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Abstract: Biosensors are aimed at detecting tiny physical and chemical stimuli in biological systems.
Physical forces are ubiquitous, being implied in all cellular processes, including cell adhesion,
migration, and differentiation. Given the strong interplay between cells and their microenvironment,
the extracellular matrix (ECM) and the structural and mechanical properties of the ECM play an
important role in the transmission of external stimuli to single cells within the tissue. Vice versa,
cells themselves also use self-generated forces to probe the biophysical properties of the ECM.
ECM mechanics influence cell fate, regulate tissue development, and show peculiar features in
health and disease conditions of living organisms. Force sensing in biological systems is therefore
crucial to dissecting and understanding complex biological processes, such as mechanotransduction.
Atomic Force Microscopy (AFM), which can both sense and apply forces at the nanoscale, with
sub-nanonewton sensitivity, represents an enabling technology and a crucial experimental tool in
biophysics and mechanobiology. In this work, we report on the application of AFM to the study of
biomechanical fingerprints of different components of biological systems, such as the ECM, the whole
cell, and cellular components, such as the nucleus, lamellipodia and the glycocalyx. We show that
physical observables such as the (spatially resolved) Young’s Modulus (YM) of elasticity of ECMs or
cells, and the effective thickness and stiffness of the glycocalyx, can be quantitatively characterized by
AFM. Their modification can be correlated to changes in the microenvironment, physio-pathological
conditions, or gene regulation.

Keywords: Atomic Force Microscopy; colloidal probe; biosensors; glycocalyx; extracellular matrix;
mechanobiology

1. Introduction

In recent years, there has been a growing interest in studying the physical properties
of biological samples, such as tissues, single cells, and their microenvironment, to better
understand how they change during the progression of diseases, such as cancer [1–3], and
how they influence each other in their mutual interaction [4–11]. The extracellular matrix
(ECM), which is a fundamental component of the cell microenvironment, is a ubiquitous
acellulated component present in all tissues, comprising molecules that are secreted by
cells and assembled to form specific insoluble components; the ECM plays a fundamental
role as a scaffold for cell growth, in the regulation of cell-cell and cell-matrix signaling,
also affecting cell mechanics mainly through the remodeling of the cytoskeleton, and
determining cell fate [4,5,12–16]. There is a reciprocal interaction between the ECM and
the cells, allowing the active modification of the ECM structure and composition, which
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affects its mechanical properties as well [9,17–19]. An important physical layer is located
between the cell membrane and the cell microenvironment: the glycocalyx, also known as
the pericellular matrix. The glycocalyx is a surface brush layer that is present on every cell,
and made of glycoproteins, proteoglycans and polysaccharides [16,20]. As the first contact
interface between the cell and its microenvironment, the glycocalyx plays an important
role in their mutual interactions [21]. The glycocalyx acts as a water reservoir, helps in the
transport of metabolites and control of the signaling molecules [20,22], regulates integrin
clustering and focal adhesion maturation [21,23–25]. The characterization of the glycocalyx
thickness in relation to different pathological states of the cell would help to understand the
communication between cells and the ECM [26]. More importantly, a link has been demon-
strated between glycocalyx and cancer: tumoral cells tend to show a wider distribution of
glycocalyx chain lengths compared to normal ones [27]; moreover, their bulky composition
seems to favor the metastatic spread [28–30]. The physical characterization of glycocalyx
has a good potential in cancer research, both as a cancer biomarker [20,25,27,30,31] and as
a therapeutic target, since the reduction or degradation of the glycocalyx has been reported
to reduce cell migration and suppress cell growth [32,33].

The study of the mechanical properties of cells and tissues in the context of health
and disease implies the need for reliable instrumentation and methods. Atomic Force
Microscopy (AFM), which is able to both sense and apply forces at the nanoscale, with
sub-nanonewton sensitivity, represents an enabling technology and a crucial experimental
tool in biophysics and biomechanics [34–37].

In AFM, an elastic cantilever with an intrinsic spring constant k in the range 0.05–50
N/m is used as both a force sensor and a force transducer (Figure 1A). The surface force F is
applied on the cantilever, typically at its end, where a micro-tip with a radius of curvature of
typically 2–100 nm is located. The force induces a vertical cantilever deflection z = F/keff,
which is typically measured by an optical beam deflection apparatus [38–40] (Figure 1), or
in some cases by an interferometer [41]. In the above equation, an effective spring constant
keff is used, rather than the intrinsic one, to account for specific features of the loading
configuration, such as the cantilever mounting angle θ (usually θ = 10◦–15◦), the tip height,
the loading point position, etc. [42]. In the simplest case of a negligibly small tip at the very
end of the cantilever, keff = k/ cos2(θ).

A small spring constant provides high force sensitivity, meaning that a small force
produces a large, easily measurable, deflection. A lower limit to the measurable deflection
(and therefore to the measurable force) is set by the thermal noise zth of the cantilever,
which can be estimated from the equipartition theorem as zth =

√
kBT/k, with kB and

T being the Boltzmann constant and the absolute temperature, respectively [43,44]. The
minimum, thermal noise, limited detectable force that can be measured dynamically with
an instrumental bandwidth BW is Fth,min =

√
4kBTbBW, where b is the damping coefficient

(the proportionality factor between the tip velocity and the viscous force). Equivalently,
since b = k/(2πfRQ), Fth,min =

√
2kBTkBW/(πfRQ); Q and fR being the quality factor

and the resonance frequency of the cantilever, respectively; similar expressions for the
minimum force gradients can be obtained [45,46].

Besides measuring the tip-sample interaction force with sub-nN sensitivity, AFM
allows us to reconstruct the tip-sample distance corresponding to the force measurements,
which translates into a sample deformation after contact is established [47]. The possibility
of measuring force vs. distance, spatially resolved with nm resolution, assigns AFM
a leading position as a force (bio) sensing technique. AFM is at present an enabling
technology and a crucial experimental tool in biophysics and biomechanics, allowing both
force spectroscopy and nanomechanical characterization of biologically relevant interfaces
and systems.
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Figure 1. (A) Scheme of the optical beam deflection (OBD) system. The vertical displacement of the
cantilever induced by the sensing of a force F perpendicular to the sample surface is detected on a
segmented photodiode as a raw voltage signal ∆V. The cantilever is typically mounted at an angle θ
with respect to the sample surface. (B) A raw force curve, representing the photodiode output ∆V as
a function of the z-piezo displacement dp. Both the approaching and retracting branches of the curve
are shown.

In this work, we present an overview of how AFM can be used as an enabling force-
sensing technology for the study of biological systems at different spatial and force scales.
To this purpose, we report on the application of AFM to the study of biomechanical
fingerprints of several components of biological systems, such as the ECM, the whole cell,
and cellular components, such as the nucleus, lamellipodia and the glycocalyx. We show
that physical observables such as the (spatially resolved) Young’s Modulus of elasticity of
ECMs or cells and the effective thickness and stiffness of the glycocalyx can be quantitatively
characterized by AFM. In particular, we carried out three representative experiments from
the microscale to the nanoscale: mechanics on healthy and neoplastic decellularized tissue
from one patient with peritoneal metastasis; mechanics of three bladder cancer cell lines
who are representative of the progression of urothelial bladder cancer; and eventually
glycocalyx characterization of those cell lines. We demonstrate through these illustrative
experiments the high sensitivity that can be achieved with AFM on detecting small changes
in the biomechanical properties of biological samples, from single living cells and their
biomolecular components to tissues; the modification of these biophysical observables
can in turn be correlated to changes of the cell microenvironment, physio-pathological
conditions of the tissue and related organs, or gene regulation phenomena.
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2. Materials and Methods
2.1. Sample Preparation
2.1.1. Human Tissues

Peritoneal tissue was collected from one patient with peritoneal metastatic colorectal
carcinoma (CRCPM) who underwent surgical resection at the Peritoneal Malignancies Unit
of the IRCCS Foundation, Istituto Nazionale dei Tumori di Milano, Milan, Italy. The patient
was staged according to the World Health Organization (WHO) classification. The study
was approved by the Institutional review board (249/19) and was conducted in accordance
with the Declaration of Helsinki, 2009. Written informed consent was acquired.

Omentum-derived CRCPM lesion and apparently normal tissue (>10 cm from the
metastatic lesion) were harvested. Tissues were frozen in liquid nitrogen and used to
develop the decellularized ECMs.

2.1.2. Decellularized Extracellular Matrices

Decellularized extracellular matrices were obtained from the omentum fold of human
peritoneum from a patient with metastases derived from colorectal cancer. The decellu-
larization was performed as in Genovese et al. [48]. The success of the decellularization
procedure was already verified in the work from Varinelli et al. [49]. The ECM samples
were embedded in optical cutting compound (OCT) and frozen in 2-propanol, then kept in
a liquid nitrogen bath.

ECM slices of approximately 100 µm thickness were cut with a microtome (Leica)
and attached to positively charged poly-L-lysine-coated glass coverslips (ThermoFisher
Scientific, Waltham, MA, USA) exploiting the electrostatic interactions to improve the
attachment. The samples were stored at −4 ◦C until AFM analysis.

2.1.3. Cells

Three commercial human bladder cancer cell lines of different grades (a marker of
invasiveness), kindly provided by Dr. M. Alfano (San Raffaele Hospital, Milano), were
used (see Table 1) [50,51]. The cell lines were cultured in RPMI medium containing 2 mM L-
glutamine supplemented with 10% FBS, 1% penicillin/streptomycin, and 1% amphotericin
and grown in an incubator at 37 ◦C and 5% CO2 (Galaxy S, RS Biotech). All reagents and
material were from Sigma-Aldrich (St. Louis, MO, USA) if not stated otherwise.

Table 1. Characteristics of the bladder cancer cell lines used in this work.

Cell Line Specie/Organ Morphology Tumor

RT4 Human Bladder Epithelial Papilloma, transitional cell (Grade I)
RT112 Human Bladder Epithelial Papilloma, transitional cell (Grade II)

T24 Human Bladder Epithelial Carcinoma, transitional cell (Grade III)

For AFM measurements, the cells were plated the day before on glass bottom Petri
dishes (∅ 40 mm Willco Wells) coated with poly-L-lysine (0.1% w/v for 30 min at RT) to
improve cell attachment, in the RPMI medium without phenol red, as it can cause damage
to the AFM probe holder.

2.2. Histochemistry

Before histochemistry staining, ECM Formalin-Fixed Paraffin-Embedded (FFPE) sec-
tions were cut into slices and dewaxed in xylene, rehydrated through decreasing concentra-
tions of ethanol, and washed with water. Slices were stained with van Gieson trichrome
(Bio-Optica, Milan, Italy) following the manufacturers’ instructions.

2.3. Force Sensing with the AFM

All the experiments have been performed using a Bioscope Catalyst AFM (Bruker)
mounted on top of an inverted microscope optical microscope (Olympus X71, Tokyo, Japan).
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The system was isolated from noise using an active antivibration base (DVIA-T45, Daeil
Systems, Wonsam-myeon, South Korea) placed inside an acoustic enclosure (Schaefer,
Vigilliano Biellese, Italy). Living cells were measured using a thermostatic fluid cell, with
the temperature of the medium kept at 37 ◦C by a temperature controller (Lakeshore 331,
OH, USA). The measurements on ECMs were performed at room temperature in a droplet
of PBS confined on the glass slide using a hydrophobic pen.

Homemade colloidal probes were produced by attaching borosilicate glass or soda
lime spheres to rectangular tipless cantilevers (NanoandMore TL-FM and MikroMasch
HQ:CSC38/Tipless/No Al); both production of the probes and characterization of their
radius were performed according to custom procedures [52]. Different sphere radii R and
spring constants k of the probes were selected according to the needs of each experiment
(Table 2).

Table 2. Radius and typical spring constant of the AFM probes used for every experiment.

Experiment Colloidal Probe Radius (µm) Spring Constant (N/m)

Mechanics of the ECM 20 5
Mechanics of cells 5 0.01

Glycocalyx characterization 5 0.01

The raw output on an AFM force measurement consists of the raw deflection signal
∆V of the cantilever, measured by the optical beam deflection (OBD) system in volts, as a
function of the z-piezo displacement dp, in nm units (Figure 1A,B). Depending on the AFM
system, the z-piezo can displace either the probe or the sample.

Exploiting two calibration parameters, the effective spring constant keff (N/m) and
the deflection sensitivity S (or inverse optical lever sensitivity invOLS, in units of nm/V),
the raw deflection ∆V can be transformed into the cantilever deflection z, in nm, and the
latter deflection can then be transformed into a force, in nN:

z = S ∆V (1)

F = keff z = keff S ∆V (2)

The tip-sample distance d can be calculated as:

d = dp + z − d0 (3)

In Equation (3), dp decreases as the tip gets closer to the sample surface, and z is
positive when the cantilever is deflected upwards, under the action of a repulsive force, and
negative in the opposite case. The parameter d0 represents the location along the dp + z
axis where the tip-sample distance is zero. The identification of d0 is easy when the tip is
ramped against a stiff substrate, since all data points belonging to the contact region of the
force vs. dp + z distance curve must collapse along a vertical line, whose corresponding
mean abscissa value is d0. On deformable surfaces, d0 is typically obtained through a fit of
a suitable contact mechanics model (typically the Hertz model [53–55]) to the F vs. dp + z
curve [56].

The cantilever spring constant has been calibrated using the thermal noise method [43,44],
and fine corrections were applied to account for geometrical and dimensional issues [42,57].
The deflection sensitivity S of these probes was calculated according to different procedures:
either as the inverse of the slope of the raw deflection ∆V vs. z-piezo displacement dp
curve (Figure 1B) acquired on a stiff substrate [47], or via the SNAP method [58], assuming
a previously accurately calibrated intrinsic spring constant as reference.

After identification of d0 and proper translation of the distance axis, negative distances
correspond to deformations, i.e., indentations of the deformable sample. In nanomechanical
tests, the negative semiaxis is the relevant one, and an indentation axis δ can be defined as:
δ = −d, for d < 0.
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Processing of the data was carried out using custom routines written in a Matlab
environment (Mathworks, Natick, MA, USA).

The precise alignment of AFM and optical images was possible using the Bruker
MIRO software and allowed us to choose the regions of interest for ECMs and cells. For
the ECMs, the regions for measurements were chosen based on the evaluation of optical
images; thanks to the reduced thickness of the slices and their consequent transparency, it
was possible to select regions with moderate roughness and better structural integrity.

Indentation of Living Cells and ECMs by AFM

• Cells

For the mechanical characterization of cells, the Hertz model was applied [53–55]. To
extract the value of the Young’s Modulus (YM) E, which is the proportionality constant
(within the limits of linear elastic response) of stress σ (force per unit area, in Pa) and strain
ε (relative deformation): E = σ/ε. The YM is an intrinsic elastic property of a material
and provides a measure of sample rigidity. According to the Hertz model for a parabolic
indenter, the force vs. indentation relation is:

F =
4
3

E
1− ν2 R

1
2 δ

3
2 (4)

which is accurate as long as the indentation δ is small compared to the radius R. In
Equation (4), ν is the Poisson’s coefficient, which is typically assumed to be equal to
0.5 for incompressible materials.

When indenting compliant thin cells (typically a few microns tall at their maximum
height, i.e., above their nucleus), the finite-thickness effect must be taken into account.
This effect is related to the influence of the stiff glass substrate underneath the cells, which
confines the strain and stress fields and makes the elastic cell response stiffer, i.e., the
measured Young’s Modulus larger [55,59–62]. The finite-thickness correction depends on
the ratio χ of the contact radius a =

√
Rδ to the sample thickness h (and not trivially on

the ratio δ/h):

χ =

√
Rδ
h

(5)

Notably, AFM provides the unique capability of measuring simultaneously both
the height and elastic properties of a sample (combining topographic and mechanical
imaging [55]), therefore allowing us to implement point by point corrections that depend
on ratios like the one reported in Equation (5) as for the present work.

A polynomial correction factor ∆(χ) can be applied to the Hertz equation (Equation (4)),
under the hypothesis that cells are partially bound to the substrate, and this allows us
to extract correct YM values irrespective of the local thickness of the sample. Following
Dimitriadis et al.’s work [55,59]:

∆(χ) = 1+1.009χ + 1.032χ2 + 0.578χ3 + 0.051χ4 (6)

Introducing the rescaled force F′(δ) = F(δ)/∆(χ(δ)), Equation (4) can be replaced by the
formally similar Equation (7):

F′ =
4
3

E
1− ν2 R

1
2 δ

3
2 (7)

For the evaluation of the Young’s Modulus of single and clustered cells, at least 10 cells,
each from three to five Petri dishes, were measured. For each measurement, FCs on both
the substrate and the cells were acquired with a minimum of 10 FCs on the surrounding
substrate and 100 FCs on the cell; this allowed us to calculate the local height of each single
cell [55]. For full mapping of single cells/clusters, FCs were collected on a grid spanning an
area of up to 100 µm× 100 µm around the cells, including both cells and substrate. Each FC
contained 8192 points, with ramp length l = 15 µm, maximum load Fmax = 5–10 nN, ramp
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frequency f = 1 Hz. The probe radius was R = 5.7 µm or R = 6.4 µm. Typically, indentation
up to 2 µm was achieved.

We created masks based on the obtained topographic maps to select force curves
belonging to distinct regions: the nuclear region and its complement, which is the union of
cell perinuclear and peripheral regions [55,62].

The same data were used for both mechanical analysis of cells and glycocalyx charac-
terization. The first 10% of the indentation range after the contact point is usually attributed
to the contribution of the glycocalyx [21,27,31,63,64]. The YM of the cells was extracted
by fitting the Hertz model to the FCs in a suitable sub-interval of the remaining 10–90%
indentation, typically identified as the range where the value of E does not change with
indentation (Figure 2).

Figure 2. Typical approaching force curve on top of a cell (top) and ECM (bottom). The indentation
range for model fitting is highlighted; on cells, we used typically [0–10%] for the glycocalyx and
[10–80%] for the YM, while on ECMs we used [20–80%] for the Young’s Modulus.

• Glycocalyx thickness

The glycocalyx characterization was performed following the soft brush model im-
plemented by Sokolov et al. [27,31,65,66]. The separation H between the tip and the cell
membrane can be expressed as (Figure 3A):

H = dp − d0 + δ + z (8)

where d0 is the position of the non-deformed cell membrane (the contact point referred to
Hertzian indentation), dp is the relative z-piezo position, and δ and z are indentation and
cantilever deflection, respectively, as previously defined.

The indentation δ in Equation (8) is calculated using the standard Hertz model
(Equation (4)). When the glycocalyx is completely compressed (which typically occurs
well before cell indentation is significant), H is negligibly small; it follows that if one plots
the force as a function of H, the force points related to the Hertzian indentation of the cell
collapse along a vertical line at H ∼= 0. This can be seen in Figure 3B, where the force for
H > 0 can be identified with Fglycocalyx, the force exerted by the glycocalyx. The latter force
can be modeled as [65]:

Fglycocalyx = 100 kBT R N3/2 L exp(−2πH/L) (9)

where L and N are the effective thickness and the grafting density of the pericellular brush,
respectively.
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Figure 3. (A) Schematics of the distances used to determine the tip-cell membrane distance H
(Equation (8)). (B) A typical force curve showing the force exerted by the glycocalyx as a function of
the tip-cell membrane distance (the red continuous curve is the fit by Equation (9)).

• ECM

The mechanical properties of ECMs were studied by collecting sets of typically 15 × 15
force curves (force volumes, FV) in different macroscopically separated regions of the
sample. Each selected region was typically as large as 115 µm× 115 µm. Each FC contained
8192 points, with ramp length L = 15 µm, maximum load Fmax = 800–1500 nN, ramp
frequency f = 1 Hz and R = 12.8 µm. Typical maximum indentation was 5–9 µm. For each
patient condition, 2000–5000 FCs were obtained.

The value of the YM of elasticity of ECM was extracted as described previously for
cells. The Hertz model was fitted to the [20–80%] indentation range of the FCs (Figure 2)
without the finite-thickness correction (given the large thickness of the slices, χ ≤ 0.1). On
tissues and ECMs, the first 20% of the FCs is typically neglected, due to the contribution of
superficial non-crosslinked fibers, surface roughness -related issues, etc. [5].

2.4. Statistics

For both cells and ECM, the mean median value Ēmed of the Young’s Modulus E
(or the mean values of other observables) has been evaluated for each tested condition,
averaging over cells or measured ECM samples. The associated errors were calculated
adding in quadrature to the standard deviation of the mean σEmed

an instrumental error
of 3%, calculated through a Monte Carlo simulation, as described in [55,67], based on the
uncertainties in the calibration parameters (5% for the deflection sensitivity S, 10% for the
spring constant k).

The assessment of the statistical significance of the differences among the tested
conditions was carried out using the two-tailed t-test. A p-value < 0.05 was considered
statistically significant.

For the glycocalyx analysis, the length L of the glycocalyx for each force curve located
on the nucleus was extracted, by fitting Equation (9) to the data, and the histograms of the
logarithmic values were reported. Median values were calculated.

3. Results
3.1. AFM at the Microscale: Mechanical Properties of ECMs

In this experiment, we carried out mechanical measurements on healthy and neoplastic
decellularized extracellular matrices coming from the same patient affected by CRCPM. We
measured YM values of the samples at deep indentation with a focus on their distribution.
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The production of custom colloidal probes allows us to tune both the spring constant
k of the cantilever and the sphere radius R, to match the typical length scale of tissues and
ECMs, which is approximately 10–50 µm (cf. Material and Methods)

Exploiting the large colloidal probe radius allows us to effectively average local
nanoscale heterogeneities due to the fine structure of the ECM, while capturing the over-
all mesoscopic mechanical response of the sample. To this purpose, it is important to
achieve reasonably large (in absolute terms) indentations (5–9 µm, compared to the 100–200
µm thickness of the samples). In these operative conditions, finite-thickness effects are
negligible, and we are confident to test the bulk sample properties, as in a 3D structure,
and not only those of a surface layer, which in similar samples can be different from the
bulk. The measured mechanical response therefore reflects the collective contribution
of all components of the ECM, organized in micrometer-sized structural and functional
domains [5,17,68–72]. Small colloidal probes, and to a larger extent sharp pyramidal
tips, would permit a greater spatial resolution, but the mechanical output would be more
scattered and less representative of the overall properties of the ECM [55].

In Figure 4A, we show the distribution of the logarithmic YM values from each FC
taken on ECM samples. The fact that log YM values are approximately normally distributed
suggests that the distribution of YM is lognormal, as it is typically observed [73].

Figure 4. The stiffening of ECM in CRCPM samples. (A) Logarithmic values of the YM and their
distribution in normal and neoplastic ECM samples obtained from one patient. Violin plots were
plotted collecting YM values from all single FCs. Violin plots suggest that the distribution of local
YM values is approximately lognormal. The circle and the black bars represent the median and
the interval between 25th and 75th percentiles. (B) Comparison of median YM values Emed from
each force volume in linear scale for normal and neoplastic samples from one patient. The red line
represents the median value, the box encloses the interval between 25th and 75th percentiles of
the sample. Whiskers go from the upper and lower limits of the interquartile range to the furthest
observations, within 1.5× the interquartile range; data points beyond this limit are considered outliers.
(C) Comparison of the mean median YM values for the two conditions tested. In (A, C), * means
p < 0.05.

During cancer progression, the neoplastic ECM becomes stiffer; indeed, the logarithmic
YM distribution appears rigidly shifted to higher values (higher median value), while the
logarithmic standard deviation is approximately preserved among normal and neoplastic
conditions (Figure 4A). In Figure 4B, we show the distribution of the median YM values
measured in different locations (FV) and slices of ECM are reported. Neoplastic-derived
samples showed a significant increase in stiffness, and this result was in line with data
already published [1,2,9,74–76]; this stiffening during cancer progression is related to an
outcome of the tumor microenvironment remodeling and changes in the ECM composition
and structure, including aggregation and realignment of ECM components, mediated
by tumoral cells [9]. Reorganization of the matrix through cancer progression is also a
parameter that can be seen optically, with classical staining of the ECM (Figure 5). The
neoplastic ECM shows collagen accumulation (Figure 5B), while the healthy counterpart
shows organized collagen fibers (Figure 5A).
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Figure 5. Collagen of ECM of healthy (A) and tumoral region (B) stained with van Gieson trichrome.

3.2. Mechanics of Cell, down to Cellular Components

Using AFM, it is also possible to sense small mechanical changes in single cells related
to different physio-pathological conditions; using colloidal probes, the spatial resolution
can be good enough to discriminate among single cell components, such as nuclear and
perinuclear regions and lamellipodia [55], while sharp tips allow us to discriminate fine
cellular structures as small as single actin fibers [77].

We performed AFM nanoindentation on three bladder cancer-derived cell lines, RT4,
RT112, and T24, with different degrees of invasiveness (Table 1), and compared their
median YM values.

From the force vs. distance curves, we reconstructed three-dimensional cell morpholo-
gies and the mechanical maps, as described in [55]. All FCs, and consequently all maps,
have been corrected for the contribution of the finite-thickness of the sample, as explained
in the Methods.

Mapping both topography and YM and comparing with the optical image (Figure 6)
allowed us to decouple the contributions of the nuclear regions and the other regions of
the cells in the same cluster. Examples of the distributions and median values of the YM
extracted from different parts of the cell body (e.g., nuclear vs. perinuclear and peripheral
regions, or lamellipodia) are shown in Figures 7 and 8.

Figure 6. Representative images for the combined topographical and mechanical analysis of cell
clusters. Optical image of a cell cluster from the RT112 cell line (A); topographic map (B), and Young’s
modulus map (C) in logarithmic scale, of the same cluster shown in (A).
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Figure 7. Histograms of the YM from the perinuclear and peripheral region of an RT112 cell (orange),
and from the nuclear region (red).

Figure 8. The Young’s modulus (whole cell) measured by AFM for bladder cancer cells RT4, RT112,
and T24, with increasing grades of invasiveness (left to right). * Means p < 0.05.

As shown in Figure 8, the higher degree of invasiveness of cells (from RT4 to T24)
correlates to a decrease in the YM (whole-cell value); this is consistent with previously
published data [78]. The reported differences in YM between cell lines RT4 and RT112 and
between RT4 and T24 were found to be significant, while this was not the case between
RT112 and T24.

We observed a wider distribution of the YM values in the perinuclear and peripheral
regions of the cells, compared to the nuclear region (Figure 7). In the perinuclear and
peripheral regions, both softer and stiffer areas coexist, as shown in Figure 6C; the higher
Young’s Modulus values are found at the cell-cell boundaries, where adherent junctions
are present. The nuclear region exhibits a narrower distribution of YM values (Figure 7)
and is stiffer than the perinuclear region, as reported previously [19,79].

It is well known that during embryonic and cancer development, cells exhibit a soft-
ening that can favor extravasating through the blood capillaries, allowing the attachment
to a secondary site, favoring the metastatic spread in cancer [80]. The softening of the
neoplastic cells has already been reported in breast and bladder cancer models [80–83]. It
was reported that RT112 cells possess both mesenchymal and epithelial phenotypes as they
are an intermediate cell line for those states [11,84]. In our case, this correlates with the
intermediate YM values observed for these cells compared to RT4 and T24.
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3.3. Down to the Nanoscale: Characterization of the Glycocalyx

As previously described, AFM is capable of sensing the mechanical resistance to
compression of tissue components such as cells and ECM; it is possible to go further down
along the size and force scales, characterizing even smaller and more delicate structures
such as the pericellular matrix, a sugar-rich coat, called glycocalyx.

Many models have been developed for the data analysis and the characterization of
the glycocalyx and similar brushes [27,85]. Here, we followed the protocol developed by
Sokolov et al. [21,27,31,66], which is based on decoupling the deformation of the ultrasoft
glycocalyx layer on top of the soft cell, within the acquired FCs. We applied this model to
the FCs collected for the nanomechanical measurement of bladder cancer cells, to prove the
feasibility of extracting more information from the same data set (see Section 2).

To better appreciate the subtle differences between the three cell lines RT4, RT112, and
T24, we considered the distribution of the glycocalyx thickness values extracted from the
single FCs in log scale (Figure 9). There are differences in the distributions of L values in
the three cases. Compared to the intermediate grade of invasiveness (RT112), the less and
most invasive cells (RT4 and T24, respectively) possess a broader distribution of brush
lengths, with tails extending towards longer and shorter lengths, respectively; the median
values of the glycocalyx thickness therefore tends to decrease going toward a higher degree
of invasiveness, from L = 730 nm (RT4 and RT112) to L = 652 nm (T24). Nevertheless, the
distribution seems to possess different modes (highlighted by the dotted vertical lines in
Figure 9), and one can see that the relative importance of higher-thickness modes increases
for more invasive cells, which are also characterized by the more asymmetric brush length
distribution, as it was observed for tumoral cells [25,30]. These data suggest that beside the
mere thickness/length of the brush, also the change of other glycocalyx physical properties
such as the stiffness, the effective graft density, and degree of crosslinking should be
quantitatively characterized since they are likely correlated to the transformation of a tissue
from a normal to neoplastic condition.

Figure 9. Distribution of the lengths of the glycocalyx brush (extracted according to Equation (9)
from single FCs) for the three cell lines RT4, RT112, and T24. Vertical dotted lines are a guide for the
eye in the tentative identification of the main modes of the distributions.
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4. Conclusions

In this paper, we discussed the capability of the AFM as a reliable force sensor for
the study of biological systems. The representative results presented here demonstrate
the possibility of using AFM nanomechanical measurements to characterize physical
modifications related to specific physio-pathological conditions of cells and tissues.

As demonstrated in this work, as well as in many others [36,86–89], AFM can be used
to test biological samples at several different scales, in terms of dimensions and forces,
from large, rough, and relatively stiff ECMs and tissues, passing through smaller and soft
cells, to extremely compliant pericellular brushes. Here, in particular, we reported on the
capabilities of the instrument to characterize the mechanical differences of urothelium
bladder cancer cells and the different organization of their glycocalyx brushes using the
same mechanical data sets. At a larger scale, the stiffening of human-derived ECM during
the progression of colorectal carcinoma could be detected.

The crosstalk between cells and their microenvironment is complex and challenging
to quantitatively assess; the reliability of AFM also stands in its flexibility of measurements,
which is demonstrated by the capability of AFM to both sense and apply forces in aqueous
physiological conditions with controlled temperature, as well as by the possibility of resolv-
ing the measurements not only spatially, but also in the time and frequency domains; this
makes the tracking by AFM of dynamic biological processes possible, including monitoring
cell mechanical changes through cytoskeleton rearrangement, for example, due to drug
actions or genetic modifications [77,90].

AFM and AFM-inspired instruments will likely play an increasingly important role in
establishing experimental approaches for the mechanical phenotyping of cells and tissues
in health and disease conditions, with the potential to develop effective early diagnostic
tools based on biomechanical measurements.
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