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Graphene, known as “black gold”, has important applications in various fields. In previous
studies, it has been proved that graphene oxide (GO) which is a derivative of graphene has
low toxicity. However, the immunotoxicity of GO has not been fully elucidated. In this work,
we used DC2.4 cell line to investigate the in vitro immunotoxicity of two types of GO,
mono-layer GO (mono-GO) and multi-layer GO (multi- GO). We found that mono-GO had
less effect on cell viability than multi-GO, but both mono-GO and multi-GO significantly
induced the generation of ROS in DC2.4 cells. Interestingly, mono-GO caused DC2.4 cells
to aggregate, thus changed the cell morphology significantly. However, no similar
influence occurred for multi-GO. In addition, the results showed that these two GOs
obviously enhance the release of TNF-a by DC2.4 cells with and without LPS stimulation.
GO did not affect the level of IL-6 released from DC2.4 cells, but multi-GO promoted the
release of IL-6 while mono-GO inhibited the production of IL-6 when cells were in
response to LPS stimulation. Whole-transcriptome sequencing analysis found some
immune-related differentially expressed genes including H2-DMb1, Ncbp3, Oas2,
Men1, Fas, Cd320, Cd244, and Tinagl1 which are engaged in the immune system
process. These results suggested that both mono-GO and multi-GO are immunotoxic to
DC2.4 cells, which provides important basis for subsequent biological and clinical
medical applications.

Keywords: graphene oxide, immunotoxicity, reactive oxygen species, dendritic cells, cytokines
INTRODUCTION

Graphene, called the “21st century materials”, is a 2D nanomaterial composed of a single layer of
sp2 carbon atoms (Carrow et al., 2018). Graphene can be divided into different types according to its
functional form (Novoselov et al., 2004). Among them, graphene oxide (GO) is an oxidized form of
graphene containing various oxygen-containing functional groups, such as carboxyl, carbonyl and
hydroxyl (Gao, 2015). Since GO has a large surface area, and good physical, chemical and biological
properties (Reina et al., 2017), they are considered for biological applications such as bioimaging,
diagnostics, biosensing, photothermal and photodynamic therapy, tissue engineering, and drug
in.org August 2020 | Volume 11 | Article 12061
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delivery (Nurunnabi et al., 2015). Han et al. demonstrated that
GO can be used as natural antioxidants to reduce inflammation
by reducing reactive oxygen species (ROS) in macrophages and
used as a gene carrier to synergistically treat myocardial
infarction (Han J. et al., 2018). In addition, Zhang et al.
proposed a GO-based fluorescent nanosensor that can be used
to quickly detect telomerase content in cells and image
telomerase (Zhang et al., 2018). Zhou et al. studied a new
method of introducing GO into bone tissue to enhance
biomineralization, and they found that when the GO
concentration was 0.1% w/v and immersed in simulated body
fluids for 7 days, GO-collagen-apatite 3D scaffold showed good
therapeutic effect in repairing skull defects in rats (Zhou
et al., 2018).

Although GO has a good application prospect, its unknown
toxicity is still a bottleneck to clinical application. In addition,
with the widespread use of GO, there are a variety of indirect and
direct pathways to introduce them into the environment (e.g.,
dust or wastewater) (Markovic et al., 2018). Therefore, studies on
the toxicity of GO need to be urgently addressed. In the recent
years, Qu et al. summarized the toxic effects of graphene-family
nanomaterials (GFNs) in cell and organs models and pointed out
that GO can be transmitted to bodies through oral
administration, intraperitoneal injection and intravenous
injection and thus cause various inflammatory reactions (Ou
et al., 2016). The toxicological mechanisms of GFNs mainly
contain inflammatory response, necrosis apoptosis, DNA
damage, and autophagy etc. For example, grapheme oxide
caused a significant increase in intracellular ROS production in
human HaCaT skin keratinoyctes, which was mainly mediated
by activation of flavin-based oxidase, and caused mitochondrial
membrane depolarization and mitochondrial damage (Pelin
et al., 2018). Although many in vitro and in vivo toxicity
studies of graphene have been reported, little research has been
done on the immune system.

The immune system plays an important role in identifying
and eliminating foreign pathogens. Immune cells can directly
contact nanomaterials and are responsible for potential adverse
reactions to GO. The results of research on the interaction
between nanomaterials and the immune system can better
assess the impact of GO on the human body. Recently,
publications on the effects of GO on the immune system have
focused on the study of macrophages (Dudek et al., 2016). Luo
et al. found that PEGylated GO nanosheets interacted with
peritoneal macrophage surface receptors by adsorbing to and/
or partially inserted into the cell membrane, and stimulated
peritoneal macrophages to produce cytokine responses (Luo
et al., 2017). Hoyle et al. found that GO had no significant
inflammatory response to macrophages cells. However, GO
inhibited Toll-like receptor 4 (TLR4) receptor-mediated
interleukin production, but did not inhibit activation of
inflammatory bodies (Hoyle et al., 2018). However, little is
known about the effect of GO on dendritic cells (DCs), which
were the most powerful professional antigen-presenting cells
(APCs). Li et al. found that GOx nanosheets could be used to
adsorb proteins. When the ovalbumin antigen binds to GOx, it
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could be internalized by DCs and initiated the antigen
presentation reaction. Therefore, GOx nanosheets could be
used as nanocarriers in vaccine formulations (Li et al., 2016).
DCs drive specific responses through the adaptive immune
system and plays a major role in innate immunity. DCs can
efficiently ingest, process, and present antigens. Immature DCs
have a strong ability to migrate. Mature DCs highly express
MHC molecules and co-stimulatory molecules, and activate the
native T cells, which in turn causes an immune regulatory
response (Qian and Cao, 2018). DCs recognizes microbial
components such as lipopolysaccharide (LPS) and specifically
binds TLR4 on DCs (Chen et al., 2020). After LPS binds to TLR4,
DCs secrete inflammatory factors such as tumor necrosis factor-
a (TNF-a) and interleukin-6 (IL-6) (Fu et al., 2011; Chen et al.,
2020). Accordingly, here we studied the immunotoxicity of
mono-GO and multi-GO on DCs.

In this work, we utilized dendritic cell (DCs) line DC2.4 cells
as an in vitro model to study the immunotoxicity of mono-GO
and multi-GO. We found that multi-GO caused stronger toxicity
to DC2.4 cells than mono-GO. And they all promoted the
production of ROS in DC2.4 cells. Interestingly, mono-GO will
cause a significant change in cell morphology, compared to
multi-GO. In addition, mono-GO and multi-GO alone did not
cause DC2.4 cells to produce IL-6, but stimulated DC2.4 cells to
produce TNF-a. However, after pretreatment with mono-GO
and then treating DC2.4 cells with LPS, it was found that the
cytokines secreted by DC2.4 cells were disordered. Also, we
utilized RNA-seq found that both mono-GO and multi-GO
were able to arouse immune responses. Our results showed
that GO were able to disturb the immune function of DCs,
which provided a basis for further applications and research.
MATERIALS AND METHODS

Preparation and Characterization of GO
Mono-GO (777676) and multi-GO (796034) were purchased
from Sigma-Aldrich Technology. The absorption spectra of
mono-GO and multi-GO were determinated by UV-Vis
spectrophotometer (Beckman Coulter, DU720) and the
morphology images of mono-GO and multi-GO in water were
obtained with a transmission electron microscope (TEM) (JEOL
model jem-2100, Test Center of Wuhan University). Zetasizer
Nano ZS device (Malvern, U.K.) was used to measure the particle
size and potential.

Cell Culture
The mouse dendritic cell line (DC2.4) were obtained in our lab.
The DC2.4 cell line was cultured in RPMI 1640 (Gibco, USA)
supplemented with 10% fetal bovine serum (FBS, Gibco, USA)
and 100 U penicillin/streptomycin (PS, Gibco, USA). All cells
were cultured at 37°C in humidified atmosphere with 5% CO2.
One mg/ml of lipopolysaccharides (LPS, L4391, Sigma, USA) in
PBS was used as a positive control to stimulate the DC2.4 cells to
secrete inflammatory factors.
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Cell Viability
The cell viability of DC2.4 cells treated with mono-GO and
multi-GO was determined by MTT (Thiazolyl Blue Tetrazolium
Bromide, M5655, Sigma, USA) assay. Briefly, DC2.4 cells were
seeded in two 96−well plates at a density of 1.5× 104 cells per
well. Twelve hours later, 0.01, 0.1, 1, 10, or 100 mg/ml mono-GO
and multi-GO in water were added to 96-well plates. After 24 h
or 48 h incubation with cells, 20 ml of MTT at a concentration of
5 mg/ml in PBS was added to each well, and the DC2.4 cells were
subsequently cultured for 4 h in a cell incubator. The supernatant
was then gently aspirated and 150 ml dimethylsulfoxide (DMSO,
D2650, Sigma, USA)was added to dissolve the pellet. The 96-well
plates were placed on a shaker and shaken for 5 min at room
temperature. Finally, we used a microplate reader (BioTek, USA)
to measure the absorbance of each well at a wavelength of 490
nm. All experiments were repeated three times. The cell viability
was calculated by the absorbance of the sample wells against the
control wells, assigning the viability of non-treated cells as 100%.

Enzyme-Linked Immunosorbent (ELISA)
Assay
To analyze the cytokine secretion by DC2.4 cells, 1×105 DC2.4
cells were seeded in 24-well plates-and cultured for 24 h. Two
kinds of GOs were added in 1 ml RPMI 1640 with 10% FBS and
added to cells in each well at different concentrations,
respectively0, 0.01, 0.1, 1, 10, 100 mg/ml, then the cells were
incubated for 4 h and then 1 mg/ml Lipopolysaccharide (LPS)
was added. So far, the experiment was divided into six groups:
negative control group, LPS positive control group, mono-GO
group, multi-GO group, mono-GO+LPS group and multi-GO
+LPS group. After the DC2.4 cells were co-cultured for 24 and
48 h, the supernatant from the above six groups was collected
and the cytokines (TNF-a, IL-6) were measured by mouse ELISA
kits (88-7324-88 and 88-7064-88, Invitrogen, Thermo Fisher
Scientific) according to the manufacturer’s instructions.

DC2.4 Cells Morphology
First, 2.5×105 DC2.4 cells were seeded in a 12-well plate. After 12 h,
DC2.4 cells were treated with 10mg/mlmono-GO for 24 h, and then
rinsed briefly in phosphate-buffered saline (PBS). Next, 4%
paraformaldehyde was used to fix the DC2.4 cells for about
10 min and ice-cold PBS was used to wash the cells. And then,
DC2.4 cells were incubatedwith 0.1%Triton X-100 for about 10min
and incubated with phalloidin-FITC (P5282, sigma, USA) antibody
in PBS for 40min at room temperature in the dark, and thenwashed
with PBS three times with 5 min for each wash. Finally, DC2.4 cells
were treated with DAPI for 1 min and images were obtained with a
fluorescence microscope (X-Cite Series 120, Zeiss, Germany).

Measurement of Reactive Oxygen Species
(ROS) in Dendritic Cells
ROS production by DC2.4 cells exposed to mono-GO and multi-
GO was evaluated by the 2, 7-dichlorofluorescindiacetate (DCFDA)
(D6883, Sigma, USA) assay. Briefly, 2× 104 DC2.4 cells were seeded
in 96-well clear bottom black side plate and cultured at 37°C. After
12 h, 20 mM DCFDA probe in serum-free medium was added to
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different wells every 30 min as a control group. At the same time,
DCFDA probe and 10 mg/ml mono-GO or 10 mg/ml multi-GO in
serum-free medium were added to different wells every 30 min as
two experimental groups. Next, a fluorescence microplate reader
(Infinite 200 Pro, Tecan) was used to read fluorescence at an
excitation wavelength of 488 nm and an emission wavelength of
525 nm. The average fluorescence intensity of intracellular DCF
reflected the production of intracellular ROS.

Whole-Transcriptome Sequencing
Analysis (RNA-Seq)
DC2.4 cells were cultured in 6-well plate at a density of 3× 105 cells
per well in 2 ml of RPMI 1640 with 10% FBS. After 12 h, DC2.4 cells
were treated with 10 mg/ml mono-GO and multi-GO for 24 h,
respectively. The supernatant was removed and the cells were
washed twice with ice-cold PBS, then the cells were lysed in 500
ml TRIzol reagent (MRC, USA) to extract RNA, according to the
manufacturer’s protocol. Then Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA) was used to assess RNA integrity
and quantify RNA concentration. The screening conditions for
RNA samples are: 28S/18S rRNA band intensity is 2:1, spectral
A260/A280 nm ratio is 1.8–2.0 and A260/A230 nm ratio is greater
than 1.5. The next step is to construct a gene library. In short,
magnetic beads with Oligo (dT) are used to enrich mRNA.
Subsequently, the mRNA is broken into short fragments, and the
mRNA is used as a template for reverse transcription to synthesize
the first-strand cDNA and then the second-strand cDNA. Then use
AMPure XP beads to purify the double-stranded cDNA, modify the
ends to connect the sequencing adapter, and finally perform PCR
amplification to obtain the final gene library. Finally, the Illumina
high-throughput sequencing platform (HiSeq/MiSeq) was used for
paired-end sequencing. Finally, samples were sent to Guangzhou
MAGIGENE Gene Corporation for subsequent analysis. Genes
which p< 0.05 and log2 fold change < -1 or > 1 were considered
to be statistically significant and were filtered out for subsequent
analysis between mono-GO, multi-GO and untreated groups. Gene
Ontology (GO) enrichment analysis contains three GO terms which
are biological processes (BP), molecular functions (MF), and cellular
components (CC). In our study, the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database was used to analyze which
important pathways of DCs can be changed by two GOs.

Statistical Analysis
We used SPSS 13.0 software for statistical analysis. Statistical
evaluations were performed using independent t-test and one-
way analysis of variance (ANOVA) test when normality and
homogeneity of variance are satisfied. The results are presented
as mean ± SD values. All tests were two-sided and P<0.05 was
considered statistically significant.
RESULTS

Characterization of GO
The mono-GO and multi-GO were characterized with UV-Vis
and TEM. The absorption spectrum of mono-GO was shown in
August 2020 | Volume 11 | Article 1206
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Figure 1A. The absorption spectrum of multi-GO was shown in
Figure 1B. As is shown in Figures 1A, B, the multi-GO has a
wider absorption band than the mono-GO. The TEM image of
mono-GO and multi-GO was shown in Figures 1C, D. It
demonstrated that the lateral size of mono-GO is larger than
that of multi-GO. It is clearly seen that the multi-GO is relatively
thick due to stacking together, and the mono-GO is thin and
transparent. The lateral size of mono-GO was larger than multi-
GO. In order to more clearly study the differences between
mono-GO and multi-GO, we used a Zetasizer Nano ZS device
(Malvern, U.K.) to measure the particle size and potential.
Research showed that the zeta potentials of mono-GO and
multi-GO were -28.5± 0.70 and -33.4± 0.41, respectively. The
zeta potential values of our graphene oxides are similar to those
found by other authors (Li et al., 2014; Hidalgo et al., 2015) The
results indicated that mono-GO and multi-GO were relatively
stable in water. The particle sizes of mono-GO and multi-GO
were 1554.00± 543.34 nm and 123.48± 47.95 nm, respectively.
The results show that the particle size of mono-GO is much
larger than that of multi-GO.

Cytotoxicity Assay
The effect of mono-GO and multi-GO on DC2.4 cell viability was
evaluated by MTT assay after 24 and 48 h exposure time. As
shown in Figure 2A, treatment of DC2.4 cells with different
concentrations of mono-GO (0.01, 0.1, 1, 10, 100 mg/ml) for 24 h
had no significant effect on the viability of DC2.4 cells. However,
the viability of DC2.4 cells with mono-GO treatment for 48 h
decreased obviously when the concentration reached up to 10
mg/ml. Different from mono-GO DC2.4 cell viability after multi-
GO treatment decreased remarkably when the concentration was
higher than 0.01 mg/ml. With the increasing concentration of
Frontiers in Pharmacology | www.frontiersin.org 4
multi-GO, the cell viability decreased significantly on dose-
dependent manner. These results suggested that mono-GO had
lower toxicity effect on DC2.4 cell viability than multi-GO.

The effect of GO on the morphology of DC2.4 cells was
observed with a microscope. As shown in Figure 2B, after DC2.4
cells were exposed to 10 mg/ml mono-GO for 24 h, the cells tend
to aggregate and the cell morphology changed obviously.
However, DC2.4 cells with multi-GO treatment showed no
similar cell morphology alteration (Figure 2B). Therefore, we
further observed the cytoskeleton of mono-GO treated cells by
phalloidin-FITC immunofluorescence assay. We found that the
cells became larger and the cytoplasm became fuller after mono-
GO treatment in comparison with those without treatment
(Figure 2C).

To deeply investigate the effects of mono-GO and multi-GO on
DCs, the kinetics of ROS production was investigated at increasing
intervals of time (30 to 120 min exposure) using a time-dependent
DCFDA assay. As is shown in Figure 2D, when compared with
control, ROS production by DCs treated with mono-GO andmulti-
GO significantly increased at the concentration of 10 mg/ml. In
addition, GO-induced ROS production was time-dependent from
30 min to 120 min. Interestingly, mono-GO-induced ROS
production was more than multi-GO after 30 and 120 min
exposure. These results suggested that mono-GO and multi-GO
had the potential to induce the intracellular ROS generation.

Cytokine Secretion Assay of DC2.4 Cells
Exposed to Mono-GO and Multi-GO
To further observe the effect of mono-GO and multi-GO on the
function of DCs, the production of the pro-inflammatory
cytokine IL-6 and TNF-a were tested in the culture
supernatants of DC2.4 cells after 24 h-exposure to mono-GO
and multi-GO. The bacterial endotoxin LPS which is known to
induce the release of inflammatory factors in DC2.4 cells were
used as positive control. As shown in Figure 3, LPS remarkably
induced the release of the pro-inflammatory cytokines IL-6 and
TNF-a in DC2.4 cells. However, Mono-GO and multi-GO
hardly induced the release of the IL-6 (Figures 3A–D), while
obviously increased the production of TNF-a from DC2.4 cells
with increasing concentration (Figures 3E, H).

To analyze the effect of GO on the immune response by DC2.4
cells, we further evaluated stress in DC2.4 cells caused by foreign
materials. As the results of Figures 4A, B show, after pretreatment
with mono-GO, the release of IL-6 in DC2.4 cells towards LPS
stimulation was significantly increased. However, after pretreatment
with multi-GO, the release of IL-6 in DC2.4 cells treated with LPS
was significantly inhibited (Figures 4C, D). Simultaneously, after
pretreatment with mono-GO or multi-GO, the release of TNF-a
from DC2.4 cells in response to LPS was significantly increased
(Figures 4E–H). These results indicated that GO was immunotoxic
to DC2.4 cells in vitro and was able to cause DCs dysfunction.

RNA-Seq Analysis
Wealso conducted experiments at the transcriptome level and found
that many genes in DC2.4 cells were up-regulated and down-
regulated after mono-GO and multi-GO treatment. Through
A B

DC

FIGURE 1 | Characterization of mono–graphene oxide (GO) and multi-GO.
(A) Transmission electron microscope (TEM) image of multi-GO. Scale bar:
100 nm; (B) TEM image of mono-GO. Scale bar: 200 nm; (C) UV-Vis
spectrum of multi-GO; (D) UV-Vis spectrum of mono-GO.
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analysis, we found that the top 20 genes that significantly changed
after mono-GO and multi-GO treatment of DC2.4 cells were
Hsp90ab1, Rplp0, Hspa8, Hdgf, Actb, Ldha, Eef1a1, Rpl4, Fth1,
Ftl1, Pkm, P2rx7, Eef2, Pabpc1, Gpnmb, Spp1, LOC108169013, Ncl,
Eif4g2, and Lcp1. A Principal Component Analysis (PCA) on
transcripts was used to assess the quality of the RNA-seq data. In
the PCA plot (Figure 5A), three treatments cluster separately from
the others. As shown in Figure 5B, the volcano map revealed
significant changes in the expression level of 1239 genes between
mono-GO group and control group (519 up-regulated genes, 720
down-regulated genes, P< 0.05, log2 fold change > 1 or log2 fold
change < -1). As shown in Figure 5C, the volcanomap also revealed
significant changes in the expression level of 261 genes between
multi-GO group and control group (91 up-regulated genes, 170
down-regulated genes, P< 0.05, log2 fold change < -1 or > 1).
Functional annotations against the mouse database revealed series
of altered transcriptions involved in BP, CC andMF (Figures 5D, E).
These results suggested that mono-GO and multi-GO treatment
would lead to obvious changes in gene expression profile. In
Frontiers in Pharmacology | www.frontiersin.org 5
addition, we conducted a KEGG pathway analysis, and the results
are displayed in the form of a bubble chart (Figures 5F, G). It was
shown that mono-GO changed many pathways, such as Th1 and
Th2 cell differentiation, IL-17 signaling pathway, cytokine-cytokine
receptor interaction, ribosome, oxidative phosphorylation and
inflammatory bowel disease (IBD), etc. However, the signal
pathways changed by multi-GO were different from mono-GO,
such as cysteine and methionine metabolism, asthma, synaptics
vesicle cycle, and intestinal immune network for IgA production, etc.

In order to analyze the similarities and differences of the
effects of mono-GO and multi-GO on immune system process
(GO: 0002376), the Venn diagram shown in Figures 6A, B
plots the overlapping of differentially expressed genes from
immune system processes between different treatment groups.
Compared with multi-GO treatment group, the mono-GO
treatment group had greater influence on the immune
response process of DC2.4 cells. We identified 7 shared
downregulated genes and 1 shared upregulated gene between
mono-GO vs. control and multi-GO vs. control. The shared
A

B

D
C

FIGURE 2 | The effect of graphene oxide (GO) on the viability and morphology of DC2.4 cells. (A) The effect of mono-GO and multi-GO on the viability of DC2.4
cells for 24 h and 48 h. n = 10. ***P<0.001, ****P<0.0001 multi-GO vs. Control; ###P<0.001, ####P<0.0001 mono-GO vs. Control. (B) Representative brightfield
images of DC2.4 cells treated with phosphate-buffered saline (PBS), 10 mg/ml mono-GO, and 10 mg/ml multi-GO. Scale bar = 50 mm. (C) Representative fluorescent
picture of DC2.4 treated with control and mono-GO after phalloidin-FITC staining. Scale bar = 20 mm. (D) The production of reactive oxygen species (ROS) in DC2.4
cells treated with multi-GO and mono-GO within 120 min. (**P < 0.01 vs. Control; ##P < 0.01 vs. Multi-GO).
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differentially expressed genes included H2-DMb1, Ncbp3, Oas2,
Men1, Fas, Cd320, Cd244, and Tinagl1 which play great
important role in the immune system process (Figure 6C).
DISCUSSION

In recent years, because of the unique electronic and
physicochemical properties of GFNs, they are widely used in
various fields, including nanoelectronics and nanobiomedicine
(Thangamuthu et al., 2019). However, safety risk is still a great
Frontiers in Pharmacology | www.frontiersin.org 6
concern for their application and the potential toxicity of human
health need to be addressed. Especially, the interaction of GFNs
with the immune system remains undefined. DCs are important
components of the immune system and play a key role in
regulating the body’s immune function and maintaining the
stability of the body’s function. Both the hyperactivity and
the underdevelopment of DC’s immune function will lead to
the imbalance of the body’s immune function, leading to the
occurrence of diseases. In this work, we aimed to determine the
effects of mono-GO and multi-GO on DCs using in vitro
cell model.
A B

D

E F

G H

C

FIGURE 3 | Cytokine secretion of DC2.4 cells exposed to mono–graphene oxide (GO) and multi-GO. (A, B) Cytokine IL-6 secretion from DC2.4 cells after exposure
to mono-GO for 12 h and 24 h. (C, D) Cytokine IL-6 secretion from DC2.4 cells after exposure to multi-GO for 12 h and 24 h. (E, F) Cytokine TNF-a secretion from
DC2.4 cells after exposure to mono-GO for 12 h and 24 h. (G, H) Cytokine TNF-a secretion from DC2.4 cells after exposure to multi-GO for 12 h and 24 h. (n = 3; *
P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 vs. Control; ns, no significance).
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According to bioapplication and various toxicity studies of
GO (Shao et al., 2017; Hoyle et al., 2018; Pelin et al., 2018;
Gurunathan et al., 2019a), we finally selected concentrations of
0.01 mg/ml, 0.1 mg/ml, 1 mg/ml, 10 mg/ml, and 100 mg/ml for in
vitro toxicity tests. Here, our results showed mono-GO is less
toxic to DCs than multi-GO. The cytotoxicity of multi-GO on
DC2.4 is concentration dependent after treatment with 24 h or
48 h. Even at low concentrations (0.1 mg/ml), a high cell
proliferation inhibition occurred. Differently, the cell viability
of DC2.4 showed no obvious difference after mono-GO
treatment for 24 h, but appeared to increase after treatment for
48 h at the concentration of 100 mg/ml. These results indicated
Frontiers in Pharmacology | www.frontiersin.org 7
that the cytotoxicity of GO on DCs was closely related to the
layers and incubation time. Previous reports have proved that
many factors are affecting the toxicity of graphene in biological
system such as concentration, lateral dimension, layers, surface
structure and functional groups (Ou et al., 2016). For example,
Peruzynska et al. observed the viability of MCF7 cells exposed to
single and four layers GO nanoflakes for 48 h. They found that
GO nanoflakes with concentrations lower than 50 mg/ml
exhibited no obvious cytotoxicity, but at a concentration of 100
mg/ml GO the number of living cells significantly reduced,
survival rate of 55.5% for 1-layer graphene oxide, and 52.9%
for 4-layer graphene oxide, respectively (Peruzynska et al., 2017).
A B

D

E F

G H

C

FIGURE 4 | Mono–graphene oxide (GO) or multi-GO promotes or inhibits lipopolysaccharide (LPS)-induced IL-6 and TNF-a cytokine secretion. (A, B, E, F) DC2.4
were treated with mono-GO (10 mg/ml, 4 h) before the addition of LPS (1 mg/ml, 12 h or 24 h; n = 3). (C, D, G, H) DC2.4 were treated with multi-GO (10 mg/ml, 4 h)
before the addition of LPS (1 mg/ml, 12 h or 24 h; n = 3). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 vs. LPS.
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FIGURE 5 | (A) Principal component analysis (PCA) plots including all data, three groups [control, mono–graphene oxide (GO), multi-GO] and their biological
replicates; control is in pink, mono-GO is in green and multi-GO is in blue. (B, C) The volcano map shows that all differentially expressed genes compared to the
control group after treatment of DC2.4 cells with mono-GO and multi-GO. (P< 0.05, log2 fold change > 1 or log2 fold change < -1). (D, E) DC2.4 cells were analyzed
for Gene Ontology (GO) enrichment at level 2 after mono-GO and multi-GO treatments. (F, G) DC2.4 cells were analyzed for KEGG pathway after mono-GO and
multi-GO treatments.
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Jia et al. studied the toxicity of three different sizes (small,
medium and large) of graphene (G) and graphene oxide (GO)
in vivo and in vitro and they concluded that the toxicity of G and
GO is closely related not only to their inherent chemical
properties (oxidation state and side dimensions), but also to
the exposure concentration, time, and type of toxicity assessment
model used (Jia et al., 2019). Gies et al. systematically evaluated
the effects of cell type, exposure time, and sheet size of GO on
cytotoxicity, and found that the cytotoxicity of GO is closely
related to the cell type (Gies and Zou, 2018). Their data showed
that GO had the least toxicity to adherent cells, but the most
toxicity to suspension cells. They also investigated the effects of
three sizes of GO on the cytotoxicity of different cell types. They
found that the cytotoxicity was dependent on GO sheet size for
NIH 3T3, U87, and A549 cells, while little effect of sheet size on
toxicity for RAW 264.7, NB4, and HL60 cell lines.

Previous research reported that the production of ROS is one
of the important mechanisms for the toxicity of nanoparticles
(Khatri et al., 2013; Seabra et al., 2014; Tang et al., 2018).
Nanoparticles interfere with oxidative balance of cell and cause
oxidative stress to generate reactive oxygen species, such as
superoxide, hydroxyl radical, peroxide radical, hydrogen
peroxide, and singlet oxygen (Yan et al., 2017; Lu et al., 2019).
A large amount of ROS can destroy cell structure and cell
function, and even cause cell death. Xiong et al. studied the
Frontiers in Pharmacology | www.frontiersin.org 9
mechanism of the toxicity of GO on zebrafish, and they found
that GO-induced liver injury was mainly mediated by ROS and
MAPK signals (Xiong et al., 2020). Pelin et al. found that few-
layer-graphene and GO mediated a significant increase in
intracellular ROS production primarily through activation of
flavin-based oxidase in human HaCaT skin keratinocytes, and
caused significant mitochondrial membrane depolarization and
mitochondrial damage (Pelin et al., 2018). In our study, the
results showed that 10 mg/ml mono-GO and multi-GO caused
the production of ROS in DC2.4 cells, and it was a time-
dependent increase within 2 h. Interestingly, 10 mg/ml mono-
GO increased intracellular ROS production but did not affect
cytotoxicity. The results indicated that ROS generated in a
short period of time may not cause cell death. This is similar
to previous reports. Chang et al. reported that at lowest
concentration of GO was found to induce significant increase
in ROS levels in A549 cells without affecting cell viability (Chang
et al., 2011). Although the generation of ROS is one of the
important mechanisms for cell death caused by nanomaterials,
there are still many other cell death-related mechanisms which
are responsible for the cytotoxicity induced by nanoparticles
such as apoptosis, necrosis, autophagy and necrosis (Ou et al.,
2016). In our study, we also found that mono-GO-induced ROS
production was more than multi-GO after 30- and 120-min
exposure. The reason may be caused by different generation and
elimination rates of ROS. Antioxidant enzymes, such as
superoxide dismutase or glutathione peroxidase, can reduce
and eliminate ROS. The specific mechanism needs further study.

Although mono-GO did not cause cell death, we found an
interesting phenomenon in cell morphology. After exposing
DC2.4 cells to 10 mg/ml mono-GO for 24 h, the cell morphology
changed, cells began to aggregate and grow, and lost contact
inhibition. Staining with ghost pen cyclopeptide revealed that
compared with the control group, the cells became larger and
the cytoplasm became larger and fuller. Hu et al. reported that
compared with untreated DCs, DC2.4 cells treated with LPS
showed a more mature shape, more extensive dendritic
formation and wrinkling (Hu et al., 2012). Perhaps mono-GO
promoted DC2.4 activation into mature DCs. The maturation of
DCs will lead to the production and release of cytokines, which will
trigger immune defense. Previous research suggested that after
human DCs are treated with PLGA nanoparticles (NPs) for 24 h,
they produce pro-inflammatory cytokines such as IL-6, IL-8, IL-b,
and TNF-a. (Barillet et al., 2019). Conversely, in murine BMDCs,
NPs had no effect on cytokines secretion. But when cells were
treated with lower concentrations of PLGA NPs, it produced IL-6
and TNF-a In our results, there were no effects on IL-6 cytokines
secretion, but induced TNF-a cytokine secretion after DC2.4 cells
incubated with mono-GO and multi-GO for 24 h and 48 h. And
mono-GO induced more secretion of TNF-a cytokines in DC2.4
than multi-GO. TNF-a plays an important role in promoting DCs
maturation and immune inflammatory response. Therefore, we
speculated that compared with multi-GO, mono-GO could cause a
more severe inflammatory response, and then promoted DC2.4
cells to mature. Although study showed that mono-GO and multi-
GO had different effects on DC2.4 cytotoxicity and cytokine
A B

C

FIGURE 6 | Venn diagram of upregulated and downregulated immune system
process (GO: 0002376) after exposure to mono–graphene oxide (GO) and multi-
GO compared with control. (A) Venn diagram of downregulated immune system
process (GO: 0002376). (B) Venn diagram of upregulated immune system
process (GO: 0002376) (C) The fold change in differentially expressed genes
shared between mono-GO vs. control and multi-GO vs. control.
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production, further parameters such as functional characteristics
need to be further evaluated.

Effective antigen presentation and T cell activation are highly
correlated with cytokine release. Previous research showed that
LPS binding to TLR4 activates the downstream NFkB signaling
pathway, which stimulates DCs to produce TNF-a and IL-6
inflammatory factors and initiates an adaptive immune response
(Rhule et al., 2008; O’Neill et al., 2013). So, we investigated
whether GO affected the normal cytokines secretory of DC2.4 in
response to LPS. Our results clearly suggested that GO disrupted
the release of cytokines TNF-a and IL-6 from DC2.4 cells in
response to LPS. We found that mono-GO and multi-GO
promoted the release of TNF-a cytokines in LPS-induced
DC2.4 cells. In contrast, mono-GO LPS-induced IL-6 release in
DC2.4 cells, but multi-GO inhibits LPS-induced IL-6 release. As
previously studied, exposing DCs to GO to achieve responses to
TNF-a and IL-6 may control TH1 response (Barillet et al., 2019),
which is consistent with the results of TH1 response induced by
delivery of model antigens through PLGA particles (Newman
et al., 1998). The decreased level of IL-6 in multi-GO treated cells
after LPS stimulation was likely due to the cell viability inhibition
caused multi-GO. Overall, our results suggested that GOs
changed the inflammatory response of DCs to LPS stimulation.
Further investigation is needed to show whether the release
of cytokines by GO-induced DCs changes their ability to
initiate T-cell dependent immune responses.

In order to further study the immunotoxicity of mono-GO and
multi-GO, we performed whole transcriptome sequencing
analysis. Recently, high-throughput screening methods have
been widely used to assess the toxicity of nanoparticles. Deng
et al. employed whole-transcriptome profiling to identify 2116
differentially expressed genes between the zebrafish larvae exposed
graphene quantum dots (GQDs) groups and the control group
and found that GQDs significantly up-regulated most genes in the
acute inflammatory response and detoxification process (Deng
et al., 2018). In order to better understand the effects of cadmium
telluride (CdTe) QD on central nervous system toxicity, Wu et al.
performed a high-throughput sequencing to analyze the changes
in the rat hippocampal genome caused by two sizes of CdTe QDs
and found that compared to 2.2 nmCdTe QDs, 3.5 nmCdTe QDs
caused severe inflammatory and immune responses in the
hippocampus of rats (Wu T. S. et al., 2018). Our bioinformatics
data showed that both mono-GO and multi-GO caused changes
in the transcriptome level of DC2.4 cells, and found 1,239
differentially expressed genes (DEGs) were between the mono-
GO and control and 261 DEGs were between the multi-GO and
control. The result suggested that mono-GO exposure might have
more severe effects on DC2.4 cells than multi-GO at the
transcriptome level. The effect of GO on the transcriptome level
of DCs may be related to factors such as the number of layers and
lateral size of GO. We also found that 7 shared downregulated
genes (H2-DMb1, Ncbp3, Oas2, Men1, Fas, Cd320, and Cd244)
and 1 shared upregulated genes (Tinagl1) between mono-GO vs.
control and multi-GO vs. control on immune system process
(GO: 0002376). All of these genes play great important role in the
immune system process. For example, previous study found that
Frontiers in Pharmacology | www.frontiersin.org 10
activated Fas signaling in DCs induced cytokine secretion and
played an important role in adjusting T cell activation,
proliferation, differentiation and inflammation response (Han
M. M. et al., 2018; Zu Horste et al., 2018). Based on these
results, we inferred that at the transcriptome level, mono-GO
produced a stronger immune response than multi-GO on DCs,
although they share similar changes for some genes. Gurunathan
et al. assessed the immunotoxicity of GO and vanillin-
functionalized GO (V-rGO) on THP-1 cells, a human acute
monocytic leukemia cell line and they concluded that V-rGO
showed significant effects on immunotoxicity compared to GO
because of the sharp edges, chemical composition, charge transfer,
different carbon to oxygen ratio, and functional groups present on
V-rGO (Gurunathan et al., 2019b). In summary, the immunotoxic
response of graphene oxide to cells in this study is closely related
to the layers, size, and degree of oxidation of graphene oxide.

In our study, mono-GO and multi-GO both had different
degrees of toxicity to DC2.4 cells. Previously, it has been shown
that PEGylated nanomaterials are biocompatible and do not
cause a severe immune response compared to the original
materials. For example, Cicuéndez et al. studied the effect of
GBNs on macrophages in vitro, and found that the inflammatory
response is related to particle size and surface modification
(Cicuendez et al., 2020). Smaller-sized nanomaterials induced
the pro-inflammatory response of macrophages, while
PEGlayted GO did not activate this response. However, the
research by Luo et al. contradict these results (Luo et al., 2017).
They found that PEGylated GO would not be internalized into
cells, but would cause the release of stronger cytokines in
peritoneal macrophages compared to GO. Next, they studied
the mechanism of GO interaction with cells through atomistic
molecular dynamics simulations, and they found GO
preferentially adsorb onto and/or partially insert into cell
membranes and activated downstream signaling pathways.
Further experiments showed that PEGylated GO stimulated
the secretion of cytokines by enhancing the integrin b8-related
signaling pathway. Wu et al. prepared five kinds of PEGlayted
GO with differing surface charge and degrees of oxidation and
compared their toxicity to ocular surface cells and intraocular
cells in vitro (Wu W. et al., 2018). It was found that cytotoxicity
was related to the oxidation level of nanomaterials, but the
surface charge of nanomaterials had no significant effect.
Among them, high oxidative levels of PEGlayted GO resulted
in higher cytotoxicity. In summary, PEGlayted GO may reduce
the toxicity of cells, but we need to conduct subsequent
evaluations of the size, number of layers, and surface charge of
PEGlayted GO for better biological applications.
CONCLUSION

In summary, here we investigated the immunotoxicity of mono-GO
and multi-GO on DC2.4 cells. We found that both mono-GO and
multi-GO significantly induced ROS production in DC2.4 cells, but
mono-GO had less effect on DC2.4 cell viability compared to multi-
GO. Interestingly, mono-GO enabled DC2.4 cells to aggregate and
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change the cell morphology, while multi-GO had no similar effect.
In addition, mono-GO and multi-GO hardly induced the release of
the IL-6, while obviously increased the production of TNF-a from
DC2.4 cells. Mono-GO and multi-GO promoted TNF-a
production in DC2.4 cells induced by LPS. In contrast, mono-GO
LPS-induced IL-6 release in DC2.4 cells, but multi-GO inhibits LPS-
induced IL-6 release. Gene expression profiling showed that both
mono-GO and multi-GO caused changes in the transcriptome level
of DC2.4 cells, and mono-GO caused more altered genes than
multi-GO. There are some similarities and differences of the effects
of mono-GO and multi-GO on immune system process (GO:
0002376). These results indicated that GO had immunotoxicity to
DC2.4 cells and was able to cause DCs dysfunction. These results
suggest their potential immunotoxicity effects on DCs should be
taken into full consideration in their biological applications
although GO has many advantages. This is of great significance
for the subsequent biological and clinical applications of GO.
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