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SUMMARY

Somatic LINE-1 (L1) retrotransposition during neuro-
genesis is a potential source of genotypic variation
among neurons. As a neurogenic niche, the hippo-
campus supports pronounced L1 activity. However,
the basal parameters and biological impact of L1-
drivenmosaicismremainunclear.Here,weperformed
single-cell retrotransposon capture sequencing (RC-
seq) on individual human hippocampal neurons and
glia, aswell as cortical neurons. An estimated 13.7 so-
matic L1 insertions occurred per hippocampal neuron
and carried the sequence hallmarks of target-primed
reverse transcription. Notably, hippocampal neuron
L1 insertionswere specifically enriched in transcribed
neuronal stem cell enhancers and hippocampus
genes, increasing their probability of functional rele-
vance. In addition, bias against intronic L1 insertions
sense oriented relative to their host gene was
observed, perhaps indicating moderate selection
against this configuration in vivo. These experiments
demonstrate pervasive L1 mosaicism at genomic
loci expressed in hippocampal neurons.

INTRODUCTION

The extent to which the genome of one cell differs from that

of any other cell from the same body is unclear. DNA replication

errors, mitotic recombination, aneuploidy, and transposable

element activity can cause somatic mosaicism during ontogen-

esis and senescence. In humans, the consequences of somatic

mosaicism are most apparent in disease, including cancer and

developmental syndromes (Youssoufian and Pyeritz, 2002).

The impact of mosaicism among normal cells is relatively unde-

fined beyond the notable exception of V(D)J recombination

and somatic hypermutation intrinsic to lymphocyte antigen

recognition (Hozumi and Tonegawa, 1976). Reports of retro-

transposition (Baillie et al., 2011; Coufal et al., 2009; Evrony

et al., 2012; Li et al., 2013; Muotri et al., 2005; Perrat et al.,

2013) and other genomic abnormalities (Cai et al., 2014; Gole
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et al., 2013; McConnell et al., 2013) in animal neurons may there-

fore be important given that, as for immune cells, mosaicism is a

plausible route to neuron functional diversification.

Of approximately 500,000 LINE-1 (L1) copies present in the

human genome, only �100 members of the L1-Ta and pre-Ta

subfamilies remain transposition-competent (Beck et al., 2010;

Brouha et al., 2003). L1 mobilization primarily occurs via target

primed reverse transcription (TPRT), a process catalyzed in cis

by two proteins, ORF1p and ORF2p, translated from the bicis-

tronic 6 kb L1 mRNA. L1 ORF2p encodes endonuclease (EN)

and reverse transcriptase (RT) activities essential to L1 retro-

transposition and also responsible for trans mobilization of Alu

and SVA retrotransposons (Dewannieux et al., 2003; Hancks

et al., 2011; Raiz et al., 2012). A typical TPRT-mediated L1 inser-

tion involves a degenerate L1 EN recognition motif (50-TT/AAAA),
an L1 poly-A tail and, crucially, produces target site duplications

(TSDs) (Jurka, 1997; Luan et al., 1993). Various host defense

mechanisms suppress L1 activity (Beck et al., 2011), including

via methylation of the CpG-rich L1 promoter. Neural progenitors

and other multipotent cells can nonetheless permit L1 promoter

activation (Coufal et al., 2009; Garcia-Perez et al., 2007; Wissing

et al., 2012), a pattern accentuated in the hippocampus, likely

due to its incorporation of the neurogenic subgranular zone (Bail-

lie et al., 2011; Coufal et al., 2009). This coincidence of neurogen-

esis, L1 activity, and mosaicism has elicited speculation that L1

mobilization could impact cognitive function rooted in the hippo-

campus (Richardson et al., 2014).

Despite extensive evidence of somatic retrotransposition

in the brain, many fundamental aspects of the phenomenon

remain unclear. The rate of L1 mobilization in the neuronal line-

age is, for instance, a major unresolved issue. Estimates range

from <0.1 to 80 somatic L1 insertions per neuron (Coufal et al.,

2009; Evrony et al., 2012). Experiments using engineered L1 re-

porter systems have shown that L1 mobilization is likely to occur

via TPRT in neuronal precursor cells and may be altered by

neurological disease (Coufal et al., 2011; Coufal et al., 2009;

Muotri et al., 2005; Muotri et al., 2010). However, it is unknown

whether endogenous L1 retrotransposition in hippocampal neu-

rons adheres to these predictions. Most importantly, it is unclear

whether somatic L1 insertions influence neuronal phenotype or

endow carrier neuronal progenitor cells with a selective advan-

tage or disadvantage in vivo. To address these questions, we
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Figure 1. Single-Cell RC-Seq Workflow

(A) NeuN+ hippocampal nuclei were first purified by FACS (see also Figure S1).

(B) Nuclei were then picked using a self-contained microscope and micromanipulator.

(C) DNA was extracted from nuclei and subjected to linear WGA, followed by exponential PCR in two separate reactions for each nucleus, using different

enzymes.

(D) Exponential WGA products for each nucleus were combined, used to prepare Illumina libraries, and analyzed via WGS to assess genome coverage and

possible amplification biases.

(E) Libraries prepared in (D) were enriched via hybridization to L1-Ta LNA probes.

(F) Enriched libraries were sequenced with 2 3 150-mer Illumina reads and analyzed to identify novel L1 integration sites (see also Figure S2).
applied single-cell retrotransposon capture sequencing (RC-

seq) to hippocampal neurons and glia, as well as cortical neu-

rons, and found that L1 retrotransposition is amajor endogenous

driver of somatic mosaicism in the brain.

RESULTS

Pervasive L1 Mobilization in Hippocampal Neurons
Several biological and technical factors hinder accurate calcula-

tion of somatic L1 mobilization frequency using bulk DNA ex-

tracted from tissue, as well as subsequent PCR validation and

structural characterization of individual somatic L1 insertions

(Richardson et al., 2014). We therefore developed a single-cell

RC-seq protocol to detect somatic L1 insertions in individual

neurons. Briefly, NeuN+ hippocampal nuclei were purified by

fluorescence activated cell sorting (FACS) (Figures 1A and S1),

with single nuclei isolated using a self-contained microscope

and micromanipulator (Figure 1B). Whole-genome amplification

(WGA) was achieved through an extensively optimized version of

the quasi-linear Multiple Annealing and Looping Based Am-

plification Cycles (MALBAC) protocol (Zong et al., 2012) and

was followed by Illumina library preparation (Figures 1C and
1D). Libraries were then subjected to low-coverage (0.353)

whole-genome sequencing (WGS) as a quality control step to

assess amplification bias and, in parallel, hybridized and pro-

cessed by RC-seq (Figures 1E and 1F).

RC-seq utilizes sequence capture to enrich DNA for the junc-

tions between retrotransposon termini and adjacent genomic

regions, followed by paired-end sequencing, alignment, and

clustering, to reveal L1 insertions absent from the reference

genome. Here, we replaced previous RC-seq sequence capture

pools (Baillie et al., 2011; Shukla et al., 2013) with two locked nu-

cleic acid (LNA) probes respectively targeting the extreme 50 and
30 ends of L1-Ta. These probes capture typical L1 insertions at a

30 L1-genome junction, and full-length or heavily 50 truncated L1

insertions at a 50 L1-genome junction (Figure S2), and delivered a

15-fold improvement in L1 enrichment compared with previous

RC-seq applied to brain (Baillie et al., 2011). Assembly of each

overlapping read pair into a ‘‘contig’’ enabled computational

identification of molecular chimeras and removal of PCR dupli-

cates, and provided single-nucleotide resolution of L1 integra-

tion sites by fully spanning L1-genome junctions (Figure S2).

Prior to single-cell RC-seq, we performed deep coverage

(�803) RC-seq on bulk DNA extracted from the post-mortem
Cell 161, 228–239, April 9, 2015 ª2015 The Authors 229



Figure 2. Single-Cell WGS andRC-Seq Ana-

lyses of 92 Hippocampal Neurons

(A) Chromosome copy number in each amplified

genome, assessed by WGS. Box-and-whisker

plots indicate median chromosomal copy number

and quartiles across all neurons. Empty circles

represent chromosomes with copy number >1.5

IQR from the median. Sex chromosomes for

CTRL-36 (female, \) and CTRL-42, CTRL-45, and

CTRL-55 (male, _) are presented separately. Six

autosomes, marked in red, had copy number% 1.

Two sex chromosomes with log2 copy number <

�2 are colored purple.

(B) WGS indicated 16.2 Mb and 9.4 Mb regions of

localized AD (indicated by red bars) on chromo-

some 6 of neuron CTRL-45-HN-#2. Each blue

diamond corresponds to a 600 kb ‘‘bin’’. One bin

with log2 copy number < �5 is colored purple.

(C) Percentages of LD (dark gray) and AD (light

gray) bins in each neuron, assessed by WGS.

(D) Percentage of reference genome L1-Ta copies

detected by single-cell RC-seq in each neuron.

(E) Percentage of polymorphic L1-Ta insertions

found in the corresponding bulk RC-seq libraries

for each individual and also detected by single-cell

RC-seq.

(F) Somatic L1 insertion counts observed in each

neuron by single-cell RC-seq.

Note: in (C-F) yellow, brown, blue, and green

histogram columns correspond to individuals

CTRL-36, CTRL-42, CTRL-45, and CTRL-55,

respectively. See also Figures S3 and S4 and Ta-

bles S1 and S2.
hippocampus and matched liver samples of four individuals

(identifiers CTRL-36, CTRL-42, CTRL-45, and CTRL-55) without

evidence of neurological disease (Table S1). Bulk RC-seq on

average detected 97.5% of 960 annotated reference genome

L1-Ta copies (Evrony et al., 2012), indicating high assay sensi-

tivity. As expected, we detected �210 polymorphic L1-Ta inser-

tions absent from the reference genome, per individual (Tables

S1 and S2). This defined the polymorphic (germline) L1-Ta

insertion cohort for each individual and provided a positive con-

trol for subsequent single-cell RC-seq analyses.

Next, 92 individual neuronal nuclei were isolated from the

aforementioned hippocampi, subjected to WGA and analyzed

byWGS. Globally, WGS revealed that 4,226/4,232 (99.9%) chro-

mosomes amplified (Figure 2A) with recurring WGA bias largely
230 Cell 161, 228–239, April 9, 2015 ª2015 The Authors
limited to telomeres (Figures S3, S4A

and S4B). Higher-resolution copy-num-

ber variation (CNV) analysis based on

the division of the genome into adjust-

able-width ‘‘bins’’ with an average size

of �600 kb revealed five non-telomeric

deletions larger than �5 Mb. The largest

and third largest of these occurred on

chromosome 6 of CTRL-45 hippocampal

neuron 2 (CTRL-45-HN-#2) and were

16.2 Mb and 9.4 Mb in length (Figure 2B).

An alternative CNV analysis using�60 kb
bins indicated the presence of numerous subregions in the 16.2

Mb example where chromosomal copy number was R2 (Fig-

ure S4C), depicting a region of highly variable WGA performance

and, arguably, contraindicative of a genuine deletion in vivo.

Genome-wide, allelic dropout (AD) and locus dropout (LD)

respectively affected 8.0% and 0.7% of bins at 600 kb resolution

(Figure 2C, Table S1), indicating efficient amplification across

>90% of the genome. Importantly, we optimized WGA parame-

ters to not deplete L1-Ta copies from amplified DNA, with the

mean ratio of WGS reads aligned to reference L1-Ta 50 or 30

L1-genome junctions at 0.81 and 1.28 of expected values,

respectively (Figures S4D and S4E; Table S1). These results

show robust WGA for individual neurons, without significant

loss of reference genome L1-Ta copies.



Single-cell RC-seq applied to each of the 92 libraries analyzed

by WGS detected 61.3% of reference genome L1-Ta copies

(Figure 2D, Table S1) and 49.0%of polymorphic L1-Ta insertions

in each neuron (Figure 2E), as defined by the earlier bulk RC-seq

experiments. The latter figure provided a provisional estimate of

assay sensitivity for somatic L1 insertions. A total of 2,782 puta-

tive somatic L1-Ta and pre-Ta insertions (Figure 2F, Table S2)

were identified in at least one hippocampal neuron, were not

detected in any bulk liver RC-seq library or more than one hippo-

campus by single-cell or bulk RC-seq, and were absent from ex-

isting L1 polymorphism databases (Ewing and Kazazian, 2010,

2011; Iskow et al., 2010; Shukla et al., 2013; Wang et al.,

2006). Of these insertions, 1,024 (36.8%) and 34 (1.2%) were

found in introns and exons, respectively. Twelve (0.4%) somatic

L1 insertions were detected at both their 50 and 30 L1-genome

junctions, 760 (27.3%) at only a 50 junction, and 2,010 (72.3%)

at only a 30 junction. Notably, nine somatic L1 insertions detected

by single-cell RC-seq were also detected and annotated as so-

matic in the corresponding hippocampus bulk RC-seq library,

and 13 were detected by single-cell RC-seq in more than one

neuron from the same hippocampus. Of somatic L1 insertions,

98.2% belonged to the L1-Ta subfamily, and 1.8% were anno-

tated as pre-Ta. Although at 50 L1-genome junctions RC-seq

captures only full-length and very heavily truncated L1s (Fig-

ure S2), we found 123 full-length L1 insertions, representing

4.4%of all events and including two instances of 50 transduction.
Of those insertions detected at their 30 L1-genome junction,

151 (7.5%) carried a putative transduced 30 flanking sequence

(Moran et al., 1999). This L1 30 transduction rate was lower

than reported for germline L1 retrotransposition (Goodier et al.,

2000), likely due to assay design not encompassing 30 transduc-
tions longer than�100 bp, as reported elsewhere (Goodier et al.,

2000; Macfarlane et al., 2013).

PCR Validation and Structural Characterization of
Somatic L1 Insertions
To determine the true positive rate of single-cell RC-seq, we

randomly selected 20 somatic L1 insertions detected at only a

30 L1-genome junction and PCR amplified the opposing 50

L1-genome junction. This enabled detection of TPRT sequence

hallmarks that distinguish WGA artifacts from most genuine L1

integration sites; specifically a TSD, an L1 EN target motif and

an L1 poly-A tail (Jurka, 1997; Luan et al., 1993). Through PCR

and sequencing, 50 L1-genome junctions were identified for

nine insertions and, when combined with the corresponding 30

L1-genome junctions described by RC-seq, indicated TSDs

and polyA-tails in all cases, and plausible L1 EN motifs for 7/9

(77.8%) examples (Tables S2 and Data S1). PCR validated inser-

tions included full-length (Figure 3A) and variably 50 truncated
(Figures 3B–F) L1s. Intronic L1 insertions were found sense ori-

ented to two genes expressed in brain, ZFAND3 (Figure 3B)

and USP33 (Table S2). One L1 insertion incorporated a 30 trans-
duction and was detected by PCR in two neurons of CTRL-42

(Figure 3D). Further, PCR applied to the full panels of analyzed

neurons from each individual revealed that two other L1 inser-

tions were present in 10/21 and 2/21 neurons, respectively (Fig-

ures 3E and 3F). Three of the validated L1 insertions generated

TSDs >40 bp in length.
These experiments showed that nearly half of somatic L1 in-

sertions detected by single-cell RC-seq at a 30 L1-genome

junction could be confirmed as genuine TPRT-mediated re-

trotransposition events. By contrast, PCR validation for 10

randomly selected exonic L1 insertions detected at a 50 L1-
genome junction by single-cell RC-seq failed to find the

opposing 30 L1-genome junction in all cases (Table S2). This

was consistent with the L1 polyA-tail obstructing PCR amplifi-

cation of somatic L1 insertion 30 ends (Baillie et al., 2011) and

arguably did not resolve whether L1 insertions detected only

at a 50 L1-genome junction were false positives. Finally, we

selected 4 L1 insertions found at both their 50 and 30 L1-genome

junctions by single-cell RC-seq; all four were confirmed by PCR

and presented TPRT hallmarks, including one with a 92 bp TSD

(Table S2).

Nearly 75% of somatic L1 insertions found by single-cell RC-

seq were detected only at a 30 L1-genome junction (Figure S2).

Given this preponderance, we sought to ascertain why the

matching 50 L1-genome junction could not be identified by

PCR for 11/20 selected examples of this type. PCR amplification

failure was potentially due to RC-seq false positives, structurally

exotic L1 insertions (Gilbert et al., 2005) or, alternatively, WGA

inconsistently amplifying the 50 L1-genome junctions of inser-

tions detected at a 30 L1-genome junction by single-cell RC-

seq. To model the latter possibility, we randomly selected

12 polymorphic L1 insertions detected by bulk RC-seq and

confirmed as heterozygous by genotype PCR. We performed

PCR using bulk DNA to confirm each insertion was detectable

at its 50 L1-genome junction and then selected 100 random ex-

amples in individual neurons where these polymorphic L1s

were detected at only a 30 L1-genome junction by single-cell

RC-seq (Table S2). We attempted PCR amplification of the cor-

responding 50 L1-genome junction for each neuron, hence reca-

pitulating the validation process for somatic L1 insertions, and

confirmed 50/100 examples. This assay indicated the maximum

PCR validation rate (50.0%) for somatic L1 insertions detected at

only a 30 L1-genome junction by single-cell RC-seq and, given

the validation rate reported above (9/20, 45%), implied a true

positive rate potentially as high as 9/10 (90.0%).

L1 Mobilization Frequency in Diverse Neural Cell
Populations
Single-cell RC-seq identified mean somatic L1 insertion counts

of 48.4, 27.5, 30.5, and 14.8 per hippocampal neuron in CTRL-

36, CTRL-42, CTRL-45, and CTRL-55, respectively, yielding an

overall mean count of 30.4 (Figure 2F). To estimate the overall

true positive mean, we incorporated the PCR validation rate

(45.0%) calculated above, leading to a conservative rate calcu-

lation of 13.7 somatic L1 insertions per hippocampal neuron. If,

more conservatively, only L1 insertions detected at a 30 L1-

genome junction were considered, the true positive mean was

9.9. Conversely, if all L1 insertions were considered, we gener-

ously incorporated the maximum PCR validation rate calculated

above (90%) and we corrected for assay sensitivity in terms of

polymorphic L1 insertions detected (49.0%), the estimated true

positive mean was greatly increased to 55.8. Thus, given a true

positive mean of 13.7 somatic L1 insertions per neuron, and

the detection of at least one event in every neuron (Figure 2F),
Cell 161, 228–239, April 9, 2015 ª2015 The Authors 231



Figure 3. PCR Validation of Somatic L1 In-

sertions

(A–F) Validated examples from hippocampal

neuron single-cell RC-seq data included: (A) a full-

length L1 insertion in neuron CTRL-42-HN-#13; (B)

a truncated L1 insertion in neuron CTRL-42-HN-

#11; (C) a heavily truncated L1 insertion in neuron

CTRL-55-HN-#15; and (D) a very heavily truncated

L1 insertion yielding a 30 transduction in neuron

CTRL-42-HN-#4, also validated in neuron CTRL-

42-HN-#3, and traced to a donor L1-Ta on chro-

mosome 3; (E) a very heavily truncated L1 insertion

detected in CTRL-42-HN-#13 and validated in

10/21 CTRL-42 hippocampal neurons tested.

Asterisks denote neurons where validation suc-

ceeded; (F) a very heavily truncated L1 insertion

detected in CTRL-42-HN-#4 and also validated in

CTRL-42-HN-#22. Note: in (A–F) the 30 L1-genome

junction was detected by single-cell RC-seq, while

the 50 L1-genome junction was identified by

insertion-site PCR (using primers indicated by a

and b) and sequencing. Green triangles indicate

TSDs. Numbers below the 50 L1-genome junction

indicate the equivalent L1-Ta consensus position.

See also Table S2 and Data S1.
we concluded that L1 mosaicismwas ubiquitous among the hip-

pocampal neurons studied.

Prior in vitro experiments based on an engineered L1 reporter

indicated that glia may support far less L1 mobilization than neu-

rons (Coufal et al., 2009). To evaluate glial lineage endogenous

L1 retrotransposition in vivo, we performed single-cell RC-seq

upon 22 glial nuclei (NeuN�/Ki67�) isolated from CTRL-42,

CTRL-45, and CTRL-55 hippocampi, and detected 316 putative

somatic L1 insertions (Figures 4A and S5). This produced amean

true positive estimate of 6.5 insertions per glial cell, based on the

PCR validation rate determined for hippocampal neurons

(45.0%). This rate was 52.6% lower than the estimated 13.7 in-

sertions for hippocampal neurons, a significant difference (p <

0.005, two-tailed t test, df = 112). Interestingly, four insertions

were found in both glial and neuronal cells by single-cell RC-
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seq, with one of these instances detected

at both its 50 and 30 L1-genome junctions,

revealing a 12 bp TSD (Table S2). We

concluded that L1 insertions can arise in

proliferating neural stem cells prior to glial

or neuronal commitment, while glia other-

wise support less L1 mobilization than

neurons.

A recent single-cell genomic analysis of

300 cortex and caudate nucleus pyrami-

dal neurons elucidated <0.1 somatic L1

insertions per cell, and concluded that

L1 was not a major driver of neuronal di-

versity (Evrony et al., 2012). However,

the biological or technical reasons for

such disparate results compared with

prior data from the hippocampus were

unclear. We therefore performed single-
cell RC-seq upon 35 NeuN+ nuclei isolated from CTRL-42,

CTRL-45 and CTRL-55 cortex tissue, including seven pyramidal

neurons, and identified 1,262 putative somatic L1 insertions (Fig-

ures 4B and S5). This provided a true positive mean estimate of

16.3 insertions per cortical neuron, a figure higher than hippo-

campal neurons, but not significantly different. An estimated

10.7 insertions occurred per cortex pyramidal neuron, a rate

substantially lower than the remaining cortical neurons but a dif-

ference that fell short of statistical significance (p < 0.16, two-

tailed t test, df = 33). These data elucidate L1 mosaicism in

cortical neurons and exclude a biological explanation for incon-

sistency with the previous study.

PCR validation including TSD discovery underpins accurate

calculation of L1 mobilization frequency and reflects experi-

mental veracity independent of methodology (Richardson et al.,



Figure 4. L1 Mobilization in Diverse Neural Cell Types

(A) Somatic L1 insertion counts observed by single-cell RC-seq applied to hippocampal glia.

(B) As for (A) except for cortical neurons. Seven pyramidal neurons are indicated by an asterisk.

(C) As for (A) except for AGS-1 hippocampal neurons.

(D) L1 qPCR indicated lower L1 copy number in AGS-1 hippocampus versus controls (p < 0.002, two-tailed t test, df = 23). Data represent the mean of 5 technical

replicates ± SD.

(E) Mean somatic L1 insertion counts detected by single-cell RC-seq in each hippocampus strongly correlated (R2 = 0.93) with L1 copy number quantified by

qPCR (D).

See also Figure S5 and Table S2.
2014). It is therefore notable that, at this stringency, Evrony et al.

reported a PCR validation rate of 1/96 and a consequential

paucity of L1 activity. Two key technical considerations may

explain our discrepant findings. First, RC-seq reads fully span

L1-genome junctions (Figure S2), enabling bioinformatic identifi-

cation of molecular chimeras before PCR validation. The earlier

work by contrast followed a design (Ewing and Kazazian, 2010)

that typically did not resolve L1-genome junctions, prohibiting

computational removal of chimeric reads. Instead, the authors

maintained that artifacts, including those generated by WGA

and Illumina library preparation, should present lower read depth

than genuine L1 insertions, and essentially adhered to the same

principle in a very recent study applyingWGS toa smaller number

of neurons (Evrony et al., 2015). This assumption is crucial as, at

least in single-cell RC-seq libraries, putative chimeras are dispro-

portionately likely to amplify efficiently and accrue high read

depth (Figures 5A and 5B). Second, Evrony et al. selected candi-

dates for PCR validation effectively as a function of high read

count and not at random (Figure 5C). This approach would

strongly enrich for artifacts if applied to single-cell RC-seq data

(Figure 5B). It follows that, without the capacity to filter artifacts

a priori, the previous study resolved numerous molecular

chimeras after PCR and capillary sequencing of putative L1
insertions, substantially reducing the reported validation rate.

By contrast, we selected PCR validation candidates at random

(Figure 5D). These factors plausibly explain why our validation

rate of 9/20 (45.0%) was significantly higher than the rate of

1/96 (1.0%) reported by the earlier work (p < 1 3 10�10, chi-

square test, df = 1), as well as the disparate estimates of somatic

L1 retrotransposition made by each study.

Recent qPCR based estimates of L1 CNV in human tissue, as

well as in vitro L1 reporter assays, indicate L1 mobilization may

be pronounced in a range of neurodevelopmental and psychiat-

ric diseases (Richardson et al., 2014) including Aicardi-Goutières

syndrome (AGS). AGS is a rare, severe neurodevelopmental

condition, characterized by mutations in several genes thought

to inhibit reverse transcription, including SAMHD1 (Zhao et al.,

2013). To address whether SAMHD1 deficiency in AGS patients

increases neuronal L1 mobilization, we first applied bulk RC-seq

to the post-mortem hippocampus and fibroblasts of an AGS pa-

tient (identifier AGS-1) carrying two loss-of-function SAMHD1

mutations. We then performed single-cell RC-seq upon 21

neuronal nuclei from AGS-1 hippocampus and identified 373 pu-

tative somatic L1 insertions (Figures 4C and S5), leading to a true

positive mean estimate of 8.0 insertions per AGS-1 neuron. This

figure was significantly (p < 0.03, two-tailed t test, df = 112) lower
Cell 161, 228–239, April 9, 2015 ª2015 The Authors 233



Figure 5. Single-Cell RC-Seq Efficiently Excludes Molecular

Artifacts

(A) Distribution of read ‘‘peaks’’ indicating possible somatic L1 insertions de-

tected by single-neuron L1 insertion profiling (L1-IP) (Evrony et al., 2012).

(B) As for (A), except for all single-cell RC-seq data presented here. Peaks were

annotated as chimeric or as likely genuine L1 insertions by sequence analysis

of RC-seq reads.

(C) Distribution of read peak height for L1 insertions selected for validation by

Evrony et al. The L1 insertion successfully validated by TSD discovery is

colored black. The remaining insertions not validated to this standard are

colored red.

(D) As for (C), except for L1 insertions detected by single-cell RC-seq and

selected at random for validation.

Figure 6. Hallmarks of TPRT Revealed by Bulk RC-Seq

(A) A 6 kb L1-Ta element incorporates 50 and 30 UTRs and two ORFs. ORF2p

presents EN and RT domains. Methylation of a CpG island present in the 50

UTR regulates L1 promoter activity. The locations of two capture probes used

by RC-seq are indicated below the L1. Note: TSDs and probes are not drawn

to scale. See also Figure S2.

(B) TPRT hallmark features, including TSDs and an L1 EN recognition motif,

can be identified by RC-seq, including for insertions detected at only a 50 or 30

L1-genome junction.

(C) Consensus L1 EN motifs for polymorphic and somatic L1 insertions de-

tected at their 50 and 30 L1-genome junctions, and somatic L1 insertions found

at only a 30 L1-genome junction.

(D) Observed TSD size distributions for polymorphic and somatic L1 insertions,

normalized to random expectation. See also Figure S6.
than the 13.7 somatic L1 insertions found for control hippocam-

pal neurons. A more significant difference was observed when

AGS-1 neurons were compared only with the age (18 years)

and gender (female) matched hippocampal neurons of CTRL-

36 (p < 0.0001, two-tailed t test, df = 44). As corollary, L1

qPCR also indicated significantly lower (p < 0.002, two-tailed t

test, df = 23) L1 copy number in AGS-1 hippocampus versus

controls (Figure 4D). Finally, the results of the L1 CNV assay

were strongly correlated (R2 = 0.93) with the mean somatic L1

insertion frequencies estimated by single-cell RC-seq (Fig-

ure 4E). We therefore concluded that L1 mobilization was un-

likely to be elevated in AGS-1 hippocampus.
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Somatic L1 Retrotransposition Occurs via TPRT
As the 13 total somatic L1 insertions detected by single-cell RC-

seq and validated by PCR generally followed the TPRT model,

we next assessed whether somatic L1 insertions detected by

bulk RC-seq also carried TPRT signatures. RC-seq separately

applied to DNA extracted from the four control hippocampus

samples elucidated 318,866 putative somatic L1 insertions

(Table S1). Again exploiting L1-genome junction resolution by

RC-seq reads (Figures 6A and 6B and S2), we found a strong

enrichment for the L1 EN motif (Figure 6C), a typical TSD size

range of 5–35 nt (Figures 6D and S6) and a median L1 poly-A

tail length of 33 nt for somatic L1 integration sites identified by

bulk RC-seq. We also identified a substantial group of insertions



with TSDs > 40 bp in length (Figure S6). Thus, single-cell RC-seq

and RC-seq applied to bulk DNA both elucidated the hallmark

sequence features of TPRT-mediated retrotransposition.

Somatic L1 Insertions Are Enriched in Neurobiology
Genes
Substrate DNA chromatinization modulates L1 EN target site

nicking in vitro (Cost et al., 2001). As such, dynamic changes

to chromatin state during neurogenesis may impact the associ-

ated genome-wide pattern of L1 mobilization. An intersection

of somatic L1 insertion sites detected by hippocampus bulk

RC-seq with RefSeq gene coordinates revealed significant (p <

1.0 3 10�150, Fisher’s exact test, Bonferroni correction) deple-

tion for insertions in exons and promoters versus random sam-

pling and significant (p < 3.8 3 10�10) enrichment for introns

versus polymorphic insertions (Table S3). Exons and introns car-

rying gene ontology (GO) terms relevant to neurobiology were

however enriched for somatic L1 insertions (Tables S4 and S5)

compared with random sampling performed by gene identifier

or by genomic coordinate (p < 4.5 3 10�5 and p < 0.03, respec-

tively, Fisher’s exact test, Benjamini-Hochberg correction). The

latter result indicated enrichment for L1 insertions in genes ex-

pressed in the brain, despite taking into account that their length

is on average >50% greater than that of other genes. By consid-

erable margin, the most enriched GO term found (Table S5) was

‘‘regulation of synapse maturation’’ (p < 1.7 3 10�60, Fisher’s

exact test, Benjamini-Hochberg correction). Genome-wide pat-

terns for somatic L1 insertions detected in glia and neurons by

single-cell RC-seq typically corroborated those found by bulk

RC-seq, including enrichment in introns and depletion from pro-

moters and exons (Table S3) and even stronger enrichment in

neurobiology genes annotated by GO term (Tables S4 and S5).

Intriguingly, in AGS-1 hippocampal neurons we did not observe

enrichment for L1 insertions in neurobiology genes (Table S4),

whereas enrichment was observed for control hippocampal neu-

rons, even if each individual was analyzed separately. As a con-

trol experiment, from the liver bulk RC-seq data we identified a

set of 175 potential liver-specific L1 insertions (see Extended

Experimental Procedures) that collectively presented a clear L1

EN consensus motif (Figure S6D) and, owing to the sensitivity

of bulk RC-seq, were unlikely to represent incorrectly annotated

polymorphic L1 insertions (Table S1). Notably, these liver-spe-

cific L1 insertions exhibited no enrichment for neurobiology

genes (Table S4). We concluded that somatic L1 retrotransposi-

tion in neural cells preferentially occurs into the euchromatic re-

gions of the genome contributing to neurobiology.

Hippocampal L1 Insertions Prefer Genomic Loci
Transcribed in the Hippocampus
Open chromatin is a typical prerequisite for efficient transcription

(Neph et al., 2012). With this in mind, we used single-molecule

cap analysis of gene expression (CAGE) transcriptome profiling

data from the FANTOM5 consortium (Forrest et al., 2014) to

test whether genes strongly transcribed in the hippocampus

were specifically enriched for somatic L1 insertions in hippocam-

pal neurons.We first identified genes differentially upregulated in

hippocampus, cortex, caudate nucleus, liver, or heart tissue sur-

veyed by CAGE and then intersected these gene lists with the
cohort of intragenic somatic L1 insertions detected by single-

cell RC-seq applied to hippocampal neurons. Only those genes

upregulated in hippocampus versus heart, and hippocampus

versus liver, were significantly enriched (p < 0.05, Fisher’s exact

test, Benjamini-Hochberg correction) for insertions (Figure 7A,

Table S6). Somatic L1 insertions in hippocampal glia were

also most enriched in genes upregulated in the hippocampus

(p < 0.07). No enrichment was observed for cortical neurons

while, intriguingly, the liver-specific L1 insertion cohort exhibited

enrichment (p < 0.11) in genes upregulated in liver versus hippo-

campus (Figure 7A). Finally, we calculated the significance of

enrichment for hippocampal neuron L1 insertions in genes

upregulated in hippocampus while incrementally introducing pu-

tative artifacts described in Figure 5B. We found that statistical

significance was no longer achieved once the dataset contained

15% or more artifacts (Figure 7B), hence demonstrating how

experimental noise reduced in single-cell RC-seq analyses

would otherwise obscure genome-wide enrichment. These ex-

periments altogether reveal context-dependent, preferential L1

mobilization into strongly transcribed loci.

Noting that euchromatin is also a signature of active

enhancer elements, we intersected our list of somatic L1 inser-

tions detected by hippocampus bulk RC-seq with an extensive

FANTOM5 catalog of transcribed constitutive and cell-type spe-

cific enhancers defined by histone modifications and CAGE-

delineated transcriptional activity (Andersson et al., 2014).

Globally, no substantial difference was observed in the rate of

L1 insertions in all enhancers versus random expectation. How-

ever, of 47 cell-type specific enhancer sets, only neuronal stem

cell enhancers were significantly enriched for somatic L1 inser-

tions, compared with random expectation (p < 0.01, Fisher’s

exact test, Bonferroni correction) and compared with the union

of the remaining 46 cell-type specific enhancer sets (Figure 7C;

p < 1.03 10�4, Fisher’s exact test). This enrichment was highest

for L1 insertions within 100 nt of an enhancer, and was observed

up to 500 nt from defined enhancer boundaries (Figure 7D).

No enrichment was observed for astrocytes or for other cells

not of the neuronal lineage, such as hepatocytes (Figure 7D).

The smaller cohorts of somatic L1 insertions detected by sin-

gle-cell RC-seq and liver bulk RC-seq were insufficient to

perform meaningful statistical analyses of L1 insertional prefer-

ence with regards to enhancers. Nonetheless, hippocampus

bulk RC-seq indicated that neuronal stem cell-specific en-

hancers were the most highly enriched genome functional

element in absolute terms (1.8-fold) for somatic L1 insertions.

This reinforced the view that L1mobilization during neurogenesis

impacts regulatory and protein-coding loci specifically active in

the hippocampus.

A Potential Signature of Neurogenic L1 Selection
De novo germline L1 insertions can be highly deleterious to gene

function, and commonly undergo purifying selection (Boissinot

et al., 2001; Han et al., 2004). The L1ORF2 segment of sense ori-

ented intronic L1 insertions particularly hinders RNA polymerase

processivity (Han et al., 2004; Lee et al., 2012). Hence, while

sense and antisense intronic L1 insertions are assumed to occur

with equal frequency in the germline, sense insertions are

selected against more strongly and tend to be eliminated from
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Figure 7. Genome-Wide Somatic L1 Insertion Patterns

(A) Somatic L1 insertions detected by single-cell RC-seq in hippocampal neurons and glia were enriched in genes differentially upregulated in hippocampus.

Liver-specific L1 insertions detected by bulk RC-seq were moderately enriched in genes upregulated in liver. No enrichment was observed for cortical neurons.

Color intensity is based on the absolute log2 transformed p value determined by Fisher’s exact test (Benjamini-Hochberg correction) with blue and orange colors

representing depletion and enrichment, respectively. Note: in each matrix pairwise comparison, the more highly expressed tissue is on the y axis.

(B) Hippocampal somatic L1 insertions were statistically enriched in genes upregulated in hippocampus versus liver (black) or hippocampus versus heart (gray),

as shown in (A). However, as previously filtered molecular chimeras (see Figure 5B) were re-introduced into this dataset, enrichment rapidly became no longer

significant.

(C) Of the transcribed cell-type specific enhancers defined by FANTOM5, only those of neuronal stem cells were enriched (observed/expected) for somatic L1

insertions detected by bulk hippocampus RC-seq, compared with other enhancers (p < 1.0 3 10�4, Fisher’s exact test, Bonferroni correction).

(D) Somatic L1 insertion enrichment in neuronal stem cell enhancers (black) extended 500 bp from enhancer boundaries. No enrichment was observed for

astrocyte (gray) or hepatocyte (red) enhancers.

See also Tables S2, S3, S4, S5, and S6.
the population. It follows that an estimated 43.3% of recent in-

tronic L1-Ta insertions are sense oriented, versus only 34.1%

of fixed L1-Ta insertions and 39.7% of all polymorphic L1-Ta in-

sertions (Ewing and Kazazian, 2010). By contrast, sense oriented

intronic L1 insertions are not depleted in tumors (Lee et al., 2012).

Among the control individuals examined here, we found that, as

expected, 42/101 (41.6%) of intronic, polymorphic germline L1

insertions were sense oriented to their host gene. Surprisingly,

406/1,024 (39.6%) of intronic somatic L1 insertions detected in

hippocampal neurons by single-cell RC-seq were also sense ori-

ented, significantly less than the expected 50% (p < 0.0001,

exact binomial test). This proportion was 47/136 (34.6%) and
236 Cell 161, 228–239, April 9, 2015 ª2015 The Authors
166/503 (33.0%) for glia and cortical neurons, respectively.

Adhering to the prevailing germline model of L1 evolutionary se-

lection, we concluded that some somatic L1 insertions may arise

sufficiently early in neurogenesis to impact neural progenitor cell

fitness, as indicated by a depletion of sense oriented events in

mature neurons and glia.

DISCUSSION

Our experiments firmly establish that L1-driven mosaicism per-

vades the hippocampus and is mediated by TPRT. That we

found 13.7 somatic L1 insertions per hippocampal neuron was



unexpected given a prior estimate of <0.1 insertions per cortical

neuron (Evrony et al., 2012). By discovering here a myriad of L1

insertions in cortical neurons, we exclude a biological explana-

tion for this discrepancy and instead propose that the process

by which the earlier work selected insertions for validation led

to a significant underestimate of L1 retrotransposition frequency.

Indeed, the mobilization rate reported here much more closely

resembles an earlier estimate of 80 somatic L1 insertions per

brain cell, calculated via L1 qPCR (Coufal et al., 2009).

Beyond this, our data demonstrate that L1 insertions in hippo-

campal neurons and glia are preferentially found in protein-cod-

ing genes highly transcribed in the hippocampus. Transcribed

enhancers active in neuronal stem cells are also enriched for so-

matic L1 insertions, indicating likely L1 perturbation of regulatory

elements. L1 insertions in cortical neurons were however not

significantly enriched in genes highly transcribed in the cortex.

We speculate that this could be due to cortical neurogenesis pri-

marily occurring during fetal development (Spalding et al., 2005),

which presents a genome-wide transcriptional profile different to

that of the adult cortex. Although L1 mobilization was not

increased in AGS-1 hippocampal neurons, the pattern of L1 in-

sertions was prospectively different to that of controls, the rea-

sons for which are presently unclear. The most obvious caveat

of this analysis is that, due to the extreme rarity of the disease,

only one AGS patient hippocampus was studied. Nonetheless,

this experiment serves as a proof-of-principle demonstration

that single-cell RC-seq could be used in the future to assess

abnormal L1 mobilization in neurological disease. Finally, we

noted that somatic L1 insertions in neurons bore substantially

longer TSDs on average than polymorphic L1 insertions, corrob-

orated by structural characterization of L1 integration sites found

by single-cell RC-seq. Unusually long TSDs have previously

been identified using an engineered L1 reporter system in

HeLa cells (Gilbert et al., 2005). As also hypothesized in that

context, pervasive euchromatinization in neural progenitor cells

may promote the formation of long TSDs.

The predominant developmental timing of endogenous L1

mobilization in the brain remains unclear. Although the vast ma-

jority of somatic L1 insertions detected by single-cell RC-seq

were found in one cell each, a small proportion of L1s were de-

tected in multiple cells, including examples found in both glia

and neurons, indicating L1mobilization in a commonmultipotent

progenitor cell. Three somatic L1 insertions were validated by

PCR in multiple neurons, including one example found in nearly

50% of the neurons assayed. Thus, although most L1 insertions

may occur in one or a handful of neurons, a substantial number

appear to arise during early neurogenesis. Indeed, the signature

of potential selection against somatic L1 insertions sense ori-

ented to host gene introns suggests that many retrotransposition

events precede terminal neural cell maturation. We speculate

that depletion of these events could be explained by preferential

L1 integration into neurogenesis genes, thereby impacting the

survival or differentiation potential of neural progenitor cells. It

also cannot be excluded that somatic L1 integration primarily oc-

curs antisense to host gene introns, though we currently lack a

mechanistic explanation for this preference.

Neuronal genomemosaicismmay not be restricted to somatic

L1 insertions. Alu and SVA retrotransposons trans mobilized by
L1 may also contribute mosaic insertions. Other than transpos-

able element activity, recent studies have reported localized

and chromosome-wide CNV in normal neurons (Cai et al.,

2014; Gole et al., 2013; McConnell et al., 2013). We find no defin-

itive evidence of these events in our data, though it must be

noted that our CNV analyses were expressly geared to discern

genomic deletions caused by WGA failure or variability. How-

ever, it must be noted that we found consistent WGA inefficiency

at telomeres, while others have reported that most apparent

small genomic deletions occur close to telomeres (McConnell

et al., 2013).

L1 mosaicism may also occur outside of the brain, for

instance during early embryogenesis (Garcia-Perez et al.,

2007; Kano et al., 2009) or, as we previously reported for a single

L1 insertion, in the liver (Shukla et al., 2013). However, some cell

types present practical and technical challenges not posed

by neural cells. For example, hepatocytes are frequently multi-

nucleated and sustain aneuploidy and polyploidy, greatly

complicating single-cell genomic analysis. Thus, although the

liver-specific L1 insertions detected here by bulk RC-seq

consistently bore L1 EN motifs and were enriched in genes

differentially upregulated in liver, we were unable to corroborate

these findings with single-cell RC-seq or downstream PCR vali-

dation. Future methodological advances will therefore likely be

required to elucidate L1 mosaicism in the liver, and elsewhere

in the body.

The capacity to locate somatic L1 insertions in individual

neural cell genomes is a major step toward determining whether

mosaicism impacts neurobiological function. Limitations in as-

saying the transcriptome and genome of the same cell however

currently prohibit functional assays of individual somatic L1 in-

sertions. Nonetheless, given the frequency of these events, their

mutagenic potential for protein-coding and regulatory regions

and an apparent preference for euchromatic DNA linked to

neurobiological function, it is not unreasonable to predict that

L1-driven somatic mosaicismmay alter the functional properties

of the brain.

EXPERIMENTAL PROCEDURES

Full protocols can be found in the Extended Experimental Procedures.

Samples

Control tissues were provided by the Edinburgh Sudden Death Brain and

Tissue Bank. Tissues were obtained post-mortem from AGS-1 with ethical

approval to be used as described. AGS-1 carried SAMHD1 mutations c.646-

647 delAT (p.Met216fs) and c.1223G>C (p.Arg408Pro). Patient age and

gender information is provided in Table S1.

Single-Cell RC-Seq

NeuN+ (neuronal) and NeuN–/Ki67– (glial) nuclei were isolated via FACS

from brain tissue, individually picked under microscope and subjected to

linear WGA. Products were split into three exponential PCR reactions

utilizing two different kits, and then combined for library preparation and

downstream PCR validation. Multiplexed Illumina libraries were pooled and

sequenced (2 3 150-mer reads) to assess allelic dropout and L1-genome

junction depletion, then hybridized separately to two LNA probes respectively

matching the 5ʹ and 3ʹ ends of L1-Ta. Post-enrichment, RC-seq libraries were

sequenced (2 3 150-mer reads), computationally processed, filtered to

exclude artifacts, and finally used to call polymorphic and somatic L1

insertions.
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50 L1-Genome Junction Validation and Characterization

Twenty somatic L1 insertions detected by single-cell RC-seq at a 30 L1-

genome junction were selected at random for structural characterization by

PCR amplification and sequencing of the corresponding 50 L1-genome junc-

tion. For each example, initial PCR template DNA consisted of WGA material

from the relevant neuron. As the extent of L1 50 truncation was unknown,

primers oriented antisense to L1 were designed approximately every 500 bp

through the L1-Ta consensus and combined with an insertion site primer

unique to each locus. 50 L1-genome junctions were identified by PCR and

sequencing and then separately PCR amplified again using WGA material

from the selected neuron, WGA material from other single neurons from the

same individual, as well as matched bulk DNA. Amplified material was stored

and handled separately to bulk DNA.
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