.55 for the model in which the predicted pi was calculated with equation (2), including the effect of habitat quality via the term yQi (Methods section ‘Parameter
estimation based on equation (2)’). Note that the latter model explains the observed incidences of patch occupancy nearly as well as the model in this table.

Table 2 | Estimated parameter values for the annual probabilities of extinction and colonization.

Variable mean s.d. 95% Cr.I

a 0.93 0.03 0.88–0.98
y 1.40 0.03 1.35–1.42
ex 0.23 0.01 0.21–0.26
im 0.44 0.01 0.42–0.47
em 0.22 0.03 0.15–0.28
e 0.38 0.01 0.36–0.41
c 0.11 0.01 0.09–0.12

Note that d¼ e/c¼ 3.64 (95% Cr.I. from 3.15 to 4.22). The numbers of networks above the extinction threshold is 31 at a posterior probability of at least 0.95.
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Genetic effects on metapopulation size and persistence. The
model above accounts for the effects of the spatial configuration
and habitat quality on p̂l. Previous work on the Glanville fritillary
has shown that the single nucleotide polymorphism (SNP)
pgi:c.331A4C in the glycolytic gene Pgi is significantly associated
with flight metabolic rate (FMR) and dispersal rate in the
field31,34. This is relevant here because dispersal and colonizations
necessarily influence p̂l. We characterize metapopulations in
the 33 networks above the extinction threshold by the pooled
frequency of the AC and CC individuals in the SNP
pgi:c.331A4C, denoted by fdisp. These butterflies have higher
FMR and dispersal rate than the AA homozygotes. We use a large
data set sampled across the entire study area in 2007–2012 and
genotyped for pgi:c.331A4C as well as for 18 other SNPs
(Supplementary Table 5). In the case of pgi:c.331A4C, this
material includes a sample from 410 larval family groups per
network for 26 of the 33 networks, with a median sample size of
68 individuals per network (Supplementary Data 1). Sample sizes
are comparable for the other SNPs (Supplementary Table 5). In
these 26 networks, fdisp increases with decreasing pooled area of
habitat and with increasing rate of population turnover (Fig. 2a).
The former is the product of the number of patches and the
average patch area, and hence fdisp is high in networks with
a small number of small patches (Supplementary Fig. 4). The
effect of population turnover, the rate of extinctions and
colonizations, is consistent with the idea that colonizations
select for individuals with high dispersal capacity35. The results
for the 18 other SNPs show that the significant associations
involving pgi:c.331A4C are not due to population structure
(Fig. 3a). The other significant SNP in Fig. 3a is from the gene
Glucose-6-phosphate 1-dehydrogenase (G6pd), located next to
Pgi in the glycolytic pathway, and which is significantly associated
with the pooled area of habitat in the network (Supplementary
Fig. 5), though not with population turnover. The major alleles in
the two SNPs are negatively correlated at the network level
(r¼ � 0.48, t-test: t17¼ � 2.26, P¼ 0.037).

In the networks above the extinction threshold, metapopula-
tion size p̂l is significantly correlated with fdisp as well as with

metapopulation capacity (Fig. 2b). In quantitative terms,
25% increase in fdisp from its median value, which corresponds
to one standard deviation of the distribution of fdisp among the
networks, increases metapopulation size by 17% (assuming the
median value of lM). This is a surprisingly large effect and not
a result of inflation due to (cryptic) population stratification
because none of the other SNPs show inflation (Fig. 3b).
Moreover, fdisp is associated with metapopulation persistence:
three viable networks (#4, #3 and #107) that were extinct
or apparently extinct for at least 5 years had lower fdisp than
the 27 networks that endured during the full 22 years
(t-test: t28¼ 2.33, P¼ 0.028; includes those with a small sample
size; genetic data were not available for 3 out of the 33 viable
networks; Supplementary Data 1).

The results in Fig. 2a suggest that high population turnover in
networks made up of a small number of small patches selects
for highly dispersive butterflies (large fdisp), which in turn
increases metapopulation size (Fig. 2b). The latter effect follows
from first principles, recalling that long-term metapopulation
size is determined by a balance between extinctions and
colonizations (equation (1), recall that d¼ e/c). The probability
of colonization of the currently unoccupied habitat patches
increases, and the probability of extinction of the existing
populations decreases, with fdisp in the surrounding populations
from which immigrants arrive. We denote the latter variable
by f immig

disp (Table 3). High f immig
disp increases dispersal rate and

thereby the colonization rate, and it increases the rescue effect
and hence decreases the extinction rate in existing populations.
Note that genetic change and demographic change are closely
coupled: high fdisp in the network increases colonizations
and decreases extinctions (Table 3), while extinctions
and colonizations (population turnover) increase network-level
fdisp (Fig. 2a).

Discussion
Our results demonstrate how a large heterogeneous landscape
is a mosaic of ‘hot’ and ‘cold’ sections in the sense that parts of
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Figure 2 | Association of dispersive genotypes with turnover and metapopulation size. (a) The frequency of the dispersive genotypes (fdisp) in the

SNP pgi:c.331A4C increases with the rate of population turnover but decreases with the pooled amount of habitat in the network. Turnover rate was

calculated as the sum of the observed annual extinction and colonization events divided by the sum of the possible events. Multiple linear regression

explains 38% of variation in fdisp (F-test: F2,23¼ 8.42, P¼0.0018, n¼ 26). (b) The relationship between p̂l and metapopulation capacity (lM) in the

networks for which sufficient genetic data are available. The line shows the prediction from equation (1) with d¼ 5.47. The size of the symbol is

proportional to fdisp as shown by the legend. Grey and black dots are for networks below and above the extinction threshold, respectively. Among the

26 networks above the threshold, multiple linear regression explains 45% of variation in metapopulation size (F-test: F2,23¼ 10.82, P¼0.0005). P¼0.012

and 0.0006 (t-test: t23¼ 2.74 and 3.92) for the regression coefficients of lM and fdisp , which alone in a simple regression explain 15% and 30% of the

variation in metapopulation size, respectively (F-test: F1,24¼ 3.913 and 11.13, P¼0.06 and 0.003).
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the landscape harbour networks with viable metapopulations
(viable networks for short), while the rest consists of non-viable
networks in which the species is not expected to persist on
the long term. In our case, 39% of the 4,415 habitat patches,
and 29% of the pooled habitat area, are located in the cold
sections, in networks below the extinction threshold. These
networks may be temporarily occupied due to dispersal from
the more favourable parts of the landscape, and these networks
may thereby function as temporary stepping stones and facilitate
the spread of a species across large areas. Classifying hetero-
geneous landscapes into hot and cold sections is helpful
for practical conservation, as knowing the structure of the
landscape helps direct conservation measures in a meaningful
manner.

Our work shows how the landscape classification can be
done in practice. To calculate metapopulation capacity, one
needs to know habitat patch areas, connectivities and the
average dispersal distance of the species. Additionally, further
information is needed to estimate the scaling parameters
influencing emigration, immigration and extinction rates. If
such information is lacking, one may use values for other
comparable species and knowledge about the biology of the
focal species. One should note that while the value of the

metapopulation capacity depends on these parameters,
the ranking order of different networks is much less sensitive;
and often it is useful to be able to rank networks from the most to
the least viable. To give an idea of the empirical features of the
33 networks above the extinction threshold in the present study,
they have minimally 32 habitat patches, minimally around
10 ha of habitat, and they minimally cover an area of 5 km2

(Supplementary Data 1). Though these figures do not apply
as such to other systems, they can probably be used as a rough
guide to the habitat requirements of other insect species
of intermediate mobility that live in comparable habitat.

At the level of individual habitat patches, the probability
of patch occupancy was best explained by patch areas and
spatial locations, which are the ‘first order’ effects in stochastic
patch occupancy models. However, several features of habitat
quality also made a substantial effect. This is to be expected, as
there is always variation of quality in natural habitats across
large areas. The result also depends on how the patches have been
delineated in the first place. For instance, some potential
patches may not be considered as patches at all because they
are deemed to have such low quality. If they were nonetheless
included among the habitat patches, the effect of habitat
quality among the set of patches would be greater.
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(n¼ 19). The expected P values were drawn from a uniform distribution between 0 and 1. The two outliers are pgi:c.331A4C (red dot) and a SNP in the
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Fig. 2b for pgi:c.331A4C. The outlier is pgi:c.331A4C (red dot) (n¼ 19). The slope of the regression line (excluding the outlier) is 0.80. The average and

standard deviation of the regression slope in 100 replicate analyses were 1.07 and 0.25, respectively.

Table 3 | Logistic regression model for local extinctions and colonizations.

Variable Colonizations Extinctions

median 95% Cr.I. odds ratio median 95% Cr.I. odds ratio

a0 � 3.43 � 3.56 to � 3.30 �0.03 �0.21–0.15
t 1.50 0.87–2.62 1.38 �0.79–2.42
r 0.68 0.50–0.92 0.66 0.44–0.95
Patch area 0.76 0.70–0.82 2.14 �0.78 �0.86 to �0.70 0.46
Connectivity 0.81 0.73–0.89 2.25 �0.50 �0.62 to �0.38 0.61
f immig
disp 0.24 0.15–0.34 1.28 �0.13 �0.23 to �0.10 0.87

The numbers of extinction and colonization events out of possible events for the years 1999–2014 are 3,641/9,096 and 3,581/40,438, respectively. The explanatory variables are scaled patch area A0.2,
connectivity S and the pooled frequency of the dispersive genotypes among the immigrants fimmig

disp . The intercept a0 is an estimate of the mean extinction or colonization rate (on the logit scale), t is the
estimated scale of annual network effects and r is the estimated scale of network-specific patch effects. Thus t and r determine the magnitude and variance of the patch and network level random
effects, respectively.
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The amount of host plants and the percentages of dry and
low vegetation had a positive effect on patch occupancy, while
the percentage of grazed patch area had a negative effect.
Desiccation of host plants, especially during the early larval
instars in July, increases larval mortality and may even lead to
local extinction. On the other hand, dry years are beneficial in the
long term because they reduce the growth of grasses, which
compete strongly with the host plants36. Grazing has similar
conflicting short-term and long-term effects: grazing (trampling)
has a direct negative effect on larval survival, but grazing
also maintains habitat quality by preventing plant secondary
succession27. There have been changes in summer temperature,
precipitation and numbers of cattle, horses and sheep in the
Åland Islands during the study period27, but these changes
have not led to an increasing, nor decreasing, trend in the total
metapopulation size of the Glanville fritillary37. On the other
hand, the amplitude of fluctuations in the metapopulation as
a whole has increased, reflecting increasing strength of regionally
correlated environmental stochasticity in the dynamics37. These
long-term changes have been attributed to increasing frequency
of dry summers, a consequence of climate warming37.

The best predictive model at the network level has the
metapopulation capacity as the explanatory variable describing
the structure of the environment. This measure integrates the
effects of the amount and spatial configuration of habitat, and
hence there is no need (nor opportunity) to isolate the effects of
the two. However, given that the total amount of habitat
explains only 10% of variation in metapopulation size,
while the metapopulation capacity explains 40%, it is clear
that within the range considered the amount of habitat alone
has little predictive power and that the spatial configuration
(fragmentation) has an important effect. This is consistent with
the general notion that fragmentation effects are increasingly
important when the total amount of habitat in the landscape is
small (here only about 1%)7,38.

An SNP in the gene Pgi has a surprisingly large effect
in metapopulations inhabiting the viable networks, explaining
30% of variation in metapopulation size. This is a very large
single-gene effect, but in qualitative terms the effect is expected
based on previous results on Pgi in this species. The
AC heterozygotes have higher FMR than the AA homozygotes
by up to 50%, though difference between the genotypes is affected
by interaction with body size and ambient temperature31,34,39.
Butterflies with higher FMR have higher dispersal rate in
the field34. More dispersive butterflies can be expected to be
better colonizers, for which there are two types of evidence.
First, results in Table 3 show directly that the colonization
rate is increased by high frequency of fdisp among the butterflies in
the surrounding source populations. Second, the dispersive
butterflies are significantly more frequent in newly established
than old local populations35. This comparison involves the
F1 offspring of the actual colonizers, but we know that FMR has
high heritability40. Finally, given that more dispersive butterflies
increase the colonization rate and decrease the extinction rate
(rescue effect) (Table 3), the balance between extinctions and
colonizations is shifted towards higher metapopulation size
(equation (1)). In summary, there are biologically consistent
associations between the SNP pgi:c.331A4C and individual traits
(flight metabolism, dispersal rate), population processes
(colonizations, extinctions) and landscape-level metapopulation
attributes (metapopulation size and persistence).

Apart from Pgi, the gene G6pd shows substantial polymorph-
ism and significant association with landscapes structure
(pooled area of habitat in the network). Genetic variation in
metabolic enzymes, which often affect signalling pathways
and have other moonlighting roles41,42, is surprisingly often

associated with fitness-related traits41, but very little is known
about the actual molecular functions. In Drosophila,
polymorphism in G6pd and other enzymes around the glucose-
6-phosphate (G6P) branching point of the glycolytic pathway
often deviate from neutrality, suggesting that they may
have been subject to adaptive evolution43,44.

Allelic variation in Pgi is associated with life-history traits in
many insects and plants45, in which comparable results on
population dynamics and size could be expected to occur. In
other species living in highly fragmented landscapes, other
heritable traits influencing dispersal and colonization may be
selected for and be coupled with population dynamics in the same
way as pgi:c.331A4C is in the Glanville fritillary. Examples
range from gene expression profiles46,47 to wing polymorphism in
insects48 and behavioural traits in vertebrates49. We suggest
that species inhabiting patchy habitats often exhibit such
eco-evolutionary dynamics29,30, reciprocal interaction between
microevolutionary and demographic dynamics. A yet open
question is how commonly eco-evolutionary dynamics increase
the persistence of populations50. Our results provide a convincing
example, as fdisp strongly affects metapopulation size and as
metapopulations close to the extinction threshold are more
persistent if they have high fdisp. Selection thus compensates,
to a limited extent, for the adverse consequences of habitat loss.

Methods
Habitat patches and patch networks. In the Åland islands, the Glanville
fritillary inhabits dry meadows that have at least one of the two larval host plant
species, the ribwort plantain (Plantago lanceolata) or the spiked speedwell
(Veronica spicata)25,36. The habitat patches are small: the median size is 0.06 ha,
and only 1% are greater than 2 ha. We have mapped the entire Åland Islands,
an area of 50� 70 km, for the habitat patches during two periods, in 1993 and
1998–1999. The first survey yielded ca. 1,500 patches, while the total number after
the second survey has been ca. 4,500 patches, including a large number of very
small ones. The exact current number is 4,415 (September 2015). We census the
caterpillars annually in the overwintering stage by visiting all the habitat patches in
late summer with the help of 50–70 field assistans27. Hence, the census results
reflect the presence of local breeding populations. The census is possible because
caterpillars overwinter in groups of ca. 100 of mostly full-sibs under a relatively
conspicuous silken web woven at the base of the host plant (Fig. 1f). The locations
of the found groups are marked with GPS and data is stored into the database in
the field. A sample of three living larvae is collected from each group (1995, 2002,
2007–2012) or a subset of groups (2013-4) and taken to a butterfly rearing
facility for further studies. Because only a third of the patches were censused before
1998–1999, the number of presence/absence records for individual years and
populations is less than 22� 4,415. Additionally, there is a small amount of missing
data especially from isolated low-quality networks that have remained completely
unoccupied during the entire study period.

The 4,415 patches were divided into 125 sub-networks using the software
SPOMSIM (ref. 51). The construction of patch networks is based on geometric
average linkage clustering using connectivity (see ‘Connectivity of habitat patches’
below) as the distance measure and selecting a level of clustering that produced
networks within which individual patches can be easily reached by dispersing
butterflies, while movements between networks would be uncommon52. In the
clustering, we used the same parameter values as Moilanen51: a¼ 1.0, b¼ 0.5 and
q¼ 1.5, where a is the parameter of the negative exponential dispersal kernel
(see ‘Connectivity of habitat patches’ below) and the other parameters control
the clustering procedure. Connectivity of the networks to each other is lower in
reality than this calculation suggests, because the clusters of patches (networks)
are often separated dispersal barriers, such as tracts of forest. These landscape
effects are not taken into account in the clustering algorithm, based on physical
distances only.

Analysis of control survey data. Previously the probability of not recording an
existing population (non-detection) has been estimated to range from 0.1 (ref. 36)
to 0.28 (ref. 27). In this study, we estimate the prevalence of not detecting a larval
group and not detecting a patch as occupied (Supplementary Tables 1–2) using
311 control visits from the years 2009, 2011 and 2015. We also study the
relationship of non-detection to local population size (Supplementary Table 3).The
control data were only collected in networks where at least some larval groups were
found during the main surveys. Out of 200 occupied patches, the control visits
found 29 populations that were not recorded during the main survey. We assume
that the remaining 111 patches were truly unoccupied, and therefore they are
excluded from the following analyses.
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The statistical analysis of control survey data consists of three generalized
linear models. In the first model (Supplementary Table 1) we estimate the
probability of detecting a larval group with a binomial regression model with
a logit-link function. As the dependent variable we use the proportion of larval
groups found during regular survey, and as explanatory variables log-transformed
patch area (ha) and total number of larval groups. The first explanatory variable
tests for the dependence of detecting a larval group on patch area, and the second
for the dependence of detecting a larval group on total number of larval groups.
As larval groups are not randomly distributed within patches, we expect larval
groups to be more easily found when they occur in larger numbers.

In the second model (Supplementary Table 2) we analyse the overall probability
of not detecting a patch as occupied when it is occupied. The dependent variable
of the logistic regression is the binary indicator of non-detection, with an occupied
patch being detected during the main survey coded as 0 and not detected as 1. The
model uses the logit-link function. The explanatory variables are log-transformed
patch area (ha) and total number of larval groups.

In the third model (Supplementary Table 3) we analyse the difference in
population sizes between detected and non-detected populations using Poisson
regression analysis. The dependent variable is the number of larval groups. The
explanatory variables are log-transformed patch area (ha) and the binary variable
for non-detection explained above.

All models were estimated with the Bayesian modelling package rstanarm in
R (ref. 53). For intercepts and predictors we use Student’s t distribution with mean
zero and four degrees of freedom as the prior distribution. The scale of the prior
distribution is 10 for the intercept and 2.5 for the predictors. Each model was
run with four chains for 1,000 warm-up and 1,000 sampling steps. For all
parameters in all three models, the number of effective samples was 41,000, the
convergence measure R̂ was o1.005, and the Monte Carlo standard error of the
parameter means was o0.015.

Habitat patch quality. Habitat patch quality is assessed during the census of
larvae in late summer27. Abundance of both host plants is estimated separately on
the scale from 0 to 3. As both of the host plant species perform better when
growing in low vegetation and where competitively superior grasses are less
common, we estimate the percentage of host plant areas surrounded by low
vegetation. We also estimate the percentage of desiccated host plants in the
population and finally, we estimate the percentage of patch area under
grazing.

Connectivity of habitat patches. Connectivity of patch i is a proxy for the
number of immigrants arriving at patch i during one generation (year).
Connectivity Si is calculated as Si ¼

P
j 6¼ i Aim

i e� adij pjAem
j , where Aj and Ai

are the areas of the source (j) and target (i) patches (in ha), pj is the incidence
of occupancy of source patch j, dij is the distance between patches i and j (in km),
and e� adij is the negative exponential dispersal kernel with parameter a
(refs 33, 54). The incidence of occupancy pj has the value of 1 for occupied
and 0 for unoccupied patches, or a value between 0 and 1 if the average value of pj

across several years is used. The exponents im and em scale the rates of
immigration and emigration by patch area. We estimated the values of im, em and
a using the data from the years 1999 to 2014 (Table 2). The estimated values for im
and em (im¼ 0.44, em¼ 0.22) are within the range of previous results for the
Glanville fritillary and the False heath fritillary, a closely related butterfly with
similar ecology55. The estimated value for a¼ 0.93 agrees with earlier studies based
on mark-recapture data56. In the model based on equation (2) and linear models
where a and em cannot be estimated independently (see ‘Modelling extinction
and colonization events’ below), we assume a¼ 1 and em¼ 0.2 based on the
results above.

Colonization and extinction rates. Colonization rate of patch i is given by cSi,
where c is the colonization rate parameter. Extinction rate is assumed to depend on
the area Ai and quality Qi of patch i as e=Aex

i yQi , where e, ex and y are parameters
estimated from the present data (Table 2). The construction of the habitat quality
variable Qi is described in the section ‘Parameter estimation based on equation (2)’
below.

Connectivity of patch networks. The nearest patch in other networks is located
1.75 km on average from the centre point of the focal network (minimum and
maximum 0.62 and 5.13 km, respectively, n¼ 125), while the average distance to
the ten nearest other patches is 2.17 km (0.95 and 6.12 km, respectively). Though
most butterflies move o1 km in their life-time, a substantial fraction, on the order
of 10%, fly a distance of 2 km or more31,56,57, and hence we can expect some
movements between the networks. We calculated a measure of connectivity
for each network as Sn ¼

P
e� adnj Nj , where Nj is the average population size

(number of larval groups) in patch j across the years, and dnj is the distance in km
between patch j and the centre point of network n. The sum is taken over all
patches j that do not belong to network n. We assume a¼ 1 as in the calculation of
connectivity for individual habitat patches.

Metapopulation capacity. Based on the assumptions of how patch areas, qualities
and spatial locations in the network influence the extinction and colonization rates,
one may construct an n by n matrix M for a network with n patches33,58. The
leading eigenvalue of M is called the metapopulation capacity and denoted by lM.
In the present case, the elements of M are mii¼ 0 and mij ¼ Aex

i yQi Aim
i e� adij Aem

j ,
where Aex

i yQi is proportional to the expected life-time of population i (the inverse of
extinction rate; see ‘Colonization and extinction rates’ above), while the remaining
terms in mij come from the assumptions of how connectivity depends on
patch areas and configuration (see ‘Connectivity of habitat patches’ above).
Metapopulation capacity integrates the effects of patch areas, qualities and their
spatial locations on the capacity of the network to support a viable
metapopulation28,33.

Parameter estimation based on equation (2). We estimated model parameters
with non-linear regression using the expression for the probability of patch
occupancy at equilibrium33,54. Parameter estimation was carried out in two stages.
In the first stage, we used equation

p̂i ¼
1

1þ d
Ax

i Si

; ð3Þ

where d¼ e/c is the ratio of the extinction and colonization rate parameters,
called the extinction threshold, and x is the sum of the exponents ex and im
(see definition of mij in the section ‘Metapopulation capacity’ above). p̂i is the
observed frequency of occupancy of patch i during the 22 years. Equation (3) was
fitted to data from large networks with 450 patches and average p̂i40:05,
which are likely to have viable metapopulations. There are 24 such networks
with 2,330 habitat patches. The estimated parameter values are d¼ 3.91 and
x¼ 0.51.

We next used equation (3) to calculate the predicted values of p̂i for each patch
in the 24 large networks. Using logistic regression, we then explained the observed
values of p̂i with the predicted values as well as with four attributes of patch quality.
Given that the effects of the four quality variables are of the same order of
magnitude (Table 1), we summarized their effects with the term yQi , where y is
a parameter and Qi ¼ qveg

i þ qdry
i þ qlow

i � qgra
i , the sum of the four quality variables

for patch i, all rescaled to the interval [� 1..1] (the sign of qgra
i is reversed because

large values correspond to low quality; Table 1). Adding habitat quality with this
term into the model, equation (3) is turned to equation (2) in the Results, which is
repeated here

p̂i ¼
1

1þ d
Ax

i yQi Si

: ð2Þ

In the second step, we fitted equation (2) to the data from the 24 large networks,
and obtained the parameter values d¼ 5.47 (95% confidence interval 5.00–5.93),
x¼ 0.428 (0.395–0.462) and y¼ 1.71 (1.63–1.79). Equation (2) with these
parameter values predicts the observed patch occupancy as well as the logistic
model with all the four patch quality variables added separately (Table 1).
Therefore, we conclude that adding the term yQi into the model is a simple
and effective way of taking several features of habitat quality into account in the
context of the present model.

Parameter estimation from colonization and extinction events. We also
estimated model parameters using data on annual extinction and colonization
events in all networks using the data for the years 1999–2014 (Table 2). The
discrete-time extinction and colonization probabilities are given by
1� exp �ðe

�
Aex

i yQi Þ
� �

and 1� expð� cSiÞ, respectively (see ‘Colonization and
extinction rates’ and ‘Connectivity of habitat patches’ above). The model was
implemented using Stan version 2.8, and the parameters were estimated using
Hamiltonian Markov Chain Monte Carlo59. All parameters had uniformly
distributed priors on the positive real numbers. The model was run with four
chains for 1,000 warm-up steps and 1,000 steps of sampling. For all parameters
the number of effective samples was 41,300, the convergence measure R̂
was o1.004 and the Monte Carlo standard error of the parameter means
was o0.002.

Modelling extinction and colonization events. Colonizations and extinctions
were analysed using a varying intercepts hierarchical logistic regression model with
habitat patch and annual network-level random effects (Table 3). We used data for
the years 1999–2014 in the analysis, because there is much missing data for the
earlier years (see ‘Habitat patches and patch networks’ above). We also repeated the
analysis for the years 1993–2014 and 2007–2014 with very similar results and the
same conclusions (genetic data were collected in 2007–2012; see ‘Genetic data and
measures’ below).

The patch-specific colonization and extinction events were estimated using
patch area A0.2, connectivity Si and f immig

disp as predictors. The structure of the
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regression model is given by

pi;t � Bernoulli logit� 1 ui;t
� �� �

ui;t ¼ a0 þ an;t þ ai;n þ bs�Si;t þbfdisp
�f immig

dispi;t

a0 � Uniform �1; þ1ð Þ

an;t � Normal 0; stð Þ

ai;n � Normal bA�A0:2
i ; sn

� �

st � Cauchyþ 0; tð Þ

sn � Cauchyþ 0; rð Þ

r; t � Gamma 2; 0:1ð Þ

bs;bfdisp
; bA � Cauchy 0; 5ð Þ ð4Þ

where pi,t indicates the colonization or extinction event in patch i in year t, a0 is the
mean extinction or colonization rate, an,t is the random intercept for network n in
year t, and ai,n is the random intercept of patch i in network n. The annual network
effects account for network structure and the variation in the scale of spatial
synchrony between years. The network-specific patch effect accounts for
differences between networks and repeated sampling of patches. bS, bfdisp and bA

are the coefficients for annual connectivity, annual frequency of dispersive
immigrants and patch area. Patch area (in ha) is scaled to power 0.2. The exponent
0.2 scales expected population size and the number of immigrants and emigrants
by patch area, which approximates the parameters ex, im and em (see ‘Connectivity
of habitat patches’ above). The predictors A0.2, S and f immig

disp are centred to zero
mean and unit standard deviation to assist the comparison of their relative
effects and to ensure computational stability. The models were implemented in
Stan 2.8 and estimated using Hamiltonian Markov Chain Monte Carlo and the
No-U-turn sampler for 1,500 warm-up and 1,500 sampling steps with four
Markov chains59.

Genetic data and measures. During the years 2007–2012, Glanville fritillary
larvae were sampled from natural populations across the Åland Islands in the
context of several studies60–63. These studies have produced a large database of
SNP data that we use here. Out of ca. 300 SNPs, there are 19 SNPs with large
samples from most of the viable networks, in which lM4d (Supplementary
Table 5). These SNPs, including pgi:c.331A4C, which is the candidate gene in the
present study, have been genotyped with the Sequenom (SEQUENOM Inc.,
San Diego, CA, USA) and KASP (LGC, Teddington, UK) platforms, and the data
are managed with the Progeny database (Progeny Software, Delray Beach, FL,
USA). DNA samples for both Sequenom and KASP genotyping were extracted with
Nucleo Spin 96 Tissue kit (MACHEREY-NAGEL GmbH & Co. KG, Düren,
Germany) in the Institute of Biotechnology, University of Helsinki. For technical
details of genotyping see refs 60,64 for Sequenom and ref. 62 for KASP. In the case
of pgi:c.331A4C, we genotyped 979 individuals using both Sequenom and KASP,
of which 968 had the same genotype call with both platforms (cross-platform
concordance 98.9%). Most samples consist of triplets of larvae sampled from the
same larval groups. To have an adequate sample for each of the 19 SNPs from
each network included in the analysis, we required that individuals from more than
10 larval groups had been genotyped for a particular SNP from a particular
network. For sample sizes see Supplementary Table 5 and Supplementary Data 1.
The 18 SNPs apart from pgi:c.331A4C were used to control for population
structure influencing associations involving pgi:c.331A4C.

In pgi:c.331A4C, the AC heterozygotes have higher dispersal rate than the
AA homozygotes34,65,66. The CC homozygotes are less common than expected
from the HW equilibrium in the Åland Islands, possibly because there is a common
haplotype in which the C allele is linked with a recessive lethal mutation66. In this
case, the uncommon CC homozygotes (7% in the present material) represent
individuals that possess another haplotype. Previous empirical work has mostly
compared the common AC and AA genotypes34,67–69. The few CC homozygotes
for which FMR has been measured show comparable results than the
AC individuals and higher FMR than the AA homozygotes70,71. Therefore, we
assume that the AC and CC butterflies have comparable dispersal rate in the field,
and we characterize metapopulations in the different patch networks by the pooled
frequency of the AC and CC genotypes, denoted by fdisp. We repeated the analyses
assuming additive allelic effects and thus using the frequency of the C allele instead
of fdisp. The results were qualitatively similar and all the conclusions were the same
as those from the dominance model. For the other SNPs, for which detailed results
on FMR and different genotypes are not available, we assumed the additive model.

In the analysis in Table 3, we calculated the pooled frequency of the
dispersive AC and CC genotypes in the source populations from which the
migrants originated as f immig

disp ¼
P

j 6¼ i Aim
i e� adij pjAem

j f emig
disp;j=Si , where Si is the

connectivity of patch i (see ‘Connectivity of habitat patches’ above). f emig
disp;j is

the pooled frequency of the dispersing genotypes among the emigrants from

patch j, calculated as f emig
disp;j ¼ Dfdisp;j= Dfdisp;j þ 1� fdisp;j

� �
, where fdisp, j is

the corresponding genotype frequency among the residents in patch j (ref. 35).
Following ref. 35, we assume D¼ 2, and hence the formula assumes that the
dispersive genotypes emigrate twice as fast as the AA homozygotes from the source
populations. Note that we have a single estimate of f immig

disp , based on the data
sampled in 2007–2012, and hence we have to assume that the genotype frequencies
have remained relatively stable at the network level for the period 1993–2014,
making the results in Table 3 conservative.

Linear regression analyses. Linear regression models in Figs 2 and 3,
Supplementary Figs 1–5, Supplementary Table 4, and those described in the Results
section ‘Viable versus non viable networks’ were carried out in R 3.3 (ref. 72).
The significance of models was tested with an F-test and significance of predictors
with a two-sided Student’s t-test. Heteroscedasticity of residuals was studied
with a studentized Breusch-Pagan test using the R package lmtest (ref. 73). The
sensitivity of linear regression analyses to other deviations from model
assumptions, such as outliers, was tested by comparing coefficient estimates of the
linear regression model to those from a robust linear regression model estimated
with a Huber M-estimator using the R package MASS (ref. 74). None of the fitted
models showed violations to heteroscedasticity or other model assumptions.

Data availability. Genetic variant data that support the findings of this study have
been deposited in dbSNP with the accession codes ss2137343739 - ss2137343816.
All other data that support the findings of this study are available from the cor-
responding author on reasonable request.
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