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a b s t r a c t

This paper develops a new method for interactive multi-criteria group decision-making (MCGDM)
with probabilistic linguistic information and applies to the emergency assistance area selection of
COVID-19 for Wuhan. First, a new possibility degree for PLTSs is defined and a new possibility
degree algorithm is devised to rank a series of probabilistic linguistic term sets (PLTSs). Second, some
new operational laws of PLTSs based on the Archimedean copulas and co-copulas are defined. A
generalized probabilistic linguistic Choquet (GPLC) operator and a generalized probabilistic linguistic
hybrid Choquet (GPLHC) operator are developed and their desirable properties are discussed in
details. Third, a tri-objective nonlinear programming model is constructed to determine the weights
of DMs. This model is transformed into a linear programming model to solve. The fuzzy measures
of criterion subsets are derived objectively by establishing a goal programming model. Fourth, using
the probabilistic linguistic Gumbel weighted average (PLGWA) operator, the collective normalized
decision matrix is obtained by aggregating all individual normalized decision matrices. The overall
evaluation values of alternatives are derived by the probabilistic linguistic Gumbel hybrid Choquet
(PLGHC) operator. The ranking order of alternatives is generated. Finally, an emergency assistance
example is illustrated to validate the proposed method of this paper.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In 2020, a new coronavirus COVID-19 broke out all over the world. Wuhan in China was also suffering COVID-19. As an important
ransportation hub with large population flow, Wuhan has great difficulty to prevent and control the epidemic. To win the battle of
he epidemic earlier and better, a lot of national medical support teams provide emergency assistance to the hospitals of Wuhan.
ow to select an appropriate area to assist is an urgent issue. Recently, lots of emergency events become more serious and urgent.
ome methods [1–3] have been proposed to solve emergency decision-making, which can be ascribed as a type of the multi-criteria
roup decision-making (MCGDM) problems. Since the emergency assistance area selection of COVID-19 can be evaluated from different
spects, the emergency event of assistance area selection can also be regarded as a MCGDM problem.
MCGDM is an important component of decision science. Because of the uncertainty and ambiguity of human thinking, it is difficult

or decision makers (DMs) to deliver accurate information for complex decision-making problems. Zadeh [4] introduced fuzzy sets
FSs) to express the uncertain information. FSs have been extensively applied to MCGDM. However, it is hard for DMs to quantify
he information characters of MCGDM problems directly in some specified situations. DMs tended to express their preferences in
ague qualitative linguistic terms such as ‘‘excellent’’, ‘‘good’’, ‘‘bad’’ rather than precise quantitative numerical values. Currently, some
xtension models of linguistic terms have been proposed, such as 2-tuple fuzzy linguistic representation model [5], uncertain linguistic
odel [6], intuitionistic fuzzy linguistic model [7] and hesitant fuzzy linguistic model [8]. Xu [9] proposed a subscript-symmetric
dditive linguistic term set (LTS). However, due to the discreteness of information features, it is not convenient to calculate and analyze
any information features. Then, Xu [10] further extended the discrete LTS to a continuous LTS. Rodriguez et al. [11] proposed a
onception of hesitant fuzzy linguistic term set (HFLTS). Different with traditional LTS, HFLTS uses several linguistic terms provided
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y DMs to describe the evaluation information taking the hesitant degree of DMs into account. For a HFLTS, the weights of linguistic
erms provided by DMs are equal. However, it is impractical to require DMs to provide linguistic terms with equal weight. HFLTSs may
ot be suitable to express linguistic terms with different weights. Consequently, Pang et al. [12] proposed the concept of probabilistic
inguistic term set (PLTS) in 2016. PLTS can not only contain more than one possible linguistic term, but also reflect the corresponding
robability information, which can avoid the information loss. To reflect the DM’s cognitive certainty and uncertainty in the group
ecision making (GDM) process, the probabilistic linguistic preference relations [13,14] have received great attention.
Up to now, the investigations of PLTSs have made fruitful achievements. The existing progresses on the PLTSs mainly contain the

ollowing four aspects:
(1) Ranking of PLTSs. Pang et al. [12] compared the PLTSs by the score function and deviation degree of PLTSs. However, the ranking

rder of two PLTSs obtained by Pang et al. [12] may turn to be the opposite when giving a small perturbation of the probability
nformation. In order to gain robustness, Bai et al. [15] ranked the PLTSs by using lower and upper bounds of the linguistic terms
nd corresponding probability information. Wu & Liao [16] ranked the PLTSs by gained and lost dominance score functions, which
onsidered the individual regret values and the group utility values of alternatives. Feng et al. [17] ranked PLTSs by using the new
robability formula obtained from the main structure of QUALIFLEX (Qualitative flexible) multiple-criteria method. Zhang et al. [18]
uilt a probabilistic linguistic-based deviation model to identify the decision results in multi-expert multi-criteria decision making
MEMCDM).

(2) Information measures for PLTSs. Lin et al. [19] proposed the distance measure of PLTSs and used the probability degree to rank the
lternatives for MCGDM. To enrich the calculation of PLTSs, Lin et al. [20] developed a novel distance measure for PLTSs and proposed
n entropy measure to measure the uncertainty degree of PLTSs. Wu et al. [21] advanced three kinds of probabilistic linguistic distance
easures reflecting on the difference of linguistic terms and probabilities, which do not need to add linguistic terms to the smaller
ne with the improved Borda rule. To improve the accuracy and visualization of comparison, Xian et al. [22] compared multiple PLTSs
y calculating the novel similarity measure based on the RRD (relative repetition degree) and DD (diversity degree). Tang et al. [23]
roposed inclusion measure for PLTSs and presented the relationships among the distance, similarity, entropy and inclusion measures.
(3) Operational laws and aggregation operators for PLTSs. Mao et al. [24] defined some new operational laws for PLTSs by using

rchimedean triangular norm (t-norm) and triangular conorm (t-conorm or s-norm) and then defined a generalized probabilistic
inguistic Hamacher ordered weighted averaging (GPLHOWA) operator. Liu & Teng [25] combined Muirhead mean aggregation operators
ith PLTSs based on the Archimedean t-conorm and t-norm and linguistic scale functions. Liu & Li [26] proposed a probabilistic

inguistic-dependent weighted average (PLDWA) operator based on the prospect theory. Liu & Li [27] extended the generalized
aclaurin symmetric mean (GMSM) operator into probabilistic linguistic information and proposed four new GMSM operators for
LTSs for multi-criteria decision making (MCDM).
(4) Methods for probabilistic linguistic decision-making method. Pang et al. [12] extended TOPSIS method to the probabilistic

inguistic group decision environment. Liu & Teng [28] extended PL-TODIM method to evaluate alternative products through consumer
pinions regarding product performance. Ahmad et al. [29] proposed a MCGDM method based on VIKOR. Liao et al. [30] introduced
he distillation process and Borda rule into the algorithm of the probabilistic linguistic ELECTRE III (PL-ELECTRE III) method. Wu &
iao [31] extended the quality function deployment (QFD) into the probabilistic linguistic context to get the fuzzy weights of design
equirements. Furthermore, Wu & Liao [31] developed a probabilistic linguistic ORESTE (organísation, rangement et Synthèse de données
elarionnelles, in French) method to obtain the preference, indifference and incomparability relations between the alternatives.

Although the above methods are valid for solving MCGDM with PLTSs, none of them considered the interactions among criteria.
owever, there are many interactions among criteria in some real decision situations. Consider the emergency assistance area selection
ased on supply medical support capacity, medical supply delivery speed and other criteria. A stronger supply medical support capacity
ften needs faster medical supply delivery speed. It is easily seen that supply medical support capacity and medical supply delivery
peed are complementary interaction. Additionally, the supply medical support capacity is a qualitative criterion. The evaluation of the
upply medical support capacity can be represented by a PLTS {s2(0.2), s3(0.3), s4(0.2)}, which means that the possible linguistic term of
he evaluation of supply medical support capacity may be s2 or s3 or s4. Meanwhile, 0.2, 0.3 and 0.2 are the corresponding probabilities of
the linguistic terms s2, s3 and s4. Therefore, the emergency assistance area selection may be ascribed to a kind of the interactive MCGDM
with PLTSs. The Choquet integral is suitable to describe the interactions among criteria. It is necessary to develop some Choquet integral
operators of PLTSs and investigate some new methods for solving such problems. To achieve this goal, this paper first proposes a new
possibility degree algorithm for ranking a series of PLTSs. Then, some new operational laws of PLTSs based on the Archimedean copulas
and co-copulas are defined. Considering the interactions among criteria, we develop a probabilistic linguistic Gumbel weighted average
(PLGWA) operator, a generalized probabilistic linguistic Choquet (GPLC) operator and a probabilistic linguistic Gumbel hybrid Choquet
(PLGHC) operator. Finally, a new method for the interactive MCGDM with PLTSs is put forward and applied to the emergency assistance
area selection of COVID-19 for Wuhan. The main contributions of this paper are clarified as follows:

(1) A new possibility degree of PLTSs is defined and then a new possibility degree algorithm is proposed to rank a series of PLTSs.
A new similarity degree of PLTSs is defined considering the linguistic scale function of linguistic terms.

(2) Some new operational laws of PLTSs based on the Archimedean copulas and co-copulas are defined. Considering the interactions
among criteria, the generalized probabilistic linguistic Choquet (GPLC) operator and generalized probabilistic linguistic hybrid Choquet
(GPLHC) operator are developed. Some desirable properties for these operators are discussed in details.

(3) Motivated by TOPSIS, a tri-objective nonlinear programming model is constructed to determine the weights of DMs. This model
is transformed into a linear programming model to solve. To derive the fuzzy measures of criteria subsets, an optimization model is
built and transformed into a goal programming model for resolution.

(4) Using the PLGWA operator, the collective normalized decision matrix is obtained by aggregating all individual normalized
decision matrices. The overall evaluation values of alternatives are derived by the PLGHC operator. The ranking order of alternatives is
then generated by the proposed possibility degree algorithm of PLTSs. Thereby, a new method for the interactive MCGDM with PLTSs
is put forward.

Section 2 briefly reviews some concepts of PLTSs. Section 3 presents a new possibility degree algorithm to rank PLTSs and defines
a new similarity degree of PLTSs. Section 4 defines some new operational laws of PLTSs based on the Archimedean copulas. Section 5
develops some generalized Choquet integral operators of PLTSs. Section 6 proposes a new method for interactive MCGDM with
probabilistic linguistic information. Section 7 provides an emergency assistance area selection of COVID-19 to illustrate the validity
of the method proposed in this paper. Section 8 draws some conclusions and ends this paper.
2
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. Preliminaries

In this section, some preliminaries about LTS, PLTS, Archimedean copulas and co-copulas are briefly reviewed to facilitate the
iscussions.

.1. Linguistic term set

efinition 1 ([9]). Let S = {sα|α = 0, 1, . . . , 2τ } be a finite and totally ordered discrete LTS, where sα represents a possible value for a
inguistic term, and τ is a positive integer. Especially, s0 and s2τ denote the lower and the upper limits of linguistic terms, respectively.
urthermore, any two linguistic terms sα, sβ ∈ S satisfy that sα > sβ if and only if α > β .

To preserve all given linguistic information, Xu [10] extended the discrete LTS S to a continuous LTS S̄ = {sα|α ∈ [0, 2q]}, where
(q > τ ) is a sufficiently large positive integer. If sα ∈ S, then sα is called an original linguistic term. If sα ∈ S̄, then sα is called a virtual
inguistic term.

.2. Probabilistic linguistic term set

efinition 2 ([12]). Let S = {sα|α = 0, 1, . . . , 2τ } be a LTS, a PLTS is defined as:

L(p) = {L(k)(p(k))|L(k) ∈ S, p(k) ≥ 0, k = 1, 2, . . . ,#L(p),
#L(p)∑
k=1

p(k) ≤ 1} (1)

where L(k)(p(k)) represents the linguistic term L(k) associated with the probability p(k), and #L(p) is the number of all different linguistic
terms in L(p).

Definition 3 ([12]). Given a PLTS L(p) with
∑#L(p)

k=1 p(k) < 1, the normalized PLTS L̇(p) is defined as:

L̇(p) = {L̇(k)(ṗ(k))|k = 1, 2, . . . ,#L̇(p)} (2)

where ṗ(k) = p(k)/
∑#L(p)

k=1 p(k) for all k = 1, 2, . . . ,#L(p).

Definition 4 ([12]). Let L1(p) = {L(k1)1 (p(k1)1 )|k1 = 1, 2, . . . ,#L1(p)} and L2(p) = {L(k2)2 (p(k2)2 )|k2 = 1, 2, . . . ,#L2(p)} be two PLTSs, where
#L1(p) and #L2(p) are the numbers of linguistic terms in L1(p) and L2(p) respectively. If #L1(p) > #L2(p), then add #L1(p) − #L2(p)
inguistic terms to L2(p). Moreover, the added linguistic terms are the smallest linguistic term in L2(p) and the probabilities of added
inguistic terms are zero.

efinition 5 ([32]). Given a PLTS L(p) = {L(k)(p(k))|L(k) ∈ S, p(k) ≥ 0, k = 1, 2, . . . ,#L(p),
∑#L(p)

k=1 p(k) ≤ 1}, where r (k) is the subscript of
(k). An ascending ordered normalized PLTS can be obtained in the following:
(1) If all elements in a PLTS L(p) are with different values of r (k)p(k)(k = 1, 2, . . . ,#L(p)), then all the elements are arranged according

to the values of r (k)p(k) in ascending order.
(2) If there are two or more elements with equal value of r (k)p(k), then
(i) When the subscripts r (k)(k = 1, 2, . . . ,#L(p)) are unequal, such the elements are arranged according to the values of r (k)(k =

1, 2, . . . ,#L(p)) in ascending order;
(ii) When the subscripts r (k)(k = 1, 2, . . . ,#L(p)) are equal, such the elements are arranged according to the values of p(k)(k =

1, 2, . . . ,#L(p)) in ascending order.
According to above, after all elements of L(p) is ordered by Definition 5, a PLTS L(p) = {L(k)(p(k))|k = 1, 2, . . . ,#L(p)} is transformed

into an ascending ordered normalized PLTS L̃(p) = {L̃(k)(p̃(k))|k = 1, 2, . . . ,#L̃(p)}.

Definition 6 ([33]). Let S = {sα|α = 0, 1, . . . , 2τ } be a LTS, if υi ∈ (0, 1) is a numeric value, then the linguistic scale function g is
mapped from si to υi(i = 0, 1, . . . , 2τ ), which is represented as follows:

g : si → υi (3)

where υi reflects the preference of the DMs and 0 < υ0 < υ1 < υ2 < · · · < υ2τ < 1.

Wang et al. [33] presented three different forms of linguistic scale functions.
(Form 1) The evaluation scale of the linguistic information is divided on average:

g(si) = υi =
i
2τ

(4)

(Form 2) The absolute deviation between adjacent linguistic subscripts increases from the middle of the linguistic term set to both
nds (The value of a can be determined using a subjective method):

g(si) = υi =

{
aτ−aτ−i

2aτ−2 (i = 0, 1, 2, . . . , τ )
aτ+ai−τ−2

2aτ−2 (i = τ + 1, τ + 2, . . . , 2τ )
(5)

The linguistic scale varies with the value of a. The value of a can be obtained experimentally or subjectively [34]. On the one hand,
hrough large number of experimental research data [35], it can be concluded that a is most likely to be obtained within the interval
1.36,1.4]. On the other hand, a can also be determined by using a subjective method. Assuming that indicator A is far more important
3
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han indicator B, the importance ratio is m, then ak = m (k represents the scale level) and a =
k
√
m. At present, vast majority of

esearchers believe that m = 9 is the upper limit of the importance ratio [35]. In general, if the scale level is 7, then a =
7√9 ≈ 1.37 [34].

(Form 3) The absolute deviation between adjacent linguistic subscripts decreases from the middle of the linguistic term set to both
nds:

g(si) = υi =

{
τα−(τ−i)α

2τα (i = 0, 1, 2, . . . , τ )
τβ+(i−τ )β

2τβ (i = τ + 1, τ + 2, . . . , 2τ )
(6)

here α, β ∈ (0, 1]. If α = β = 1, then Form 3 is reduced to Form 1.
Let L̇1(p) = {L̇(k)1 (ṗ(k)1 )|k1 = 1, 2, . . . ,#L̇1(p)} and L̇2(p) = {L̇(k)2 (ṗ(k)2 )|k2 = 1, 2, . . . ,#L̇2(p)} be two normalized PLTSs. By using

Definitions 4 and 5, we can turn L̇1(p) and L̇2(p) into two ascending ordered normalized PLTSs L̃1(P) and L̃2(P) with equal number
f linguistic terms. For simplicity, we still denote the two ascending ordered normalized PLTSs by L̃1(p) and L̃2(p).

efinition 7 ([32]). The distance between two ascending ordered normalized PLTSs L̃1(p) and L̃2(p) is defined as

d(L̃1(p), L̃2(p)) =

#L̃1(p)∑
k=1

p(r̃ (k)1 , r̃
(k)
2 )d(r̃ (k)1 , r̃

(k)
2 ) (7)

here #L̃1(p) = #L̃2(p), d(r̃
(k)
1 , r̃

(k)
2 ) = (r̃ (k)1 − r̃ (k)2 )/T and p(r̃ (k)1 , r̃

(k)
2 ) = p(r̃ (k)1 )p(r̃ (k)2 ) = p̃(k)1 p̃(k)2 , T is the number of linguistic terms in the

TS S.

Based on Definition 7, we define Minkowski distance between L̃1(p) and L̃2(p) as follows:

d(L̃1(p), L̃2(p)) =

⎡⎣#L̃1(p)∑
k=1

p̃(k)1 p̃(k)2 (|(g(r̃ (k)1 ) − g(r̃ (k)2 ))/T |)ρ

⎤⎦1/ρ

(8)

here ρ > 0 is a parameter. If ρ = 1, Eq. (8) is reduced to Hamming distance; if ρ = 2, Eq. (8) is reduced to Euclidean distance; if
→ ∞, Eq. (8) is reduced to Chebyshev distance.

.3. Archimedean copulas and co-copulas

efinition 8 ([36]). A copula Cp is named as an Archimedean copula, which is denoted by Cp(x1, x2) = ψ[Ge(x1),Ge(x2)], ∀(x1, x2) ∈

0, 1]2, if the generated functions Ge and ψ satisfy the following conditions:
(1) The generated function Ge is strictly decreasing and continuous function from [0, 1] to [0,+∞] with Ge(1) = 0;
(2) The function ψ from [0,+∞] to [0, 1] is defined as follows:

ψ(s) =

{
Ge−1(x), x ∈ [0,Ge(0)]

0 , x ∈ [Ge(0),+∞]
(9)

Considering the special situation where Cp is a strictly increasing function on [0, 1]2, Ge(0) = +∞ and ψ = Ge−1 on [0,+∞],
enest & Mackay [37] proposed a special Archimedean copula as follows:

Cp(x1, x2) = Ge−1
[Ge(x1) + Ge(x2)] (10)

efinition 9 ([38]). Let Cp be a copula. The co-copula is defined as:

Cp∗(x1, x2) = 1 − Cp(1 − x1, 1 − x2) (11)

. Possibility degree and similarity degree of PLTSs

This section develops a new possibility degree algorithm to rank PLTSs and defines a new similarity degree of PLTSs.

.1. Existing ranking methods of PLTSs

efinition 10 ([24]). Let L̇1(p) = {L̇(k1)1 (ṗ(k1)1 )|k1 = 1, 2, . . . ,#L̇1(p)} and L̇2(p) = {L̇(k2)2 (ṗ(k2)2 )|k2 = 1, 2, . . . ,#L̇2(p)} be two normalized
LTSs. A binary relation B(L̇(k1)1 , L̇(k2)2 ) between L̇(k1)1 and L̇(k2)2 is defined as follows:

B(L̇(k1)1 , L̇(k2)2 ) =

⎧⎪⎨⎪⎩
ṗ(k1)1 ṗ(k2)2 , if L̇(k1)1 > L̇(k2)2
1
2 ṗ

(k1)
1 ṗ(k2)2 , if L̇(k1)1 = L̇(k2)2

0, if L̇(k1)1 < L̇(k2)2

(12)

The possibility degree P(L̇1(p) ≥ L̇2(p)) is defined as follows [24]:

P(L̇1(p) ≥ L̇2(p)) =

#L̇1(p)∑
k1=1

#L̇2(p)∑
k2=1

B(L̇(k1)1 , L̇(k2)2 ) (13)
4
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Let r (k) be the subscript of L̇(k) in a normalized PLTS L̇(p) = {L̇(k)(ṗ(k))|k = 1, 2, . . . ,#L̇(p)}, r−
= mink{r (k)} and r+

= maxk{r (k)} are
the lower and upper bounds of the subscripts of L̇(k)(k = 1, 2, . . . ,#L̇(p)), ṗ− and ṗ+ are the corresponding probabilities, respectively.
The range value R(L̇(p)) is defined as [24]:

R(L̇(p)) = r+ṗ+
− r−ṗ− (14)

Using Eqs. (12) and (13), a preorder of normalized PLTSs L̇1(p) and L̇2(p) is presented as follows [24]:
(i) If P(L̇1(p) ≥ L̇2(p)) > 0.5, then L̇1(p) is bigger than L̇2(p), denoted by L̇1(p) > L̇2(p);
(ii) If P(L̇1(p) ≥ L̇2(p)) = 0.5, then
(a) if R(L̇1(p)) < R(L̇2(p)), then L̇1(p) > L̇2(p);
(b) if R(L̇1(p)) = R(L̇2(p)), then L̇1(p) is indifferent to L̇2(p), denoted by L̇1(p) ∼ L̇2(p).

Example 1. Let S = {sα|α = 0, 1, . . . , 6} be a LTS, L̇1(p) = {s1(0.5), s2(0.5)}, L̇2(p) = {s0(0.6), s1(0.4)}, L̇′

1(p) = {s1(1)}, L̇′

2(p) =

s0(0.8), s1(0.2)} be four normalized PLTSs.

By Eq. (13), the probability degrees of L̇1(p) ≥ L̇2(p) and L̇′

1(p) ≥ L̇′

2(p) are calculated as:

P(L̇1(p) ≥ L̇2(p)) = 0.9, P(L̇′

1(p) ≥ L̇′

2(p)) = 0.9.

It is easy to see that the probability degree of Eq. (13) cannot distinguish the difference between L̇1(p) ≥ L̇2(p) and L̇′

1(p) ≥ L̇′

2(p).

.2. A new possibility degree algorithm for ranking PLTSs

As in Example 1, there are still some different PLTSs that cannot be distinguished. Similar to Eq. (12), a new binary relation
′(L̇(k1)1 , L̇(k2)2 ) between L̇(k1)1 and L̇(k2)2 is defined as follows:

B′(L̇(k1)1 , L̇(k2)2 ) =

⎧⎪⎪⎨⎪⎪⎩
ṗ(k1)1 ṗ(k2)2 , if L̇(k1)1 > L̇(k2)2

1
2 ×

ṗ
(k1)
1

ṗ
(k1)
1 +ṗ

(k2)
2

ṗ(k1)1 ṗ(k2)2 , if L̇(k1)1 = L̇(k2)2

0, if L̇(k1)1 < L̇(k2)2

(15)

To get the precise ranking result, a new possibility degree algorithm is designed in the following.

Definition 11. Let L̇1(p) = {L̇(k1)1 (ṗ(k1)1 )|k1 = 1, 2, . . . ,#L̇1(p)} and L̇2(p) = {L̇(k2)2 (ṗ(k2)2 )|k2 = 1, 2, . . . ,#L̇2(p)} be two normalized PLTSs. A
new possibility degree P ′(L̇1(p) ≥ L̇2(p)) (L̇1(p) is not inferior to L̇2(p)) is defined as follows:

P ′(L̇1(p) ≥ L̇2(p)) =

∑#L̇1(p)
k1=1

∑#L̇2(p)
k2=1 B′(L̇(k1)1 , L̇(k2)2 )∑#L̇1(p)

k1=1
∑#L̇2(p)

k2=1 B′(L̇(k1)1 , L̇(k2)2 )+
∑#L̇1(p)

k1=1
∑#L̇2(p)

k2=1 B′(L̇(k2)2 , L̇(k1)1 )
(16)

roperty 1. Let L̇1(p) = {L̇(k1)1 (ṗ(k1)1 )|k1 = 1, 2, . . . ,#L̇1(p)} and L̇2(p) = {L̇(k2)2 (ṗ(k2)2 )|k2 = 1, 2, . . . ,#L̇2(p)} be two normalized PLTSs, where
L̇1(P) = #L̇2(P). The desirable properties of the new possibility degree in Definition 11 are presented as follows:
(i) (Normalization) 0 ≤ P ′(L̇1(p) ≥ L̇2(p)) ≤ 1.
(ii) (Visualization) If L̇(k1)−1 > L̇(k2)+2 , then P ′(L̇1(p) ≥ L̇2(p)) = 1; if L̇(k1)+1 < L̇(k2)−2 , then P ′(L̇1(p) ≥ L̇2(p)) = 0 (L̇(ki)−i and L̇(ki)+i are the

ower and upper bounds of the linguistic terms L̇(ki)i (ki = 1, 2, . . . ,#L̇i(p)).
(iii) (Complementarity) P ′(L̇1(p) ≥ L̇2(p)) + P ′(L̇2(p) ≥ L̇1(p)) = 1.
(iv) (Transitivity) If P ′(L̇1(p) ≥ L̇2(p)) ≤ 0.5 and P ′(L̇2(p) ≥ L̇3(p)) ≤ 0.5, then P ′(L̇1(p) ≥ L̇3(p)) ≤ 0.5.

It is easy to prove the properties (i), (iii), and (iv) in Property 1 by Eq. (15) and (16). For the property (ii) of visualization,
onsider two PLTSs L̇1(p) = {L̇(1)1 (ṗ(1)1 ), L̇(2)1 (ṗ(2)1 ), . . . , L̇(#L̇1(p))1 (ṗ(#L̇1(p))1 )} and L̇2(p) = {L̇(1)2 (ṗ(1)2 ), L̇(2)2 (ṗ(2)2 ), . . . , L̇(#L̇2(p))2 (ṗ(#L̇2(p))2 )}. Similar to
he comparison between interval numbers, if L̇(k1)+1 = L̇(#L̇1(p))1 < L̇(k2)−2 = L̇(1)2 , then L̇1(p) ≤ L̇2(p), namely P ′(L̇1(p) ≥ L̇2(p)) = 0; if
˙(k1)−
1 = L̇(1)1 > L̇(k2)+2 = L̇(#L̇2(p))2 , then L̇1(p) ≥ L̇2(p), namely P ′(L̇1(p) ≥ L̇2(p)) = 1.
If P ′(L̇1(p) ≥ L̇2(p)) = 0.5, it is hard to distinguish L̇1(p) and L̇2(p). According to the statistical method, when the mean values of two

ets of numbers are equal, the variance values can be used to further compare two sets of numbers. Then, a new range value of PLTSs
s defined in the sequel.

efinition 12. For a normalized PLTS L̇(p) = {L̇(k)(ṗ(k))|k = 1, 2, . . . ,#L̇(p)}, the new range value R′(L̇(p)) is defined as:

R′(L̇(p)) = g+(L̇(k))ṗ+(k)
− g−(L̇(k))ṗ−(k) (17)

here g(L̇(k)) is the linguistic scale function value of linguistic term L̇(k). Let g−(L̇(k)) = mink{g(L̇(k))} and g+(L̇(k)) = maxk{g(L̇(k))} be the
ower and upper bounds of g(L̇(k)), where ṗ+(k) and ṗ−(k) are the corresponding probabilities, respectively.

efinition 13. A preorder of two normalized PLTSs L̇1(p) and L̇2(p) is defined as follows:
(i) If P ′(L̇1(p) ≥ L̇2(p)) > 0.5, then L̇1(p) is bigger than L̇2(p), namely L̇1(p) > L̇2(p);
(ii) If P ′(L̇1(p) ≥ L̇2(p)) = 0.5, then
(a) If R′(L̇1(p)) < R′(L̇2(p)), then L̇1(p) is bigger than L̇2(p), namely L̇1(p) > L̇2(p);
(b) If R′(L̇1(p)) = R′(L̇2(p)), then L̇1(p) is indifferent to L̇1(p), namely L̇1(p) ∼ L̇2(p).
The possibility degree algorithm for ranking a series of PLTSs L̇ (p)(i = 1, 2, . . . , n) is designed as:
i

5



S.-P. Wan, W.-B. Huang Cheng and J.-Y. Dong Applied Soft Computing 107 (2021) 107383

r

t

E
L

L

i
i

u

E
i

a
b
p

E

4

E
L

T
p
s
o

l

Step 1. Calculate the possibility degree P ′
ij = P ′(L̇i(p) ≥ L̇j(p))(i, j = 1, 2, . . . , n) by Eq. (16) and the range value R′(L̇i(p)) by Eq. (17)

espectively.
Step 2. Aggregate P ′

ij into the ranking value P ′
i as follows:

P ′
i =

n∑
j=1

P ′
ij(i, j = 1, 2, . . . , n) (18)

Step 3. Rank PLTSs by the ranking values P ′
i(i = 1, 2, . . . , n) in descending order. If the ranking of some PLTSs is equal, reorder

hese PLTSs by the range value R′(L̇i(p)) in ascending order.

xample 2. Continue to consider the four normalized PLTSs in Example 1, namely, L̇1(p) = {s1(0.5), s2(0.5)}, L̇2(p) = {s0(0.6), s1(0.4)},
˙′

1(p) = {s1(1)}, L̇′

2(p) = {s0(0.8), s1(0.2)}.
By Eq. (13), the possibility degree in Definition 10 is

P(L̇′

1(p) ≥ L̇′

2(p)) = P(L̇1(p) ≥ L̇2(p)) = 0.9.

By Eq. (16), the new probability degrees are calculated as follows:

P ′(L̇1(p) ≥ L̇2(p)) = 0.9506, P ′(L̇′

1(p) ≥ L̇′

2(p)) = 0.9815.

It has P ′(L̇1(p) ≥ L̇2(p)) < P ′(L̇′

1(p) ≥ L̇′

2(p)) by the new probability degrees, which shows that L̇1(p) ≥ L̇2(p) is different from
˙′

1(p) ≥ L̇′

2(p).
Hence, Eq. (16) can identify the difference between L̇1(p) ≥ L̇2(p) and L̇′

1(p) ≥ L̇′

2(p) rationally and validly. Additionally, the
ntensiveness of L̇′

1(p) ≥ L̇′

2(p) is superior to L̇1(p) ≥ L̇2(p). Hence, the distinguishing power of the new possibility degree in Definition 11
s stronger than that of the possibility degree in Definition 10.

To compare with the Mao et al.’s possibility degree method in [24], the new possibility degree method proposed in this paper is
sed to solve Examples 3–5 in [24].

xample 3. Consider three PLTSs L1(p) = {s1(0.4), s2(0.6)}, L2(p) = {s0(0.2), s2(0.8)} and L3(p) = {s1(0.3999), s2(0.6001)} of Example 3
n [24].

By Eq. (16), one has P ′(L2(p) ≥ L1(p)) = 0.60150 and P ′(L2(p) ≥ L3(p)) = 0.60145, thus L2(p) ≥ L1(p) and L2(p) ≥ L3(p), which
re the same as the ranking results of Example 3 in [24]. Thus, the possibility degree defined in this paper still ensures that the order
etween L1(p) and L2(p) remains unchanged with respect to small disturbances of L1(p), which verifies the robustness of the proposed
ossibility degree of this paper.

xample 4. Consider two PLTSs L1(p) = {s0(0.4), s1(0.4), s3(0.2)} and L2(p) = {s0(0.3), s1(0.7)} of Example 4 in [24].

By Eq. (16), it yields that P ′(L1(p) ≥ L2(p)) = 0.5065. Thus, the ranking order is L1(p) ≥ L2(p), which is same as the result of Example
in [24].

xample 5. Consider four PLTSs L1(p) = {s−3(0.1), s−2(0.4), s1(0.3), s2(0.2)}, L2(p) = {s−1(0.5), s0(0.5)}, L3(p) = {s3(0.2), s4(0.8)} and
4(p) = {s3(0.4), s4(0.6)} based on S = {sα|α = −4, . . .− 1, 0, 1 · · · , 4} of Example 5 in [24].

Step 1. Calculate the possibility degree P ′
ij = P ′(L̇i(p) ≥ L̇j(p))(i, j = 1, 2, . . . , n) by Eq. (16) as follows:

P ′
11 = 0.50, P ′

12 = 0.50, P ′
13 = 0, P ′

14 = 0, P ′
21 = 0.50, P ′

22 = 0.50, P ′
23 = 0, P ′

24 = 0,
P ′

31 = 1, P ′
32 = 1, P ′

33 = 0.50, P ′
34 = 0.6534, P ′

41 = 1, P ′
42 = 1, P ′

43 = 0.3466, P ′
44 = 0.50.

Calculate the range value R′(L̇i(p)) by Eq. (17) based on Form 1 (i.e., Eq. (4)) as:

R′(L̇1(p)) = 0.1375, R′(L̇2(p)) = 0.0625, R′(L̇3(p)) = 0.6250, R′(L̇4(p)) = −0.8000

Calculate the range value R′(L̇i(p)) by Eq. (17) based on Form 2 (i.e., Eq. (5)) (Let a =
8√9 ≈ 1.3160) as:

R′(L̇1(p)) = 0.2186, R′(L̇2(p)) = 0.0395, R′(L̇3(p)) = 0.9361, R′(L̇4(p)) = 0.3721

Calculate the range value R′(L̇i(p)) by Eq. (17) based on Form 3 (i.e., Eq. (6)) (Let α = β = 0.8)as:

R′(L̇1(p)) = 1.3523, R′(L̇2(p)) = 0.7579, R′(L̇3(p)) = 5.7027, R′(L̇4(p)) = 2.2158

Step 2. Aggregate P ′
ij into the ranking value P

′

i as follows:

P ′
1 = 1, P ′

2 = 1, P ′
3 = 3.15, P ′

4 = 2.85

Step 3. Rank PLTSs by P
′

i (i = 1, 2, . . . , n) in descending order.
The ranking order based on Form 1 (i.e., Eq. (4)) is generated as L3(p) ≻ L4(p) ≻ L2(p) ≻ L1(p).
The ranking order based on Form 2 (i.e., Eq. (5)) is generated as L3(p) ≻ L4(p) ≻ L2(p) ≻ L1(p).
The ranking order based on Form 3 (i.e., Eq. (6)) is generated as L3(p) ≻ L4(p) ≻ L2(p) ≻ L1(p).
By Eqs. (13) and (14), one has P1 = 1, P2 = 1, P3 = 3.1, P4 = 2.9, R(L̇1(p)) = 0.7, R(L̇2(p)) = 0.5, R(L̇3(p)) = 2.6 and R(L̇4(p)) = 1.2.

he ranking order obtained by method [24] is L3(p) ≻ L4(p) ≻ L2(p) ≻ L1(p), which is the same as that obtained by the proposed new
ossibility degree algorithm of this paper. Although the ranking result between L1(p) and L2(p) obtained by this proposed method is
ame as that obtained by method [24], the range values R′(L̇1(p)) and R′(L̇2(p)) are different from R(L̇1(p)) = 0.7 and R(L̇2(p)) = 0.5
btained by [24].
From the above examples, it is easily seen that the proposed possibility degree algorithm can take DM’s different preferences of

inguistic scale functions into account, which is more robust and more in accordance with real situations.
6
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.3. Similarity degree of PLTSs

Xian et al. [22] defined the RRD (relative repetition degree) of linguistic terms between PLTSs L1(p) and L2(p) as

RRD(L1(p), L2(p)) = (2τ + 1)
αT
1α2

max{#L1(p),#L2(p)}
,

here α = (a1, a2, . . . , a2τ+1)T is the linguistic term vector, satisfying ai =

{
1, i − (τ + 1) ∈ r (k)

0, i − (τ + 1) /∈ r (k) .

The DD (diversity degree) of probability between PLTSs L1(p) and L2(p) is defined as [22]:

DD(L1(p), L2(p)) =
1
2

∥β1 − β2∥ =
1
2

√
(β1 − β2)T (β1 − β2),

here β = (b1, b2, . . . , b2τ+1)T is the linguistic term vector, satisfying bj =

{
p(k), j − (τ + 1) ∈ r (k)

0, j − (τ + 1) /∈ r (k) .

The similarity degree between PLTSs L1(p) and L2(p) is defined as [22]:

SI(L1(p), L2(p)) =

{
1 −

DD(L1(p),L2(p))
RRD(L1(p),L2(p))

, αT
1α2 ̸= 0

0, αT
1α2 = 0

(19)

Example 6. Consider three PLTSs L1(p) = {s1(0.5), s2(0.5)}, L2(p) = {s1(0.5), s3(0.5)} and L3(p) = {s0(0.4), s4(0.6)} based on LTS
= {sα|α = −4, . . . ,−1, 0, 1, . . . , 4}. By Eq. (19), the similarity degree SI(L1(p), L3(p)) = SI(L2(p), L3(p)) = 0. However, the similarity
egree between L1(p) and L3(p) is remarkably different from that between L2(p) and L3(p) intuitively. Thus, the similarity degree
I(L1(p), L3(p)) = SI(L2(p), L3(p)) = 0 may be a little unreasonable. To overcome this drawback, a new similarity degree is given below.

efinition 14. Let S = {sα|α = 0, 1, . . . , 2τ } be a LTS, L1(p) = {L(k1)1 (p(k1)1 )|k1 = 1, 2, . . . ,#L1(p)} and L2(p) = {L(k2)2 (p(k2)2 )|k2 =

, 2, . . . ,#L2(p)} be two PLTSs, where #L1(P) = #L2(P) and g(L(ki)i ) be the linguistic scale function value of linguistic term L(ki)i . A
imilarity degree between L1(p) and L2(p) is defined as follows:

S(L1(p), L2(p)) =

∑#L1(p)
k1=1 (p(k1)1 g(L(k1)1 )) · (p(k2)2 g(L(k2)2 ))√∑#L1(p)

k1=1 (p(k1)1 g(L(k1)1 ))2
√∑#L2(p)

k2=1 (p(k2)2 g(L(k2)2 ))2
(20)

Property 2. The similarity degree between L1(p) and L2(p) satisfies:
(i) 0 ≤ S(L1(p), L2(p)) ≤ 1; (ii) S(L1(p), L2(p)) = S(L2(p), L1(p));
(iii) If L1(p) = L2(p), then S(L1(p), L2(p)) = 1.

Proof. L1(p) and L2(p) can be regarded as two vectors ς = (g(L(1)1 )(p(1)1 ), g(L(2)1 )(p(2)1 ), . . . , g(L(#L1(p))1 )(p(#L1(p))1 )) and ξ = (g(L(1)2 )(p(1)2 ),
g(L(2)2 )(p(2)2 ), . . . , g(L(#L2(p))2 )(p(#L2(p))2 )), respectively. For property (i) in Property 2, the similarity degree between L1(p) and L1(p) is
equivalent to the cosine between ς and ξ , namely S(L1(p), L2(p)) = cos(α, β). Properties (i) and (ii) denote the boundedness and
symmetric respectively. For property (iii), if L1(p) = L2(p), then ς = ξ , namely the angle between ς and ξ is 0. Therefore,
S(L1(p), L2(p)) = cos 0 = 1, which completes the proof of property (iii).

Example 7. Consider three PLTSs L1(p) = {s1(0.5), s2(0.5)}, L2(p) = {s1(0.5), s3(0.5)} and L3(p) = {s0(0.4), s4(0.6)} in Example 6. By
q. (20), the similarity degrees are obtained as S(L1(p), L3(p)) = 0.89 and S(L2(p), L3(p)) = 0.95, which are significantly different from
hat obtained by Eq. (19). Thus, Eq. (20) can overcome this deficiency of Eq. (19) and get a reasonable result.

. New operational laws of PLTSs based on the Archimedean copulas and co-copulas

This section defines some new operational laws of PLTSs based on the Archimedean copulas and co-copulas. Some desirable
roperties of the new operational laws are discussed. Then, some specific cases are presented with respect to four different generated
unctions.

.1. New operational laws of PLTSs based on the Archimedean copulas and co-copulas

This subsection defines some new operational laws of PLTSs based on the Archimedean copulas and co-copulas. Some desirable
roperties of the new operational laws are discussed.

efinition 15. Let S = {sα|α = 0, 1, . . . , 2τ } be a LTS, L(p) = {L(k)(p(k))|k = 1, 2, . . . ,#L(p)}, L1(p) = {L(k1)1 (p(k1)1 )|k1 = 1, 2, . . . ,#L1(p)}
nd L2(p) = {L(k2)2 (p(k2)2 )|k2 = 1, 2, . . . ,#L2(p)} be three PLTSs. The inverse function of Ge is denoted by Ge−1. λ ∈ [0,+∞]. The new
perational laws of PLTSs based on Archimedean copulas and co-copulas are defined as follows:
(1) Additive operation:

L1(p) ⊕Cp L2(p) =

⋃
k1=1,2,...,#L1(p)

{
g−1(Cp∗(g(L(k1)1 ), g(L(k2)2 )))((p(k1)1 + p(k2)2 − p(k1)1 p(k2)2 )/L)

}

k2=1,2,...,#L2(p)

7
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Table 1
Four different types of common Archimedean copulas.
Types Function Copulas Parameter

Gumbel Ge(x) = (− ln x)ε Cp(x1, x2) = exp{−[(− ln x1)ε] + [(− ln x2)ε]1/ε} ε ≥ 1
Clayton Ge(x) = x−ε

− 1 Cp(x1, x2) = (x−ε
1 + x−ε

2 − 1)1/ε ε ≥ −1, ε ̸= 0
Frank Ge(x) = − ln e−εx−1

e−ε−1 Cp(x1, x2) = −
1
ε
ln(1 +

(e−εx1 −1)(e−εx2 −1)
e−ε−1 ) ε ̸= 0

Joe Ge(x) = − ln[1 − (1 − x)ε] Cp(x1, x2) = 1 − [(1 − x1)ε + (1 − x2)ε − (1 − x1)ε(1 − x2)ε]1/ε ε ≥ 1

Note: In Table 1, Ge(x) and Cp(x1, x2) are defined in Definition 8, and ε is the parameter of the function Ge(x).

=

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1

[1 − Ge−1(Ge(1 − g(L(k1)1 )) + Ge(1 − g(L(k2)2 )))]((p(k1)1 + p(k2)2 − p(k1)1 p(k2)2 )/L)
}

;

here L = #L1(p) + #L2(p) − 1.
(2) Multiplication:

L1(p) ⊗Cp L2(p) =

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1(Cp(g(L(k1)1 ), g(L(k2)2 )))(p(k1)1 p(k2)2 )

}

=

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1

[Ge−1(Ge(g(L(k1)1 )) + Ge(g(L(k2)2 )))](p(k1)1 p(k2)2 )
}

;

(3) Scalar-multiplication: λ⊙CpL(p) =
⋃

k=1,2,...,#L(p)

{
g−1

[1 − Ge−1(λGe(1 − g(L(k))))](p(k))
}
;

(4) Power operation: (L(p))λ =
⋃

k=1,2,...,#L(p)

{
g−1

[Ge−1(λGe(g(L(k))))](p(k))
}
.

Theorem 1. The linguistic terms of PLTSs based on Archimedean copulas and co-copulas still belong to the LTS and thus the operation results
of PLTSs with these new operational laws in Definition 15 are still PLTSs.

Proof. For any g(L(k1)1 ), g(L(k2)2 ) ∈ [0, 1], it holds that Cp(g(L(k1)1 ), g(L(k2)2 )) ∈ [0,+∞] and g−1(Cp(g(L(k1)1 ), g(L(k2)2 ))) ∈ [s0, s2τ ](k1 =

1, 2, . . . ,#L1(p); k2 = 1, 2, . . . ,#L2(p)) when Cp : [0, 1]2 → [0,+∞] and g−1
: [0,+∞] → [s0, s2τ ]. Hence, the linguistic terms

g−1(Cp(g(L(k1)1 ), g(L(k2)2 ))) still belong to the LTS.

By Definition 15, it is easily seen that the operation results of PLTSs with these new operational laws are still PLTSs.

Theorem 2. Let L(p) = {L(k)(p(k))|k = 1, 2, . . . ,#L(p)}, L1(p) = {L(k1)1 (p(k1)1 )|k1 = 1, 2, . . . ,#L1(p)} and L2(p) = {L(k2)2 (p(k2)2 )|k2 =

1, 2, . . . ,#L2(p)} be any three PLTSs, λ, λ1, λ2 ∈ [0,+∞] be the positive real numbers. Some desirable properties of the new operational laws
in Definition 15 are satisfied as follows: (1)L1(p)⊕Cp L2(p) = L2(p)⊕Cp L1(p); (2)L1(p)⊗Cp L2(p) = L2(p)⊗Cp L1(p); (3)λ⊙Cp(L1(p)⊕Cp L2(p)) =

(λL1(p)) ⊕Cp (λL2(p)); (4)(L1(p) ⊗Cp L2(p))λ = (L1(p))λ ⊗Cp (L2(p))λ; (5)(λ1 + λ2)⊙CpL(p) = (λ1L(p)) ⊕Cp (λ2L(p)); (6)(L(p))λ1 ⊗Cp (L(p))λ2 =

L(p))λ1+λ2; (7)((L(p))λ1 )λ2 = (L(p))λ1λ2; (8)L1(p) ⊕Cp (L2(p) ⊕Cp L(p)) = (L1(p) ⊕Cp L2(p)) ⊕Cp L(p); (9)L1(p) ⊗Cp (L2(p) ⊗Cp L(p)) =

L1(p) ⊗Cp L2(p)) ⊗Cp L(p).

The proof of Theorem 2 is presented in Appendix A.

.2. Some different types of operational laws for PLTSs based on common Archimedean copulas

Wang et al. [39] summarized four different types of common Archimedean copulas including Gumbel copula, Clayton copula, Frank
opula and Joe copula, which are shown in Table 1.
In the following, some different types of operational laws for PLTSs based on common Archimedean copulas can be obtained by

efinition 15 and are listed in Table 2.

.3. Comparison with Mao et al.’s operational laws

xample 8. Let S = {sα|α = 0, 1, . . . , 4} be a LTS, Consider two PLTSs L1(p) = {s1(0.4), s2(0.6)} and L2(p) = {s1(0.3), s3(0.7)}. To simplify
the calculation process, let Ge(x) = (− ln x)ε(ε = 1) (i.e., Gumbel type) and λ = 2.

The computation results based on Mao et al.’s operational laws and the proposed operational laws of this paper can be obtained
and presented in Table 3.

As shown in Table 3, the computation results obtained by Mao et al.’s operational laws [24] are just as same as those obtained by
the Gumbel operational laws (when ε = 1) and the linguistic scale function Form 1 (i.e., Eq. (4)). Therefore, the proposed operational
laws based on Archimedean copulas and co-copulas greatly generalize Mao et al.’s operational laws based on Archimedean t-corm
and t-conorm. The proposed operational laws use three different forms of linguistic scale functions to obtain the calculation results,
whereas Mao et al. [24] only used Form 1 (i.e., Eq. (4)) to get the calculation results. In addition, DMs can select different linguistic scale
functions and different types of Archimedean copulas according to their preference, which greatly enhances the flexibility of decision.

5. New aggregation operators of PLTSs based on the Archimedean copulas

This section develops a generalized probabilistic linguistic Choquet (GPLC) operator and a generalized probabilistic linguistic hybrid

Choquet (GPLHC) operator. Some attractive properties of the proposed operators are discussed in details.

8
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T
S

c

able 2
ome different types of operational laws for PLTSs based on common Archimedean copulas.
Type Function New operational law

Gumbel Ge(x) = (− ln x)ε
(ε ≥ 1)

L1(p) ⊕Cp L2(p) =
⋃

k1 = 1, 2, . . . ,#L1(p)
k2 = 1, 2, . . . ,#L2(p)

{
g−1

[1 − exp(−((− ln(1 − g(L(k1 )1 )))ε + (− ln(1 − g(L(k2 )2 )))ε)1/ε)]( (p
(k1)
1 +p

(k2)
2 −p

(k1)
1 p

(k2)
2 )

L )
}

L1(p) ⊗Cp L2(p) =
⋃

k1 = 1, 2, . . . ,#L1(p)
k2 = 1, 2, . . . ,#L2(p)

{
g−1

[exp(−((− ln(g(L(k1 )1 )))ε + (− ln(g(L(k2 )2 )))ε)1/ε)](p(k1 )1 p(k2 )2 )
}

λ⊙Cp L(p) =
⋃

k=1,2,...,#L(p)

{
g−1

[1 − exp(−(λ(− ln(1 − g(L(k1 ))))ε)1/ε)](p(k))
}

(L(p))λ =
⋃

k=1,2,...,#L(p)

{
g−1

[exp(−(λ(− ln(g(L(k))))ε)1/ε)](p(k))
}

Clayton Ge(x) = x−ε
− 1

(ε ≥ −1, ε ̸= 0)
L1(p) ⊕Cp L2(p) =

⋃
k1 = 1, 2, . . . ,#L1(p)
k2 = 1, 2, . . . ,#L2(p)

{
g−1

[1 − ((1 − g(L(k1)1 ))−ε + (1 − g(L(k2)2 ))−ε − 1)−1/ε
]( (p

(k1)
1 +p

(k2)
2 −p

(k1)
1 p

(k2)
2 )

L )
}

L1(p) ⊗Cp L2(p) =
⋃

k1 = 1, 2, . . . ,#L1(p)
k2 = 1, 2, . . . ,#L2(p)

{
g−1

[(g(L(k1)1 )−ε + g(L(k2)2 )−ε − 1)−1/ε
](p(k1)1 p(k2)2 )

}
λ⊙Cp L(p) =

⋃
k=1,2,...,#L(p)

{
g−1

[1 − (λ((1 − g(L(k)))−ε − 1) + 1)−1/ε
](p(k))

}
(L(p))λ =

⋃
k=1,2,...,#L(p)

{
g−1

[(λ((g(L(k)))−ε − 1) + 1)−1/ε
](p(k))

}
Frank Ge(x) = − ln e−εx−1

e−ε−1
(ε ̸= 0)

L1(p) ⊕Cp L2(p) =
⋃

k1 = 1, 2, . . . ,#L1(p)
k2 = 1, 2, . . . ,#L2(p)

{
g−1

[1 +
1
ε
ln(1 +

(exp(−ε(1−g(L
(k1)
1 )))−1)(exp(−ε(1−g(L

(k2)
2 )))−1)

exp(−ε)−1 )]( (p
(k1)
1 +p

(k2)
2 −p

(k1)
1 p

(k2)
2 )

L )
}

L1(p) ⊗Cp L2(p) =
⋃

k1 = 1, 2, . . . ,#L1(p)
k2 = 1, 2, . . . ,#L2(p)

{
g−1

[−
1
ε
ln(1 +

(exp(−εg(L
(k1)
1 ))−1)(exp(−εg(L

(k2)
2 ))−1)

exp(−ε)−1 )](p(k1)1 p(k2)2 )
}

λ⊙Cp L(p) =
⋃

k=1,2,...,#L(p)

{
g−1

[1 +
1
ε
ln(( exp(−ε(1−g(L(k))))−1

exp(−ε)−1 )λ + 1)](p(k))
}

(L(p))λ =
⋃

k=1,2,...,#L(p)

{
g−1

[−
1
ε
ln(( exp(−ε(1−g(L(k))))−1

exp(−ε)−1 )λ + 1)](p(k))
}

Joe Ge(x) = − ln[1 − (1 − x)ε]
(ε ≥ 1)

L1(p) ⊕Cp L2(p) =
⋃

k1 = 1, 2, . . . ,#L1(p)
k2 = 1, 2, . . . ,#L2(p)

{
g−1

[(g(L(k1)1 )ε + g(L(k2)2 )ε − g(L(k1)1 )εg(L(k2)2 )ε)1/ε]( (p
(k1)
1 +p

(k2)
2 −p

(k1)
1 p

(k2)
2 )

L )
}

L1(p) ⊗Cp L2(p) =
⋃

k1 = 1, 2, . . . ,#L1(p)
k2 = 1, 2, . . . ,#L2(p)

{
g−1

[1 − ((1 − g(L(k1 )1 ))ε + (1 − g(L(k2 )2 ))ε − (1 − g(L(k1 )1 ))ε(1 − g(L(k2 )2 ))ε)1/ε](p(k1 )1 p(k2 )2 )
}

λ⊙Cp L(p) =
⋃

k=1,2,...,#L(p)

{
g−1

[(1 − (1 − g(L(k1 ))ε)λ)1/ε](p(k))
}

(L(p))λ =
⋃

k=1,2,...,#L(p)

{
g−1

[1 − (1 − (1 − (1 − g(L(k1 )))ε)λ)1/ε](p(k))
}

Note: In Table 2, L(p), L1(p), L2(p) and λ, λ1 , λ2 are defined in Theorem 2.

Table 3
Computation results.
Operational laws Results

Mao et al. [24] L1(p) ⊕A L2(p) = {s1.75(0.19), s2.5(0.24), s3.25(0.27), s3.5(0.30)}
L1(p) ⊗A L2(p) = {s0.25(0.12), s0.5(0.18), s0.75(0.28), s1.5(0.42)}
2 ⊙A L1(p) = {s1.75(0.4), s3(0.6)} (L1(p))2 = {s0.25(0.4), s1(0.6)}

This paper with Form 1 of linguistic scale
function

L1(p) ⊕Cp L2(p) = {s1.75(0.19), s2.5(0.24), s3.25(0.27), s3.5(0.30)}
L1(p) ⊗Cp L2(p) = {s0.25(0.12), s0.5(0.18), s0.75(0.28), s1.5(0.42)}
2 ⊙Cp L1(p) = {s1.75(0.4), s3(0.6)} (L1(p))2 = {s0.25(0.4), s1(0.6)}

This paper with Form 2 of linguistic scale
function (a =

4√9 ≈ 1.73)
L1(p) ⊕Cp L2(p) = {s2.23(0.19), s2.89(0.24), s3.38(0.27), s3.57(0.30)}
L1(p) ⊗Cp L2(p) = {s0.26(0.12), s0.43(0.42), s0.62(0.28), s1.11(0.18)}
2 ⊙Cp L1(p) = {s2.23(0.4), s3.26(0.6)} (L1(p))2 = {s0.26(0.4), s0.74(0.6)}

This paper with Form 3 of linguistic scale
function (α = β = 0.8)

L1(p) ⊕Cp L2(p) = {s1.67(0.19), s2.29(0.24), s3.20(0.27), s3.48(0.30)}
L1(p) ⊗Cp L2(p) = {s0.22(0.12), , s0.52(0.18)s0.80(0.28), s1.71(0.42)}
2 ⊙Cp L1(p) = {s1.67(0.4), s2.84(0.6)} (L1(p))2 = {s0.22(0.4), s1.16(0.6)}

5.1. Probabilistic linguistic weighted averaging operator

Definition 16 ([12]). Let I = {Lj(p)
⏐⏐j = 1, 2, . . . , n} be a set of PLTSs. Then, the probabilistic linguistic weighted average (PLWA) operator

is defined as:

PLWAω(L1(p), L2(p), . . . , Ln(p)) =

n∑
j=1

ωj(Lj(p)) (21)

where ω = (ω1, ω2, . . . , ωn)T is the weight vector of Lj(p)(j = 1, 2, . . . , n), satisfying ωj ≥ 0(j = 1, 2, . . . , n),
∑n

j=1 ωj = 1. Especially, if
ω = ( 1n ,

1
n , . . . ,

1
n )

T, then the PLWA operator reduces to the probabilistic linguistic average (PLA) operator.

According to the new operational laws of Definition 15, the PLWA operator can be converted to different operators. Take Gumbel
opula function as an example, when Ge(x) = (− ln x)ε(ε ≥ 1), the PLWA operator is converted to a probabilistic linguistic Gumbel
9
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eighted average (PLGWA) operator as follows:

PLGWAω(L1(p), L2(p), . . . , Ln(p)) =

n∑
j=1

ωj⊙Cp(Lj(p))

=

⋃
kj=1,2,...,#Lj(p)

j=1,2,...,n

⎧⎨⎩g−1
[1 − exp(−(

n∑
j=1

ωj(− ln(1 − A
(kj)
j ))ε)1/ε)](RK )

⎫⎬⎭ (22)

where A
(kj)
j = g(L

(kj)
j ), RK =

∑n
j=1 p

(kj)
j −

∑
1≤j<i≤n p

(kj)
j p

(ki)
i +

∑
1≤j<i<l≤n p

(kj)
j p

(ki)
i p

(kl)
l +···+(−1)n−1p

(k1)
1 p

(k2)
2 ···p(kn)n∑n

j=1(#Lj(p))−1 is the probability associated with the

linguistic term g−1
[1 − exp(−(

∑n
j=1 ωj(− ln(1 − A

(kj)
j ))ε)1/ε)], K = 1, 2, . . . #L1(p) × #L2(p) × · · · × #Ln(p).

5.2. Generalized probabilistic linguistic Choquet operator

Definition 17 ([40]). Let X be a set of criteria. The set of function Γ : P(X) → [0, 1] is fuzzy measure on X if the following conditions
are satisfied:

(1) (Boundary conditions) Γ (∅) = 0 and Γ (X) = 1;
(2) (Monotonicity) If A, B ∈ P(X) and A ⊆ B, then Γ (A) ≤ Γ (B), where P(X) is the power set of X .

In the MCGDM problem, the properties of interactions among criteria can be represented by Γ (C(j))(j = 1, 2, · · · , n). Consider
Γ ({C1, C2, . . . , Cn}) as the standard of subjective importance of criteria set {C1, C2, . . . , Cn}. For any pair of criteria subsets A, B ∈ P(X)
with A

⋂
B = ∅, three types of the properties are described as follows:

(1) (Simple additive measure) If Γ (A
⋃

B) = Γ (A) + Γ (B), A and B are independent.
(2) (Super additive measure) If Γ (A

⋃
B) > Γ (A) + Γ (B), A and B are positive interaction.

(3) (Sub additive measure) If Γ (A
⋃

B) < Γ (A) + Γ (B), A and B are negative interaction.

efinition 18 ([41]). Let η be a positive real function on X and Γ be a fuzzy measure on X . Then, the discrete Choquet integral of η on
is defined as follows:

CIΓ =

n∑
j=1

η(xj)[Γ (S(j)) − Γ (S(j−1))] (23)

here η(x1) ≤ η(x2) ≤ · · · ≤ η(xn), S(j) = {x(j), x(j+1), . . . , x(n)} and x(0) = ∅.
Let X be the set of n fuzzy numbers, which is denoted as a(i)(i = 1, 2, . . . , n). The discrete Choquet integral of a(i) on Γ can be

obtained as follows:

CIΓ (a1, a2, . . . , an) =

n∑
j=1

a(i)(Γ (S(j)) − Γ (S(j−1))) (24)

Inspired by the probabilistic linguistic Choquet integral operator in [42], a GPLC operator is proposed below.

Definition 19. Let I = {Lj(p)
⏐⏐j = 1, 2, . . . , n } be a set of PLTSs. The GPLC operator is defined as:

GPLCΓ (L1(p), L2(p), . . . , Ln(p)) = (
n∑

j=1

(Γ (S(j)) − Γ (S(j−1)))⊙Cp(L(j)(p))λ)1/λ (25)

where λ ∈ (0,+∞), ((1), (2) · · · , (n)) is a permutation of (1, 2, . . . , n) such that L(1)(p) ≥ L(2)(p) ≥ · · · ≥ L(n)(p) according to the
proposed possibility ranking algorithm in Section 3.2, S(j) = {x(j), x(j+1), . . . , x(n)} and x(0) = ∅.

Theorem 3. Let I = {Lj(p)
⏐⏐j = 1, 2, . . . , n} be a set of PLTSs. The result by using the GPLC operator is obtained as:

GPLCΓ (L1(p), L2(p), . . . , Ln(p))

=

⋃
kj=1,2,...,#L(j)(p)

j=1,2,...,n

⎧⎨⎩g−1
[(1 − Ge−1(

n∑
j=1

(Γ (S(j)) − Γ (S(j−1)))(Ge(1 − A
(kj)
(j) ))ε)1/ε)1/λ](RK )

⎫⎬⎭ (26)

where A
(kj)
(j) = Ge−1

(
(λ(Ge(g(L

(kj)
(j) )))ε)1/ε

)
, RK =

∑n
j=1 p

(kj)
(j) −

∑
1≤j<i≤n p

(kj)
(j) p

(ki)
(i) +

∑
1≤j<i<l≤n p

(kj)
(j) p

(ki)
(i) p

(kl)
(l) +···+(−1)n−1p

(k1)
(1) p

(k2)
(2) ···p(kn)(n)∑n

j=1(#L(j)(p))−1 , K = 1, 2, . . . ,
#L(1)(p) × #L(2)(p) × · · · × #L(n)(p).

The proof of Theorem 3 is shown in Appendix B.

Property 3 (Idempotency). Let I = {Lj(p)
⏐⏐j = 1, 2, . . . , n} be a set of PLTSs. If Lj(p) = L(p)(j = 1, 2, . . . , n), then GPLCΓ (L1(p), L2(p), . . . ,

Ln(p)) = L(p).
10
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roperty 4 (Monotonicity). Let I = {Lj(p)
⏐⏐j = 1, 2, . . . , n} and I ′ = {L′

j(p)
⏐⏐j = 1, 2, . . . , n} be two sets of PLTSs. If Lj(p) ≥ L′

j(p)(j =

, 2, . . . , n), then

GPLCΓ (L1(p), L2(p), . . . , Ln(p)) ≥ GPLCΓ (L′

1(p), L
′

2(p), . . . , L
′

n(p)).

roperty 5 (Boundedness). Let I = {Lj(p)
⏐⏐j = 1, 2, . . . , n} be a set of PLTSs, where Lj(p) = {L

(kj)
j |kj = 1, 2, . . . ,#Lj(p)}. L′

j(p) = {L−

j (1)}

nd L′′

j = {L+

j (1)}(j = 1, 2, . . . , n) are two special PLTSs, where L−

j and L+

j are the minimal and maximal linguistic terms of L
(kj)
j in Lj(p),

espectively.
Then, one has GPLCΓ (V ) ≤ GPLCΓ (L1(p), L2(p), . . . , Ln(p)) ≤ GPLCΓ (U), where V = (L′

1(p), L
′

2(p), . . . , L
′
n(p)) and U = (L′′

1(p), L
′′

2(p), . . . ,
′′
n(p)).
The proofs of Properties 3–5 are shown in Appendix C.

roperty 6. Let I = {Lj(p)
⏐⏐j = 1, 2, . . . , n} be a set of PLTSs.

(1) When λ → 0, it easily follows from Eq. (25) that

GPLCΓ (L1(p), L2(p), . . . , Ln(p)) =

n∏
j=1

(L(j)(p))Γ (S(j))−Γ (S(j−1))

hich is degenerated to a probabilistic linguistic geometric ordered weighted Choquet (PLGOWC) operator;
(2) When λ = 1, it easily follows from Eq. (25) that

GPLCΓ (L1(p), L2(p), . . . , Ln(p)) =

n∑
j=1

(Γ (S(j)) − Γ (S(j−1)))(L(j)(p))

hich is degenerated to a probabilistic linguistic Choquet integral (PLC) operator;
(3) When λ → +∞, it easily follows from Eq. (25) that

GPLCΓ (L1(p), L2(p), . . . , Ln(p)) = max{Lj(p)
⏐⏐j = 1, 2, . . . , n}

hich is degenerated to a max operator of PLTSs Lj(p)(j = 1, 2, . . . , n).

.3. Generalized probabilistic linguistic hybrid Choquet operator

efinition 20. Let I = {Lj(p)
⏐⏐j = 1, 2, . . . , n} be a set of PLTSs. The GPLHC operator is defined as:

GPLHCΓ (L1(p), L2(p), . . . , Ln(p)) = (
n∑

j=1

(Γ (S(j)) − Γ (S(j−1)))⊙Cp(L∗

(j)(p))
λ)1/λ (27)

here λ ∈ [0,+∞], L∗

j (p) is obtained by weighting the PLTS Lj(p), i.e., L∗

j (p) = nωjLj(p), ωj ∈ [0, 1] is the weight of Lj(p) satisfying
n
j=1 ωj = 1, L∗

(j)(p) is the j-th largest PLTS of L∗

1(p), L
∗

2(p), . . . , L
∗
n(p) according to the proposed possibility ranking algorithm in

ection 3.2, S(j) = {x(j), x(j+1), . . . , x(n)} and x(0) = ∅.

heorem 4. Let I = {Lj(p)
⏐⏐j = 1, 2, . . . , n} be a set of PLTSs. The result by using the GPLHC operator is obtained as

GPLHCΓ (L1(p), L2(p), . . . , Ln(p))

=

⋃
kj=1,2,...,#L∗(j)(p)

j=1,2,...,n

⎧⎨⎩g−1
[(1 − Ge−1(

n∑
j=1

(Γ (S(j)) − Γ (S(j−1)))(Ge(1 − A
(kj)
(j) ))ε)1/ε)1/λ](RK )

⎫⎬⎭ (28)

here A
(kj)
j = Ge−1((λ(Ge(g(L

∗(kj)
(j) )))

ε

)
1/ε

), RK =

∑n
j=1 p

(kj)
(j) −

∑
1≤j<i≤n p

(k(j))
(j) p

(ki)
(i) +

∑
1≤j<i<l≤n p

(kj)
(j) p

(ki)
(i) p

(kl)
(l) +···+(−1)n−1p

(k1)
(1) p

(k2)
(2) ···p(kn)(n)∑n

j=1(#L
∗
(j)(p))−1 , K = 1, 2, . . . ,

#L∗

(1)(p) × #L∗

(2)(p) × · · · × #L∗

(n)(p).

Similar to Theorem 3, it is easy to prove Theorem 4.
The GPLHC operator has similar properties to the GPLC operator as follows:
(1) When λ → 0, it easily follows from Eq. (27) that

GPLHCΓ (L1(p), L2(p), . . . , Ln(p)) =

n∏
j=1

(L∗

(j)(p))
Γ (S(j))−Γ (S(j−1))

which is degenerated to a geometric probabilistic linguistic hybrid Choquet integral (GPLHCI) operator;
(2) When λ = 1, it easily follows from Eq. (27) that

GPLHCΓ (L1(p), L2(p), . . . , Ln(p)) =

n∑
j=1

(Γ (S(j)) − Γ (S(j−1)))(L∗

(j)(p))

hich is degenerated to a probabilistic linguistic hybrid Choquet integral (PLHC) operator;
11
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(3) When λ → +∞, it easily follows from Eq. (27) that

GPLHCΓ (L1(p), L2(p), . . . , Ln(p)) = max{L∗

j (p)
⏐⏐j = 1, 2, . . . , n}

which is degenerated to a max operator of PLTSs L∗

j (p)(j = 1, 2, . . . , n).
In terms of four different types of common Archimedean copulas functions, the GPLHC operator can be converted into different

forms.
Case 1. (Gumbel type) When Ge(x) = (− ln x)ε(ε ≥ 1), the GPLHC operator is called a generalized probabilistic linguistic Gumbel

hybrid Choquet (GPLGHC) operator as follows:

GPLGHCΓ (L1(p), L2(p), . . . , Ln(p))

=

⋃
kj=1,2,...,#L∗(j)(p)

j=1,2,...,n

⎧⎨⎩g−1
[(1 − exp(−(

n∑
j=1

(Γ (S(j)) − Γ (S(j−1)))(− ln(1 − A
(kj)
(j) ))ε)1/ε))1/λ](RK )

⎫⎬⎭ (29)

where A
(kj)
(j) = exp(−(λ(− ln(g(L

∗(kj)
(j) )))ε)1/ε), RK =

∑n
j=1 p

(kj)
(j) −

∑
1≤j<i≤n p

(kj)
(j) p

(ki)
(i) +

∑
1≤j<i<l≤n p

(kj)
(j) p

(ki)
(i) p

(kl)
(l) +···+(−1)n−1p

(k1)
(1) p

(k2)
(2) ···p(kn)(n)∑n

j=1(#L
∗
(j)(p))−1 .

Especially, when λ = 1, GPLGHC operator is degenerated to a PLGHC operator as

PLGHCΓ (L1(p), L2(p), . . . , Ln(p))

=

⋃
kj=1,2,...,#L∗(j)(p)

j=1,2,...,n

⎧⎨⎩g−1
[1 − exp(−(

n∑
j=1

(Γ (S(j)) − Γ (S(j−1)))(− ln(1 − A
(kj)
(j) ))ε)1/ε)](RK )

⎫⎬⎭ (30)

where A
(kj)
(j) = g(L

∗(kj)
(j) ), RK =

∑n
j=1 p

(kj)
(j) −

∑
1≤j<i≤n p

(kj)
(j) p

(ki)
(i) +

∑
1≤j<i<l≤n p

(kj)
(j) p

(ki)
(i) p

(kl)
(l) +···+(−1)n−1p

(k1)
(1) p

(k2)
(2) ···p(kn)(n)∑n

j=1(#L
∗
(j)(p))−1 .

Case 2. (Clayton type) When Ge(x) = x−ε
− 1(ε ≥ −1, ε ̸= 0), the GPLHC operator is called a generalized probabilistic linguistic

Clayton hybrid Choquet (GPLCHC) operator as follows:

GPLCHCΓ (L1(p), L2(p), . . . , Ln(p))

=

⋃
kj=1,2,...,#L∗(j)(p)

j=1,2,...,n

⎧⎨⎩g−1
[(1 − (

n∑
j=1

(Γ (S(j)) − Γ (S(j−1)))((1 − A
(kj)
(j) )−ε − 1) + 1)−1/ε)1/λ](RK )

⎫⎬⎭ (31)

where A
(kj)
(j) = (λ((g(L

∗(kj)
(j) ))

−ε

− 1) + 1)−1/ε , RK =

∑n
j=1 p

(kj)
(j) −

∑
1≤j<i≤n p

(kj)
(j) p

(ki)
(i) +

∑
1≤j<i<l≤n p

(kj)
(j) p

(ki)
(i) p

(kl)
(l) +···+(−1)n−1p

(k1)
(1) p

(k2)
(2) ···p(kn)(n)∑n

j=1(#L
∗
(j)(p))−1 .

Case 3. (Frank type) When Ge(x) = − ln e−εx−1
e−ε−1 (ε ̸= 0), the GPLHC operator is called a generalized probabilistic linguistic Frank

ybrid Choquet (GPLHC) operator as follows:

GPLFHCΓ (L1(p), L2(p), . . . , Ln(p))

=

⋃
kj=1,2,...,#L∗(j)(p)

j=1,2,...,n

⎧⎨⎩g−1
[(1 +

1
ε
ln(1 +

n∏
j=1

(
exp(−ε(1 − A

(kj)
(j) )) − 1

exp(−ε) − 1
)Γ (S(j))−Γ (S(j−1))))1/λ](RK )

⎫⎬⎭ (32)

here A
(kj)
(j) = −

1
ε
ln(1 + (

exp(−ε(1−g(L
∗(kj)
(j) )))−1

exp(−ε)−1 )λ), RK =

∑n
j=1 p

(kj)
(j) −

∑
1≤j<i≤n p

(kj)
(j) p

(ki)
(i) +

∑
1≤j<i<l≤n p

(kj)
(j) p

(ki)
(i) p

(kl)
(l) +···+(−1)n−1p

(k1)
(1) p

(k2)
(2) ···p(kn)(n)∑n

j=1(#L
∗
(j)(p))−1 .

Case 4. (Joe type) When Ge(x) = − ln[1 − (1 − x)ε](ε ≥ 1), the GPLHC operator is called a generalized probabilistic linguistic Joe
hybrid Choquet (GPLJHC) operator as follows:

GPLJHCΓ (L1(p), L2(p), . . . , Ln(p))

=

⋃
kj=1,2,...,#L∗(j)(p)

j=1,2,...,n

⎧⎨⎩g−1
[((1 −

n∑
j=1

(1 − (A
(kj)
(j) )ε)Γ (S(j))−Γ (S(j−1)))1/ε)1/λ](RK )

⎫⎬⎭ (33)

where A
(kj)
(j) = 1 − (1 − (1 − (1 − g(L

∗(kj)
(j) ))ε)λ)1/ε , RK =

∑n
j=1 p

(kj)
(j) −

∑
1≤j<i≤n p

(kj)
(j) p

(ki)
(i) +

∑
1≤j<i<l≤n p

(kj)
(j) p

(ki)
(i) p

(kl)
(l) +···+(−1)n−1p

(k1)
(1) p

(k2)
(2) ···p(kn)(n)∑n

j=1(#L
∗
(j)(p))−1 .

6. A new method for interactive MCGDM with probabilistic linguistic information

In this section, a new method for interactive MCGDM with PLTSs is proposed.
12
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6

d

1

.1. Problem description

The notation clarifications of Probabilistic linguistic MCGDM problem are shown below:
A = {A1, A2, . . . , Am} is a set of alternatives, where Ai(i = 1, 2, . . . ,m) denotes the i-th alternative.
C = {C1, C2, . . . , Cn} is a set of criteria, where Cj(j = 1, 2, . . . , n) denotes the j-th criterion. There exist interactions among criteria.
E = {E1, E2, . . . , Eg} is a set of DMs, where Eq(q = 1, 2, . . . , g) denotes the q-th DM.
ω = (ω1, ω2, . . . , ωg )T is the weight vector of DMs, where ωq denotes the weight of DM Eq, satisfying 0 ≤ ωq

≤ 1(q = 1, 2, . . . , g)
and

∑g
q=1 ω

q
= 1.

Γ = (Γ1,Γ2, . . . ,Γn) is the fuzzy measure of criteria, where Γj = Γ (S(j)) denotes the fuzzy measure of criterion subset S(j) =

{C(j), C(j+1), . . . , C(n)} and C(0) = ∅.
Uq = [Lqij(p)]m×n is an individual decision matrix given by DM Eq, where Lqij(p) = {(Lqij)

(k)((pqij)
(k))|k = 1, 2, . . . ,#Lqij(p)} is a PLTS and

enotes the evaluation of alternative Ai on criterion Cj provided by DM Eq.
Ũq = [L̃qij(p)]m×n is an individual ascending ordered normalized decision matrix given by DM Eq, where L̃qij(p) = {(L̃qij)

(k)((p̃qij)
(k))|k =

, 2, . . . ,#L̃qij(p)} is an ascending ordered normalized PLTS of Lqij(p).
Û = [L̂ij(p)]m×n is a collective normalized decision matrix, where L̂ij(p) = {L̂(k)ij (p̂(k)ij )|L̂(k)ij ∈ S, p̂(k)ij ≥ 0, k = 1, 2, . . . ,#L̂ij(p)} is a

collective evaluation of alternative Ai on criterion Cj.
L̄i(p) = {L̄(k)i (p̄(k)i )|L̄(k)i ∈ S, p̄(k)i ≥ 0, k = 1, 2, . . . ,#L̄i(p)} is a PLTS and denotes the collective comprehensive value of alternative Ai.

6.2. Incomplete information structure

This subsection depicts the incomplete information structure of DMs’ weights and criteria fuzzy measures.

6.2.1. Incomplete information structure of DMs’ weights
Due to the complexity of realistic decision-making problems and the incomprehensive experience and knowledge of DMs, it is hard

to determine the weight vector of DMs. Therefore, the information of the DMs’ weights ω = (ω1, ω2, . . . , ωg )T is incomplete. Let Λ be
the incomplete information structure of DMs’ weights, which may consist of several basic forms [43] (please see [43] for more details):

(Form 1) A weak ranking: {ωq
≥ ωl

};
(Form 2) A strict ranking: {π2 ≥ ωq

− ωl
≥ π1}(π2 ≥ π1 > 0);

(Form 3) A ranking of differences: {ωq
− ωl

≥ ωf
− ωd

}(l ̸= f ̸= d);
(Form 4) A ranking with multiples: {ωq

≥ ϕωl
}(0 ≤ ϕ ≤ 1);

(Form 5) A interval ranking: {γ1 ≥ ωq
≥ γ2}(γ1 ≥ γ2 ≥ 0).

6.2.2. Incomplete information structure of criteria fuzzy measures
In some real decision situations, DMs tend to specify their preferences on criteria fuzzy measures according to their knowledge and

judgment. Therefore, the information of the criteria fuzzy measures is incomplete [44]. Let Θ(Γ ) be the incomplete information of
criteria fuzzy measures, which may consist of several forms [44] (please see [44] for more details).

6.3. Determination of the weights of DMs

Inspired by Yue [45], this subsection introduces the TOPSIS method to obtain the weights of DMs.
(1) Determine the individual ascending ordered normalized probabilistic linguistic decision matrix Ũq.
Normalize probabilistic linguistic decision matrix Uq = [Lqij(p)]m×n to corresponding ascending ordered normalized probabilistic

linguistic decision matrix Ũq = [L̃qij(p)]m×n, where L̃qij(p) is an ascending ordered normalized PLTS defined in Definition 5.
(2) Determine the ascending ordered normalized positive ideal decision matrix Ũ+

= [L̃+

ij (p)]m×n, where

L̃+

ij (p) = {(L̃+(k)
ij )((p̃+

ij )
(k))|k = 1, 2, . . . ,#L̃ij(p)}, (L̃+

ij )
(k)

=
1
g

g∑
q=1

(L̃qij)
(k), (p̃+

ij )
(k)

=
1
g

g∑
q=1

(p̃qij)
(k) (34)

The ascending ordered normalized negative ideal decision matrix is divided into left ascending ordered normalized negative ideal
decision matrix ŨL−

= [L̃L−ij (p)]m×n and right ascending ordered normalized negative ideal decision matrix ŨR−
= [L̃R−ij (p)]m×n.

(3) Determine the left ascending ordered normalized negative ideal decision matrix ŨL−, where

L̃L−ij (p) = {(L̃(k)ij )L−((p̃L−ij )(k))|k = 1, 2, . . . ,#L̃ij(p)}, (L̃
(k)
ij )L− = min

q=1,2,...,g
{(L̃qij)

(k)
} (35)

(p̃L−ij )(k) is the corresponding probability value of minq=1,2,...,g{(L̃
q
ij)

(k)
}.

(4) Determine the right ascending ordered normalized negative ideal decision matrix ŨR−, where

L̃R−ij (p) = {(L̃(k)ij )R−((p̃R−ij )(k))|k = 1, 2, . . . ,#L̃ij(p)}, (L̃
(k)
ij )R− = max

q=1,2,...,g
{(L̃qij)

(k)
} (36)

(p̃R−ij )(k) is the corresponding probability value of maxq=1,2,...,g{(L̃
q
ij)

(k)
}.

By Eq. (34), the similarity degree sim+ between Ũq and Ũ+ is defined as follows:

sim+
=

∑#L̃ij(p)
k=1 ((p̃qij)

(k)g((L̃qij)
(k))) · ((p̃+

ij )
(k)g+(L̃(k)ij ))√∑#L̃ij(p) q (k) ˜q (k) 2

√∑#L̃ij(p) + (k) + ˜(k) 2
(37)
k=1 ((p̃ij) g((Lij) )) k=1 ((p̃ij ) g (Lij ))

13
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w

w

w

here g+(L̃(k)ij ) =
1
g

∑g
q=1 g((L̃

q
ij)

(k)).
By Eq. (35), the similarity degree simL− between Ũq and ŨL− is defined as follows:

simL−
=

∑#L̃ij(p)
k=1 ((p̃qij)

(k)g((L̃qij)
(k))) · ((p̃L−ij )(k)gL−(L̃(k)ij ))√∑#L̃ij(p)

k=1 ((p̃qij)(k)g((L̃
q
ij)(k)))2

√∑#L̃ij(p)
k=1 ((p̃L−ij )(k)gL−(L̃(k)ij ))2

(38)

here gL−(L̃(k)ij ) = minq=1,2,...,g{g((L̃
q
ij)

(k))}.
By Eq. (36), the similarity degree simR− between Ũq and ŨR− is defined as follows:

simR−
=

∑#L̃ij(p)
k=1 ((p̃qij)

(k)g((L̃qij)
(k))) · ((p̃R−ij )(k)gR−(L̃(k)ij ))√∑#L̃ij(p)

k=1 ((p̃qij)(k)g((L̃
q
ij)(k)))2

√∑#L̃ij(p)
k=1 ((p̃R−ij )(k)gR−(L̃(k)ij ))2

(39)

here gR−(L̃(k)ij ) = maxq=1,2,...,g{g((L̃
q
ij)

(k))}.
Then, the individual relative closeness degree RCq

ij of alternative Ai on criterion Cj for DM Eq is defined as follows:

RCq
ij =

sim+

sim+ + simL− + simR− (40)

The global relative closeness degree RCij of alternative Ai on criterion Cj is defined as follows:

RCij =

g∑
q=1

ωqRCq
ij (41)

where ωq denotes the weight of DM Eq.
By Eq. (40), the deviation between the individual relative closeness degree and other individual relative closeness degrees on criterion

Cj for DM Eq can be calculated as follows:

Vq(ω) =

m∑
i=1

n∑
j=1

m∑
t=i+1

ωq
⏐⏐RCq

ij − RCq
tj

⏐⏐ (42)

By Eqs. (40) and (41), the deviation between the individual relative closeness degree and global relative closeness degree on criterion
Cj for DM Eq can be calculated as follows:

Hq(ω) =

m∑
i=1

n∑
j=1

⏐⏐RCq
ij − RCij

⏐⏐ (43)

By Eq. (40), the deviation between the individual relative closeness degrees on the criterion Cj for DM Eq and other DMs can be
calculated as follows:

Tq(ω) =

m∑
i=1

g∑
r=1

n∑
j=1

ωq
⏐⏐RCq

ij − RC r
ij

⏐⏐ (44)

To determine DMs’ weight ω = (ω1, ω2, . . . , ωg )T, it is reasonable to maximize the deviation between the individual relative
closeness degree and other individual relative closeness degrees on criterion Cj for DM Eq, while minimize the deviation between the
individual relative closeness degree and global relative closeness degree on criterion Cj for DM Eq, and minimize the deviation between
the individual relative closeness degrees on the criterion Cj for DM Eq and other DMs. Hence, a tri-objective nonlinear programming
model can be constructed as follows:

(Mod 1)

⎧⎪⎨⎪⎩
max V (ω) =

∑g
q=1

∑n
j=1
∑m

i=1
∑m

t=i+1 ω
q
⏐⏐RCq

ij − RCq
tj

⏐⏐
minH (ω) =

∑g
q=1

∑n
j=1
∑m

i=1

⏐⏐RCq
ij − RCij

⏐⏐
min T (ω) =

∑g
q=1

∑n
j=1
∑m

i=1
∑g

r=1 ω
q
⏐⏐RCq

ij − RC r
ij

⏐⏐
s.t. ω ∈ Λ

(45)

Then, (Mod 1) is transformed into a single objective nonlinear programming model as follows:
(Mod 2)

min H =

g∑
q=1

n∑
j=1

m∑
i=1

⏐⏐RCq
ij − RCij

⏐⏐+ g∑
q=1

n∑
j=1

m∑
i=1

g∑
r=1

ωq
⏐⏐RCq

ij − RC r
ij

⏐⏐− g∑
q=1

n∑
j=1

m∑
i=1

m∑
t=i+1

ωq
⏐⏐RCq

ij − RCq
tj

⏐⏐
s.t. ω ∈ Λ

(46)

To solve (Mod 2), let

ϑ
q+
ij =

(⏐⏐RCq
ij − RCij

⏐⏐+ (RCq
ij − RCij)

)
/2 =

⎛⎝⏐⏐⏐⏐⏐⏐RCq
ij −

g∑
ωqRCq

ij

⏐⏐⏐⏐⏐⏐+ (RCq
ij −

g∑
ωqRCq

ij )

⎞⎠ /2,

q=1 q=1

14
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6

f

l

d

w

c

w

L

ϑ
q−
ij =

(⏐⏐RCq
ij − RCij

⏐⏐− (RCq
ij − RCij)

)
/2 =

⎛⎝⏐⏐⏐⏐⏐RCq
ij −

g∑
q=1

ωqRCq
ij

⏐⏐⏐⏐⏐− (RCq
ij −

g∑
q=1

ωqRCq
ij )

⎞⎠ /2.
Thus, (Mod 2) is transformed into a linear programming model as follows:
(Mod 3)

min H =

g∑
q=1

n∑
j=1

m∑
i=1

(ϑq+
ij + ϑ

q−
ij ) +

g∑
q=1

n∑
j=1

m∑
i=1

g∑
r=1

ωq
⏐⏐RCq

ij − RC r
ij

⏐⏐− g∑
q=1

n∑
j=1

m∑
i=1

m∑
t=i+1

ωq
⏐⏐RCq

ij − RCq
tj

⏐⏐
s.t.

{
ϑ

q+
ij − ϑ

q−
ij = RCq

ij −
∑g

q=1 ω
qRCq

ij ; ϑ
q+
ij ≥ 0; ϑq−

ij ≥ 0; (i = 1, 2, . . . ,m; j = 1, 2, . . . , n; q = 1, 2, . . . , g)
ω ∈ Λ

(47)

The weight vector of DMs ω = (ω1, ω2, . . . , ωg )T can be derived by solving (Mod 3).

.4. A new method for interactive MCGDM with probabilistic linguistic information

Based on the above analyses, a new method for interactive MCGDM with probabilistic linguistic information is summarized as
ollows:

Step 1. Elicit the individual probabilistic linguistic matrix Uq = [Lqij(p)]m×n (q = 1, 2, . . . , g).
Step 2. Acquire the individual ascending ordered normalized probabilistic linguistic decision matrix Ũq = [L̃qij(p)]m×n (q = 1, 2, . . . , g)

by Definition 5.
Step 3. Determine the weight of DMs ω = (ω1, ω2, . . . , ωg )T by solving (Mod 3).
Step 4. Compute the collective normalized decision matrix Û = [L̂ij(p)]m×n.
Based on the weight vector of DMs ω = (ω1, ω2, . . . , ωg )T, aggregate all individual ascending ordered normalized probabilistic

inguistic decision matrices Ũq = [L̃qij(p)]m×n (q = 1, 2, . . . , g) into a collective normalized decision matrix Û = [L̂ij(p)]m×n by PLGWA
operator (i.e., Eq. (22)).

L̂ij(p) = PLGWAω(L̃1ij(p), L̃
2
ij(p), . . . , L̃

g
ij(p)) =

g∑
q=1

ωq
⊙Cp(L̃

q
ij(p))

=

⋃
kqij=1,2,...,L̃qij(p)

q=1,2,...,g

⎧⎨⎩g−1
[1 − exp(−(

g∑
q=1

ωq(− ln(1 − (Aq
ij)

(kqij)))
ε

)1/ε)](RK )

⎫⎬⎭ (48)

where (Aq
ij)

(kqij) = g((L̃qij)
(kqij)), RK =

∑g
q=1(p̃

q
ij)

(kij)−
∑

1≤q<r≤g (p̃
q
ij)

(kij)(p̃rij)
(k)

+
∑

1≤q<r<l≤g (p̃
q
ij)

(kqij)(p̃rij)
(krij)(p̃lij)

(klij)+···+(−1)n−1(p̃1ij)
(k1ij)(p̃2ij)

(k2ij)···(p̃gij)
(kgij )∑g

q=1(#L̃
q
ij(p))−1

.

Step 5. Calculate the collective comprehensive value L̄i(p) of alternative Ai.
Based on the fuzzy measures of criteria subsets, aggregate the ith line elements of collective normalized probabilistic linguistic

ecision matrix Û = [L̂ij(p)]m×n by PLGHC operator (i.e., Eq. (30)) to obtain L̄i(p) as:

L̄i(p) = PLGHCΓ (L̂i1(p), L̂i2(p), . . . , L̂in(p))

=

⋃
ki(j)=1,2,...,#L∗i(j)(p)

j=1,2,...,n

⎧⎨⎩g−1
[1 − exp(−(

n∑
j=1

(Γ (S(j)) − Γ (S(j−1)))(− ln(1 − A
ki(j)
i(j) ))

ε)1/ε)](RK )

⎫⎬⎭ (49)

here A
ki(j)
i(j) = g(L̂

∗(ki(j))
i(j) ), RK =

∑n
j=1 p

(ki(j))
i(j) −

∑
1≤j<h≤n p

(ki(j))
i(j) p

(ki(h))
i(h) +

∑
1≤j<i<f≤n p

(ki(j))
i(j) p

(ki(h))
i(h) p

(ki(f ))
i(f ) +···+(−1)n−1p

(ki(1))
i(1) p

(ki(2))
i(2) ···p

(ki(n))
i(n)∑n

j=1(#L̂
∗
i(j)(p))−1

, L̂∗

ij(p) = nϖjL̂ij(p),

ϖ = {ϖ1,ϖ2, . . . ,ϖn}
T is the weight vector of criteria, L̂∗

i(j)(p) is the jth largest PLTS of L̂∗

ij(p) (j = 1, 2, . . . , n) according to the proposed
possibility ranking algorithm in Section 3.2.

Step 6. Define the positive ideal solution (PIS).
The positive ideal solution (PIS) L+ can be defined as L+

= {s2τ (1)}. The Hamming distance between alternative Ai and PIS can be
alculated by Eq. (8) with ρ = 1 as follows:

d(L̄i(p), L+) =

∑
ki(j)=1,2,...,#L̂∗i(j)(p)

j=1,2,...,n

RK ×

⏐⏐⏐⏐⏐⏐[1 − exp(−(
n∑

j=1

(Γ (S(j)) − Γ (S(j−1)))(− ln(1 − A
ki(j)
i(j) ))

ε)1/ε) − g(s2τ )]/T

⏐⏐⏐⏐⏐⏐
here A

ki(j)
i(j) = g(L̂

∗(ki(j))
i(j) ).

Step 7. Determine the fuzzy measures of criteria subsets.
To determine the fuzzy measures of criteria subsets, it is reasonable to minimize the distance between each alternative Ai and PIS

+. Then, an optimization model is constructed as follows:
15
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Fig. 1. Decision-making flowchart of the new proposed method.

(Mod 4)

min
m∑
i=1

d(L̄i(p), L+)

s.t.
{
Γ (A) ≤ Γ (B),∀A ⊆ B ∈ P(C)
Γ (φ) = 0,Γ (C) = 1,Γ ∈ Θ(Γ )

(50)

To solve (Mod 4), let

d+

L̄i(p),L+
=

1
2

[∑
ki(j)=1,2,...,#L̂∗i(j)(p)

j=1,2,...,n

RK
T ×

⏐⏐⏐1 − exp(−(
∑n

j=1(Γ (S(j)) − Γ (S(j−1)))(− ln(1 − A
(ki(j))
i(j) ))ε)1/ε) − g(s2τ )

⏐⏐⏐+
∑

ki(j)=1,2,...,#L̂∗i(j)(p)

j=1,2,...,n

RK
T × (1 − exp(−(

∑n
j=1(Γ (S(j)) − Γ (S(j−1)))(− ln(1 − A

(ki(j))
i(j) ))ε)1/ε) − g(s2τ ))

] ,

d−

L̄i(p),L+
=

1
2

[∑
ki(j)=1,2,...,#L̂∗i(j)(p)

j=1,2,...,n

RK
T ×

⏐⏐⏐1 − exp(−(
∑n

j=1(Γ (S(j)) − Γ (S(j−1)))(− ln(1 − A
(ki(j))
i(j) ))ε)1/ε) − g(s2τ )

⏐⏐⏐−
∑

ki(j)=1,2,...,#L̂∗i(j)(p)

j=1,2,...,n

RK
T ×

(
1 − exp(−(

∑n
j=1(Γ (S(j)) − Γ (S(j−1)))(− ln(1 − A

(ki(j))
i(j) ))ε)1/ε) − g(s2τ )

)] .

Thus, (Mod 4) is converted into a goal programming model (Mod 5).
(Mod 5)

min
m∑
i=1

(d+

L̄i(p),L+
+ d−

L̄i(p),L+
)

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Γ (A) ≤ Γ (B), ∀A ⊆ B ∈ P(C);
Γ (φ) = 0, Γ (C) = 1, Γ ∈ Θ(Γ );

d+

L̄i(p),L+
− d−

L̄i(p),L+
=
∑

ki(j)=1,2,...,#L̂∗i(j) (p)

j=1,2,...,n

RK
T ×

(
(1 − exp(−(

∑n
j=1(Γ (S(j)) − Γ (S(j−1)))(− ln(1 − A(ki(j))

i(j) ))ε)1/ε)) − g(s2τ )
)

;

d+

L̄i(p),L+
≥ 0; d−

L̄i(p),L+
≥ 0; ε ≥ 1 (k = 1, 2, . . . ,#L∗

i(j)(p); i = 1, 2, . . . ,m; j = 1, 2, . . . , n)

(51)

The fuzzy measures of criteria subsets can be obtained by solving (Mod 5).
Step 8. Rank the alternatives by ranking PLTSs L̄i(p)(i = 1, 2, . . . ,m) using the possibility ranking algorithm proposed in Section 3.2.
The decision-making flowchart of the new proposed method can be depicted in Fig. 1.

Remark 1. Once we have proposed a new method for solving a MCGDM problem, the complexity effort of the new method should
be analyzed by the number of bits in the input and the dimension of the problem (in terms of the O-notation), since the requirement
of time in emergency decision making is very important. In this paper, (Mod 3) and (Mod 5) determine the complexity degree of the
proposed method. The numbers of decision variables in (Mod 3) and (Mod 5) are m and 2n

− 1 respectively, where m is the number
16
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able 4
ecision matrices U1 , U2 , U3 and U4 given by four medical support teams.

C1 C2 C3 C4

E1

A1 {s3(0.1), s4(0.3), s5(0.4)} {s2(0.4), s3(0.3)} {s4(0.1), s5(0.2), s6(0.4)} {s3(0.2), s4(0.4), s5(0.2)}
A2 {s3(1)} {s2(0.3), s3(0.3), s4(0.4)} {s4(1)} {s2(0.1), s3(0.2), s4(0.2)}
A3 {s2(0.4), s3(0.6)} {s2(0.7), s3(0.3)} {s3(0.1), s4(0.4), s5(0.2)} {s3(0.4), s6(0.2)}
A4 {s3(0.4), s4(0.5)} {s2(0.3), s3(0.3)} {s4(0.3), s5(0.4)} {s2(0.1), s3(0.4)}
A5 {s1(0.1), s2(0.3), s3(0.3)} {s2(0.4), s3(0.2)} {s4(0.3), s5(0.4)} {s2(1)}

E2

A1 {s5(0.5), s6(0.1)} {s3(0.1), s4(0.2), s5(0.3)} {s5(0.3), s6(0.5)} {s3(0.2), s4(0.3), s5(0.2)}
A2 {s4(0.1), s5(0.3), s6(0.4)} {s3(0.1), s4(0.4), s5(0.2)} {s5(0.4), s6(0.1), s7(0.1)} {s3(0.3), s4(0.6)}
A3 {s4(0.2), s5(0.1), s6(0.4)} {s3(0.8), s4(0.1)} {s5(0.4), s6(0.2)} {s1(0.2), s2(0.4), s3(0.4)}
A4 {s5(0.3), s6(0.2)} {s2(0.4), s3(0.5)} {s4(0.1), s5(0.1), s6(0.4)} {s2(0.4), s3(0.5)}
A5 {s5(0.4), s6(0.4)} {s2(0.2), s3(0.3), s4(0.2)} {s5(0.7), s6(0.1)} {s2(0.2), s3(0.5), s4(0.2)}

E3

A1 {s4(0.2), s5(0.4), s6(0.3)} {s3(1)} {s4(0.2), s5(0.3), s6(0.5)} {s4(0.1), s5(0.4)}
A2 {s4(0.7), s5(0.1)} {s5(0.4), s6(0.1)} {s5(0.2), s6(0.1), s7(0.5)} {s4(0.1), s5(0.3), s6(0.1)}
A3 {s3(0.1), s4(0.4), s5(0.3)} {s3(0.5), s4(0.4)} {s5(0.1), s6(0.5)} {s3(1)}
A4 {s3(0.3), s4(0.3)} {s4(0.3), s5(0.2), s6(0.3)} {s4(1)} {s2(0.1), s3(0.3), s4(0.1)}
A5 {s4(0.4), s5(0.3)} {s6(0.1), s7(0.5)} {s4(0.1), s5(0.4), s6(0.2)} {s1(0.3), s2(0.2), s3(0.3)}

E4

A1 {s5(0.1), s6(0.6), s7(0.1)} {s3(0.1), s4(0.3), s5(0.1)} {s3(0.1), s4(0.3), s5(0.3)} {s5(0.4), s6(0.1)}
A2 {s3(0.3), s4(0.3), s5(0.3)} {s3(0.1), s4(0.4), s5(0.1)} {s4(0.1), s5(0.1), s6(0.4)} {s4(1)}
A3 {s4(0.4), s5(0.2)} {s2(0.5), s3(0.4)} {s4(0.3), s5(0.5), s6(0.1)} {s3(0.4), s4(0.4), s5(0.1)}
A4 {s3(0.3), s4(0.4)} {s3(0.2), s4(0.4)} {s4(0.1), s5(0.6)} {s3(0.3), s4(0.3)}
A5 {s3(0.3), s4(0.6)} {s2(0.1), s3(0.5), s4(0.3)} {s4(0.4), s5(0.4)} {s3(0.1), s4(0.3), s5(0.1)}

of DMs and n is the number of criteria. Using Karmarkar’s algorithm [46], the time complexity of (Mod 3) is calculated as O(m3.5L2),
here L denotes the number of bits in the input. Similarly, the time complexity of (Mod 5) is O(23.5nL2). Hence, the time complexity
f the proposed method is max{O(23.5nL2),O(m3.5L2)}. Despite the time complexity is a little high, (Mod 3) and (Mod 5) only consume
ery little computational time by using some mature software packages (e.g., LINGO and MATLAB).

. Emergency assistance case study for COVID-19

In this section, an emergency assistance case is presented to demonstrate the rationality and robustness of the proposed method.
ensitivity analysis and comparative analysis are conducted to measure and compare the evaluation results of different type generated
unctions.

.1. Emergency assistance area selection of COVID-19 for Wuhan

In 2020, a new coronavirus COVID-19 broke out all over the world. Wuhan in China was also suffering COVID-19. How to select an
ppropriate area to assist is an urgent issue. Taking five Hardest-hit Wuhan areas A = {A1, A2, A3, A4, A5} into account, whose confirmed
nd suspected cases of pneumonia were in the top five. There exist four criteria that affect the best and optimal assistance, such as
upply medical support capacity C1, medical supply delivery speed C2, living material support capacity C3, medical personnel transport
apacity C4. Preset LTS S = {s0 = very bad, s1 = bad, s2 = a little bad, s3 = slightly bad, s4 = medium,s5 = slightly good, s6 =

little good, s7 = good, s8 = very good}. The first aid comes from four national medical support teams, including medical support
eam E1, E2, E3 and E4. The weights of criteria are determined as ϖ = (0.3, 0.3, 0.2, 0.2)T after discussion and negotiation. Based on
the four criteria, four probabilistic linguistic evaluation matrices are constructed by these four medical support teams. The incomplete
information structure of DMs’ weights is provided by all medical support teams as follows:

Λ =

{
ω ∈ Λ0

⏐⏐⏐⏐⏐ ω1
+ ω3

≥ ω2
+ ω4

; 0.05 ≤ ω1
≤ 0.35; 0.05 ≤ ω2

≤ 0.35;
0.05 ≤ ω3

≤ 0.35; 0.05 ≤ ω4
≤ 0.35; ω1

+ ω2
+ ω3

+ ω4
= 1

}
.

The incomplete information of fuzzy measures of criteria subsets is given as

Θ(Γ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Γ ∈ Θ(Γ )

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

Γ (A) ≤ Γ (B), ∀A ⊆ B ∈ P(C); Γ (φ) = 0, Γ (C) = 1;

0 ≤ Γ1 ≤ 1; 0 ≤ Γ2 ≤ 1; 0 ≤ Γ3 ≤ 1; 0 ≤ Γ4 ≤ 1; 0 ≤ Γ12 ≤ 1; 0 ≤ Γ13 ≤ 1; 0 ≤ Γ14 ≤ 1; 0 ≤ Γ23 ≤ 1;

0 ≤ Γ24 ≤ 1; 0 ≤ Γ34 ≤ 1; 0 ≤ Γ123 ≤ 1; 0 ≤ Γ124 ≤ 1; 0 ≤ Γ134 ≤ 1, 0 ≤ Γ234 ≤ 1;

Γ12 − (Γ123 + Γ124)/2 ≥ 0; Γ24 − (Γ124 + Γ234)/2 ≥ 0; Γ23 − (Γ123 + Γ234)/2 ≥ 0;

Γ1 − (Γ12 + Γ13 + Γ14)/2 + (Γ123 + Γ124 + Γ134)/3 > Γ4 − (Γ14 + Γ24 + Γ34)/2 + (Γ124 + Γ134 + Γ234)/3;

Γ2 − (Γ12 + Γ23 + Γ24)/2 + (Γ123 + Γ124 + Γ234)/3 > Γ3 − (Γ13 + Γ23 + Γ34)/2 + (Γ123 + Γ234 + Γ134)/3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Next, the proposed method of this paper is employed to solve this example.
Step 1. The decision matrices U1, U2, U3 and U4 are constructed in Table 4.
Step 2. The corresponding ascending ordered normalized matrices Ũ1, Ũ2, Ũ3 and Ũ4 are obtained in Table 5.
Step 3. Determine the weights of DMs.
17
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able 5
scending ordered normalized decision matrices Ũ1 , Ũ2 , Ũ3 and Ũ4 .

C1 C2 C3 C4

E1

A1 {s3(1/8), s4(3/8), s5(1/2)} {s2(0), s2(4/7), s3(3/7)} {s4(1/7), s5(2/7), s6(4/7)} {s3(1/4), s4(1/2), s5(1/4)}
A2 {s3(0), s3(0), s3(1)} {s2(3/10), s3(3/10), s4(2/5)} {s4(0), s4(0), s4(1)} {s2(1/5), s3(2/5), s4(2/5)}
A3 {s2(0), s2(2/5), s3(3/5)} {s2(0), s2(7/10), s3(3/10)} {s3(1/7), s4(4/7), s5(2/7)} {s3(0), s3(2/3), s6(1/3)}
A4 {s3(0), s3(4/9), s4(5/9)} {s2(0), s2(1/2), s3(1/2)} {s4(0), s4(3/7), s5(4/7)} {s2(0), s2(1/5), s3(4/5)}
A5 {s1(1/7), s2(3/7), s3(3/7)} {s2(0), s2(2/3), s3(1/3)} {s4(0), s4(3/7), s5(4/7)} {s2(0), s2(0), s2(1)}

E2

A1 {s5(0), s5(5/6), s6(1/6)} {s3(1/6), s4(1/3), s5(1/2)} {s5(0), s5(3/8), s6(5/8)} {s3(2/7), s4(3/7), s5(2/7)}
A2 {s4(1/8), s5(3/8), s6(1/2)} {s3(1/7), s4(4/7), s5(2/7)} {s5(2/3), s6(1/6), s7(1/6)} {s3(0), s3(1/3), s4(2/3)}
A3 {s4(2/7), s5(1/7), s6(4/7)} {s3(0), s3(8/9), s4(1/9)} .{s5(0), s5(2/3), s6(1/3)}. {s1(1/5), s2(2/5), s3(2/5)}
A4 {s5(0), s5(3/5), s6(2/5)} {s2(0), s2(4/9), s3(5/9)} {s4(1/6), s5(1/6), s6(2/3)} {s2(0), s2(4/9), s3(5/9)}
A5 {s5(0), s5(1/2), s6(1/2)} {s2(2/7), s3(3/7), s4(2/7)} {s5(0), s5(7/8), s6(1/8)} {s2(2/9), s3(5/9), s4(2/9)}

E3

A1 {s4(2/9), s5(4/9), s6(1/3)} {s3(0), s3(0), s3(1)} {s4(1/5), s5(3/10), s6(1/2)} {s4(0), s4(1/5), s5(4/5)}
A2 {s4(0), s4(7/8), s5(1/8)} {s5(0), s5(4/5), s6(1/5)} {s5(1/4), s6(1/8), s7(5/8)} {s4(1/5), s5(3/5), s6(1/5)}
A3 {s3(1/8), s4(1/2), s5(3/8)} {s3(0), s3(5/9), s4(4/9)} {s5(0), s5(1/6), s6(5/6)} {s3(0), s3(0), s3(1)}
A4 {s3(0), s3(1/2), s4(1/2)} {s4(3/8), s5(1/4), s6(3/8)} {s4(0), s4(0), s4(1)} {s2(1/5), s3(3/5), s4(1/5)}
A5 {s4(0), s4(4/7), s5(3/7)} {s6(0), s6(1/6), s7(5/6)} {s4(1/7), s5(4/7), s6(2/7)} {s1(3/8), s2(1/4), s3(3/8)}

E4

A1 {s5(1/8), s6(3/4), s7(1/8)} {s3(1/5), s4(3/5), s5(1/5)} {s3(1/7), s4(3/7), s5(3/7)} {s5(0), s5(4/5), s6(1/5)}
A2 {s3(1/3), s4(1/3), s5(1/3)} {s3(1/6), s4(2/3), s5(1/6)} {s4(1/6), s5(1/6), s6(2/3)} {s4(0), s4(0), s4(1)}
A3 {s4(0), s4(2/3), s5(1/3)} {s2(0), s2(5/9), s3(4/9)} {s4(1/3), s5(5/9), s6(1/9)} {s3(4/9), s4(4/9), s5(1/9)}
A4 {s3(0), s3(3/7), s4(4/7)} {s3(0), s3(1/3), s4(2/3)} {s4(0), s4(1/7), s5(6/7)} {s3(0), s3(1/2), s4(1/2)}
A5 {s3(0), s3(1/3), s4(2/3)} {s2(1/9), s3(5/9), s4(1/3)} {s4(0), s4(1/2), s5(1/2)} {s3(1/5), s4(3/5), s5(1/5)}

Table 6
A collective normalized decision matrix Û .

C1 C2 C3 C4

A1 {s4.20(0.19), s5.12(0.46), s6.19(0.35)} {s2.67(0.15), s3.18(0.40), s4.03(0.45)} {s3.80(0.19), s4.68(0.37), s5.70(0.44)} {s4.00(0.20), s4.38(0.41), s5.40(0.39)}
A2 {s3.32(0.18), s3.80(0.40), s4.56(0.42)} {s3.19(0.23), s3.92(0.45), s4.94(0.32)} {s4.33(0.36), s5.06(0.18), s5.93(0.46)} {s3.29(0.16), s3.82(0.38), s4.52(0.46)}
A3 {s3.18(0.17), s3.52(0.41), s4.56(0.42)} {s2.32(0), s2.32(0.55), s3.32(0.45)} {s4.03(0.19), s4.68(0.41), s5.70(0.40)} {s2.83(0.23), s3.29(0.36), s4.13(0.41)}
A4 {s3.25(0), s3.25(0.50), s4.27(0.50)} {s2.81(0.17), s3.10(0.39), s4.15(0.44)} {s4(0.09), s4.11(0.34), s4.95(0.57)} {s2.37(0.10), s2.57(0.44), s3.57(0.46)}
A5 {s3.89(0.07), s3.16(0.46), s4.19(0.47)} {s3.18(0.16), s3.56(0.42), s4.72(0.42)} {s4.11(0.07), s4.33(0.49), s5.34(0.44)} {s2.19(0.25), s2.89(0.35), s3.64(0.40)}

According to (Mod 3), a linear programming model of the DMs’ weights is built as:

min H =

4∑
q=1

4∑
j=1

5∑
i=1

(ϑq+
ij + ϑ

q−
ij ) +

4∑
q=1

4∑
j=1

5∑
i=1

4∑
r=1

ωq
⏐⏐RCq

ij − RC r
ij

⏐⏐− 4∑
q=1

4∑
j=1

5∑
i=1

5∑
t=i+1

ωq
⏐⏐RCq

ij − RCq
tj

⏐⏐
s.t.

⎧⎪⎪⎨⎪⎪⎩
ϑ

q+
ij − ϑ

q−
ij = RCq

ij −
∑g

q=1 ω
qRCq

ij ; (i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4; q = 1, 2, 3, 4)
ϑ

q+
ij ≥ 0; ϑq−

ij ≥ 0; (i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4; q = 1, 2, 3, 4)
ω1

+ ω3
≥ ω2

+ ω4
; 0.05 ≤ ω1

≤ 0.35; 0.05 ≤ ω2
≤ 0.35; 0.05 ≤ ω3

≤ 0.35;
0.05 ≤ ω4

≤ 0.35; ω1
+ ω2

+ ω3
+ ω4

= 1

(52)

Then, consider the Form 1 (i.e., Eq. (4)), the DMs’ weights are obtained by solving Eq. (52) as follows:

ω1
= 0.35, ω2

= 0.10, ω3
= 0.20, ω4

= 0.35.

Step 4. Compute the collective normalized decision matrix Û . To simplify the calculation process, set ε = 1. By Eq. (48), the collective
ormalized decision matrix is obtained and listed in Table 6.
Step 5. Combine the weights of criteria ϖ = (0.3, 0.3, 0.2, 0.2)T to calculate the collective comprehensive value L̄i(p) of alternative

i by Eq. (49) as follows:

L̄1(p) =

⋃
k1(j)=1,2,...,#L∗1(j) (p)

j=1,2,3,4

{
g−1

[
1 − exp ( − ((1 − Γ234)(− ln(1 − g(4ϖ1L̂

(k1(1))
1(1) )))

ε

+ (Γ234 − Γ24)(− ln(1 − g(4ϖ3L̂
(k1(3))
1(3) )))

ε

+(Γ24 − Γ2)(− ln(1 − g(4ϖ4L̂
(k1(4))
1(4) )))

ε

+ Γ2(− ln(1 − g(4ϖ2L̂
(k1(2))
1(2) )))ε)1/ε)

]
(RK1 )

}

RK1 = (p(k1(1))1(1) + p(k1(2))1(2) + p(k1(3))1(3) + p(k1(4))1(4) − p(k1(1))1(1) p(k1(2))1(2) − p(k1(1))1(1) p(k1(3))1(3) − p(k1(1))1(1) p(k1(4))1(4) − p(k1(2))1(2) p(k1(3))1(3) − p(k1(2))1(2) p(k1(4))1(4)

− p(k1(3))1(3) p(k1(4))1(4) + p(k1(1))1(1) p(k1(2))1(2) p(k1(3))1(3) + p(k1(1))1(1) p(k1(2))1(2) p(k1(4))1(4) + p(k1(1))1(1) p(k1(3))1(3) p(k1(4))1(4) + p(k1(2))1(2) p(k1(3))1(3) p(k1(4))1(4)

− p(k1(1))1(1) p(k1(2))1(2) p(k1(3))1(3) p(k1(4))1(4) )/(#L̂∗

1(1)(p) + #L̂∗

1(2)(p) + #L̂∗

1(3)(p) + #L̂∗

1(4)(p) − 1);

L̄2(p) =

⋃
k2(j)=1,2,...,#L∗2(j) (p)

j=1,2,3,4

{
g−1

[
1 − exp ( − ((1 − Γ124)(− ln(1 − g(4ϖ3L̂

(k2(3))
2(3) )))ε + (Γ124 − Γ24)(− ln(1 − g(4ϖ1L̂

(k2(1))
2(1) )))ε

+(Γ24 − Γ4)(− ln(1 − g(4ϖ2L̂
(k2(2))
2(2) )))ε + Γ4(− ln(1 − g(4ϖ4L̂

(k2(4))
2(4) )))ε)1/ε )

]
(RK2 )

}

RK2 = (p(k2(1))2(1) + p(k2(2))2(2) + p(k2(3))2(3) + p(k2(4))2(4) − p(k2(1))2(1) p(k2(2))2(2) − p(k2(1))2(1) p(k2(3))2(3) − p(k2(1))2(1) p(k2(4))2(4) − p(k2(2))2(2) p(k2(3))2(3) − p(k2(2))2(2) p(k2(4))2(4)

− p(k2(3))2(3) p(k2(4))2(4) + p(k2(1))2(1) p(k2(2))2(2) p(k2(3))2(3) + p(k2(1))2(1) p(k2(2))2(2) p(k2(4))2(4) + p(k2(1))2(1) p(k2(3))2(3) p(k2(4))2(4) + p(k2(2))2(2) p(k2(3))2(3) p(k2(4))2(4)
(k2(1)) (k2(2)) (k2(3)) (k2(4)) ˆ∗ ˆ∗ ˆ∗ ˆ∗
− p2(1) p2(2) p2(3) p2(4) )/(#L2(1)(p) + #L2(2)(p) + #L2(3)(p) + #L2(4)(p) − 1);

18
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T
F

able 7
uzzy measures of criteria subsets.
Subsets Γ Subsets Γ Subsets Γ Subsets Γ Subsets Γ

C1 1.0000 C4 1.0000 C1, C4 1.0000 C3, C4 1.0000 C1, C3, C4 0.0000
C2 1.0000 C1, C2 0.7273 C2, C3 1.0000 C1, C2, C3 0.1818 C2, C3, C4 1.0000
C3 0.0000 C1, C3 0.7273 C2, C4 1.0000 C1, C2, C4 1.0000 C1, C2, C3, C4 1.0000

L̄3(p) =

⋃
k3(j)=1,2,...,#L∗3(j) (p)

j=1,2,3,4

{
g−1

[
1 − exp ( − ((1 − Γ124)(− ln(1 − g(4ϖ3L̂

(k3(3))
3(3) )))ε + (Γ124 − Γ24)(− ln(1 − g(4ϖ1L̂

(k3(1))
3(1) )))ε

+(Γ24 − Γ2)(− ln(1 − g(4ϖ4L̂
(k3(4))
3(4) )))ε + Γ2(− ln(1 − g(4ϖ2L̂

(k3(2))
3(2) )))ε)1/ε)

]
(RK3 )

}

RK3 = (p(k3(1))3(1) + p(k3(2))3(2) + p(k3(3))3(3) + p(k3(4))3(4) − p(k3(1))3(1) p(k3(2))3(2) − p(k3(1))3(1) p(k3(3))3(3) − p(k3(1))3(1) p(k3(4))3(4) − p(k3(2))3(2) p(k3(3))3(3) − p(k3(2))3(2) p(k3(4))3(4)

− p(k3(3))3(3) p(k3(4))3(4) + p(k3(1))3(1) p(k3(2))3(2) p(k3(3))3(3) + p(k3(1))3(1) p(k3(2))3(2) p(k3(4))3(4) + p(k3(1))3(1) p(k3(3))3(3) p(k3(4))3(4) + p(k3(2))3(2) p(k3(3))3(3) p(k3(4))3(4)

− p(k3(1))3(1) p(k3(2))3(2) p(k3(3))3(3) p(k3(4))3(4) )/(#L̂∗

3(1)(p) + #L̂∗

3(2)(p) + #L̂∗

3(3)(p) + #L̂∗

3(4)(p) − 1);

L̄4(p) =

⋃
k4(j)=1,2,...,#L∗4(j) (p)

j=1,2,3,4

{
g−1

[
1 − exp ( − ((1 − Γ124)(− ln(1 − g(4ϖ3L̂

(k4(3))
4(3) )))ε + (Γ124 − Γ24)(− ln(1 − g(4ϖ1L̂

(k4(1))
4(1) )))ε

+(Γ24 − Γ4)(− ln(1 − g(4ϖ2L̂
(k4(2))
4(2) )))ε + Γ4(− ln(1 − g(4ϖ4L̂

(k4(4))
4(4) )))ε)1/ε)

]
(RK4 )

}

RK4 = (p(k4(1))4(1) + p(k4(2))4(2) + p(k4(3))4(3) + p(k4(4))4(4) − p(k4(1))4(1) p(k4(2))4(2) − p(k4(1))4(1) p(k4(3))4(3) − p(k4(1))4(1) p(k4(4))4(4) − p(k4(2))4(2) p(k4(3))4(3) − p(k4(2))4(2) p(k4(4))4(4)

− p(k4(3))4(3) p(k4(4))4(4) + p(k4(1))4(1) p(k4(2))4(2) p(k4(3))4(3) + p(k4(1))4(1) p(k4(2))4(2) p(k4(4))4(4) + p(k4(1))4(1) p(k4(3))4(3) p(k4(4))4(4) + p(k4(2))4(2) p(k4(3))4(3) p(k4(4))4(4)

− p(k4(1))4(1) p(k4(2))4(2) p(k4(3))4(3) p(k4(4))4(4) )/(#L̂∗

4(1)(p) + #L̂∗

4(2)(p) + #L̂∗

4(3)(p) + #L̂∗

4(4)(p) − 1);

L̄5(p) =

⋃
k5(j)=1,2,...,#L∗5(j) (p)

j=1,2,3,4

{
g−1

[
1 − exp ( − ((1 − Γ124)(− ln(1 − g(4ϖ3L̂

(k5(3))
5(3) )))ε + (Γ124 − Γ14)(− ln(1 − g(4ϖ2L̂

(k5(2))
5(2) )))ε

+(Γ14 − Γ4)(− ln(1 − g(4ϖ1L̂
(k5(1))
5(1) )))ε + Γ4(− ln(1 − g(4ϖ4L̂

(k5(4))
5(4) )))ε)1/ε)

]
(RK5 )

}

RK5 = (p(k5(1))5(1) + p(k5(2))5(2) + p(k5(3))5(3) + p(k5(4))5(4) − p(k5(1))5(1) p(k5(2))5(2) − p(k5(1))5(1) p(k5(3))5(3) − p(k5(1))5(1) p(k5(4))5(4) − p(k5(2))5(2) p(k5(3))5(3) − p(k5(2))5(2) p(k5(4))5(4)

− p(k5(3))5(3) p(k5(4))5(4) + p(k5(1))5(1) p(k5(2))5(2) p(k5(3))5(3) + p(k5(1))5(1) p(k5(2))5(2) p(k5(4))5(4) + p(k5(1))5(1) p(k5(3))5(3) p(k5(4))5(4) + p(k5(2))5(2) p(k5(3))5(3) p(k5(4))5(4)

− p(k5(1))5(1) p(k5(2))5(2) p(k5(3))5(3) p(k5(4))5(4) )/(#L̂∗

5(1)(p) + #L̂∗

5(2)(p) + #L̂∗

5(3)(p) + #L̂∗

5(4)(p) − 1).

Step 6. Define the PIS L+
= {s8(1)}.

Step 7. Determine the fuzzy measures of criteria subsets.
For simplicity, denote the fuzzy measure of criterion subset by Γjf ···h = Γ ({Cj, Cf , . . . , Ch}) (1 ≤ j < f < h ≤ n). For example,

Γ1 = Γ ({C1}), Γ12 = Γ ({C1, C2}). Set ε = 1. According to (Mod 5), a goal programming model of the fuzzy measures is built as follows:
(Mod 6)

min
5∑

i=1

(d+

L̄i(p),L+
+ d−

L̄i(p),L+
)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ (A) ≤ Γ (B), ∀A ⊆ B ∈ P(C);Γ (φ) = 0, Γ (C) = 1;

0 ≤ Γ1 ≤ 1; 0 ≤ Γ2 ≤ 1; 0 ≤ Γ3 ≤ 1; 0 ≤ Γ4 ≤ 1; 0 ≤ Γ12 ≤ 1; 0 ≤ Γ13 ≤ 1; 0 ≤ Γ14 ≤ 1; 0 ≤ Γ23 ≤ 1;

0 ≤ Γ24 ≤ 1; 0 ≤ Γ34 ≤ 1; 0 ≤ Γ123 ≤ 1; 0 ≤ Γ124 ≤ 1; 0 ≤ Γ134 ≤ 1; 0 ≤ Γ234 ≤ 1;

Γ12 − (Γ123 + Γ124)/2 ≥ 0; Γ24 − (Γ124 + Γ234)/2 ≥ 0; Γ23 − (Γ123 + Γ234)/2 ≥ 0;

Γ1 − (Γ12 + Γ13 + Γ14)/2 + (Γ123 + Γ124 + Γ134)/3 > Γ4 − (Γ14 + Γ24 + Γ34)/2 + (Γ124 + Γ134 + Γ234)/3;

Γ2 − (Γ12 + Γ23 + Γ24)/2 + (Γ123 + Γ124 + Γ234)/3 > Γ3 − (Γ13 + Γ23 + Γ34)/2 + (Γ123 + Γ234 + Γ134)/3;

d+

L̄1(p),L+
− d−

L̄1(p),L+
=
∑

k1(j)=1,2,...,#L̂∗1(j)(p)

j=1,2,3,4

[
RK1

T
×

(
1 − exp ( − ((1 − Γ234)(− ln(1 − Ak11

11 ))ε + (Γ234 − Γ24)(− ln(1 − Ak13
13 ))ε+

(Γ24 − Γ2)(− ln(1 − Ak14
14 ))ε + Γ2(− ln(1 − Ak12

12 ))ε)1/ε) − g(s8)

)]
;

d+

L̄2(p),L+
− d−

L̄2(p),L+
=
∑

k2(j)=1,2,...,#L̂∗2(j)(p)

j=1,2,3,4

[
RK2

T
×

(
1 − exp ( − ((1 − Γ124)(− ln(1 − Ak23

23 ))ε + (Γ124 − Γ24)(− ln(1 − Ak21
21 ))

ε
+

(Γ24 − Γ4)(− ln(1 − Ak22
22 ))ε + Γ4(− ln(1 − Ak24

24 ))ε)1/ε) − g(s8)

)]
;

d+

L̄3(p),L+
− d−

L̄3(p),L+
=
∑

k3(j)=1,2,...,#L̂∗3(j)(p)

j=1,2,3,4

[
RK3

T
×

(
1 − exp ( − ((1 − Γ124)(− ln(1 − Ak33

33 ))ε + (Γ124 − Γ24)(− ln(1 − Ak31
31 ))ε+

(Γ24 − Γ2)(− ln(1 − Ak34
34 ))ε + Γ2(− ln(1 − Ak32

32 ))ε)1/ε) − g(s8)

)]
;

d+

L̄4(p),L+
− d−

L̄4(p),L+
=
∑

k4(j)=1,2,...,#L̂∗4(j)(p)

j=1,2,3,4

[
RK4

T
×

(
1 − exp ( − ((1 − Γ124)(− ln(1 − Ak43

43 ))ε + (Γ124 − Γ24)(− ln(1 − Ak41
41 ))ε+

(Γ24 − Γ4)(− ln(1 − Ak42
42 ))ε + Γ4(− ln(1 − Ak44

44 ))ε)1/ε) − g(s8)

)]
;

d+

L̄5(p),L+
− d−

L̄5(p),L+
=
∑

k5(j)=1,2,...,#L̂∗5(j)(p)

j=1,2,3,4

[
RK5

T
×

(
1 − exp ( − ((1 − Γ124)(− ln(1 − Ak53

53 ))ε + (Γ124 − Γ24)(− ln(1 − Ak51
51 ))ε+

(Γ24 − Γ4)(− ln(1 − Ak52
52 ))ε + Γ4(− ln(1 − Ak54

54 ))ε)1/ε) − g(s8)

)]
;

d+

L̄i(p),L+
≥ 0; d−

L̄i(p),L+
≥ 0 (i = 1, 2, 3, 4, 5)

By solving (Mod 6), the fuzzy measures of criteria subsets are obtained and presented in Table 7.
19



S.-P. Wan, W.-B. Huang Cheng and J.-Y. Dong Applied Soft Computing 107 (2021) 107383

T
C

p

able 8
ollective comprehensive value of each alternative.
A1 A2 A3 A4 A5

{s3.20(0.24), s3.51(0.38),
s4.32(0.38)}

{s2.63(0.28), s3.06(0.35),
s3.61(0.37)}

{s2.26(0.21), s2.63(0.40),
s3.31(0.39)}

{s1.90(0.15), s2.06(0.41),
s2.86(0.44)}

{s1.76(0.20), s2.31(0.40),
s2.91(0.40)}

Table 9
Possibility degree.
P ′

12 P ′

13 P ′

14 P ′

15 P ′

21 P ′

23 P ′

24 P ′

25 P ′

31 P ′

32 P ′

34 P ′

35 P ′

41 P ′

42 P ′

43 P ′

45 P ′

51 P ′

52 P ′

53 P ′

54

0.77 0.91 1 1 0.23 0.64 0.88 0.89 0.09 0.36 0.73 0.67 0 0.12 0.27 0.38 0 0.11 0.33 0.62

Table 10
Ranking results for four different types of common Archimedean copulas of PLTSs.
Type Function P ′

1 P ′

2 P ′

3 P ′

4 P ′

5 Ranking

Gumbel Ge(x) = (− ln x)ε(ε=1) 4.18 3.14 2.36 1.26 1.56 A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4
Clayton Ge(x) = x−ε

− 1(ε=1) 4.18 3.25 2.25 1.26 1.56 A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4

Frank Ge(x) = − ln e−εx−1
e−ε−1 (ε=1) 4.18 3.25 2.25 1.26 1.56 A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4

Joe Ge(x) = − ln[1 − (1 − x)ε](ε=1) 4.18 3.14 2.36 1.26 1.56 A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4

Table 11
Ranking results for different values of parameter ε.
ε P ′

1 P ′

2 P ′

3 P ′

4 P ′

5 Ranking

1 4.18 3.14 2.36 1.26 1.56 A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4
3 4.18 3.14 2.36 1.26 1.56 A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4
5 4.18 3.14 2.36 1.26 1.56 A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4
15 4.18 3.14 2.36 1.26 1.56 A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4
25 4.18 3.14 2.36 1.26 1.56 A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4
45 4.18 3.14 2.36 1.26 1.56 A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4
95 4.18 3.14 2.36 1.26 1.56 A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4

Then, the collective comprehensive value L̄i(p) of alternative Ai is obtained, as shown in Table 8.
Step 8. To rank PLTSs L̄i(p)(i = 1, 2, 3, 4, 5), calculate the possibility degree P ′

ij = P ′(L̄i(p) ≥ L̄j(p)) by Eq. (16). The results are
resented in Table 9.
The ranking values are obtained by Eq. (16) as P

′

1 = 4.18, P ′
2 = 3.14, P ′

3 = 2.36, P ′
4 = 1.26, P ′

5 = 1.56.
Therefore, the ranking order of alternatives is A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4 and the best alternative is A1.
To illustrate the influence of the linguistic scale function in this example, rank the alternatives based on the Form 2 (i.e., Eq. (5))

and Form 3 (i.e., Eq. (6)). The ranking values are shown below.
For the Form 2 (i.e., Eq. (5)) (Let a =

8√9 ≈ 1.3160), it has

P ′
1 = 4.18, P ′

2 = 3.14, P ′
3 = 2.36, P ′

4 = 1.44, P ′
5 = 1.39.

The ranking order of alternatives is A1 ≻ A2 ≻ A3 ≻ A4 ≻ A5.
For the Form 3 (i.e., Eq. (6)) (Let α = β = 0.8), it has

P
′

1 = 3.42, P ′
2 = 3.61, P ′

3 = 1.80, P ′
4 = 1.23, P ′

5 = 2.44.

The ranking order of alternatives is A2 ≻ A1 ≻ A5 ≻ A3 ≻ A4.

7.2. Sensitivity analyses

To manifest that the ranking result is universal, this subsection analyzes the influences of four different types of generator Ge(x)
based on common Archimedean copulas and the parameter ε.

The ranking results with four different types of common Archimedean copulas based on Form 1 (i.e., Eq. (4)) are presented in
Table 10.

As can be seen from Table 10, the rank results are the same for four different types of common Archimedean copulas. No matter
which generator Ge(x) is, the ranking order of alternatives keeps unchanged. The ranking result of Gumbel copula function is the same
as that of Joe copula function. The main reason is that the PLGHC operator is degraded to PLJHC operator when ε = 1. From the above
analysis, the ranking results are highly similar for these four different types of common Archimedean copulas.

Then, taking Gumbel generator into consideration, the ranking results for difference values of parameter ε are listed in Table 11
(based on Form 1 (i.e., Eq. (4))). No matter the value of ε is, the ranking order remains unchanged. It is easy to see that any tiny
intervention on evaluations would not affect the ranking results.

The aforesaid sensitivity analyses reveal that the method proposed in this paper is robust.

7.3. Comparative analysis

In this subsection, comparative analyses with Pang et al.’s method [12] and Liu et al.’s method [26] are conducted to illustrate the
advantages of the proposed method.
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Table 12
Collective decision matrix Û .

C1 C2 C3 C4

A1
{s3(0.03), s4(0.15), s5(0.48),
s6(0.31), s7(0.03)}

{s2(0.14), s3(0.45),
s4(0.23), s5(0.18)}

{s3(0.04), s4(0.19),
s5(0.35), s6(0.42)}

{s3(0.13), s4(0.28),
s5(0.54), s6(0.05)}

A2
{s3(0.33), s4(0.33),
s5(0.21), s6(0.13)}

{s2(0.08),s3(0.15), s4(0.41),
s5(0.31), s6(0.05)}

{s4(0.29), s5(0.27),
s6(0.24), s7(0.20)}

{s2(0.05), s3(0.18), s4(0.57),
s5(0.15), s6(0.05)}

A3
{s2(0.10), s3(0.18), s4(0.37),
s5(0.21), s6(0.14)}

{s2(0.31), s3(0.55), s4(0.14)}
{s3(0.04), s4(0.22),
s5(0.42), s6(0.32)}

{s1(0.05), s2(0.10), s3(0.38),
s4(0.44), s5(0.03)}

A4
{s3(0.34), s4(0.41),
s5(0.15), s6(0.10)}

{s2(0.24), s3(0.35), s4(0.26),
s5(0.06), s6(0.09)}

{s4(0.18), s5(0.65), s6(0.17)} {s2(0.21), s3(0.61), s4(0.18)}

A5
{s1(0.04), s2(0.11), s3(0.19),
s4(0.31), s5(0.23), s6(0.12)}

{s2(0.27), s3(0.33), s4(0.15),
s6(0.04), s7(0.21)}

{s4(0.27), s5(0.63), s6(0.10)}
{s1(0.09), s2(0.37), s3(0.28),
s4(0.21), s5(0.05)}

7.3.1. Comparison with Pang et al.’s method
Pang et al.’s method [12] is used to solve the example in Section 7.1. The steps are described below.
Step 1. The individual decision matrices U1, U2, U3 and U4 are aggregated into the collective decision matrix Û , as shown in Table 12.

Step 2. Calculate the weights of criteria by Eq. (26) in [12] as follows:

ω = (0.155, 0.249, 0.313, 0.284)T.

Step 3. Determine the PIS L(p)+ and the NIS L(p)− by Definitions 17 and 18 in [12] as follows:
L(p)+ = ({s2.378, s1.875, s1.030, s0.857, s0.214, s0.036}, {s1.642, s1.638, s1.458, s1.042, s0.532, s0},

{s3.147, s2.545, s1.738, s1.167, s0, s0}, {s2.267, s1.267, s0.736, s0.7, s0.1, s0})
,

L(p)− = ({s0.014, s0.012, s0.0007, s0.0005, s0, s0}, {s0.093, s0.082, s0.065, s0.006, s0, s0},
{s0.149, s0.066, s0.018, s0, s0, s0}, {s0.079, s0.041, s0.003, s0.0008, s0, s0})

.

Step 4. Calculate the deviation degrees between each alternative and the PIS (NIS) by Eqs. (28) and (29) in [12], respectively. Then,
min(Ai, L(p)+) and dmax(Ai, L(p)−) can be determined as follows:

d(A1, L(p)+) = 0.671, d(A2, L(p)+) = 0.815, d(A3, L(p)+) = 0.832, d(A4, L(p)+) = 0.904, d(A5, L(p)+) = 0.950,
d(A1, L(p)−) = 1.232, d(A2, L(p)−) = 1.085, d(A3, L(p)−) = 1.023, d(A4, L(p)−) = 0.986, d(A5, L(p)−) = 1.013,
dmin(Ai, L(p)+) = 0.671, dmax(Ai, L(p)−) = 1.232.

Step 5. Derive the closeness coefficient CI of each alternative by Eq. (32) in [12].

CI(A1) = 0, CI(A2) = −0.33, CI(A3) = −0.41, CI(A4) = −0.55, CI(A5) = −0.59.

Step 6. Rank the alternatives according to CI(Ai)(i = 1, 2, 3, 4, 5) as follows:

A1 ≻ A2 ≻ A3 ≻ A4 ≻ A5.

Thus, ranking order obtain by method in [12] is slightly different from the ranking A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4 obtained by the
roposed method based on Form 1 (i.e., Eq. (4)), but completely the same as the ranking A1 ≻ A2 ≻ A3 ≻ A4 ≻ A5 obtained by the

proposed method based on Form 2 (i.e., Eq. (5)). The best alternative obtained by method in [12] is the same as that obtained by the
proposed method of this paper based on Forms 1 and 2. Compares with Pang et al.’s method [12], the proposed method of this paper
has some merits:

(1) This paper considers the different importance among the weights of DMs and the interactions among criteria. The weights of
DMs are determined objectively by constructing a tri-objective nonlinear programming model and the fuzzy measure of criteria subsets
are obtained by constructing a multi-objective optimization model, which makes the decision results more reasonable. However, Pang
et al. [12] considers the DMs’ weights and the criteria weights by a simple calculation.

(2) This paper uses linguistic scale function to develop the PLGHC operator, which considers the interactions among criteria. However,
Pang et al. [12] used linguistic variables labels rather than linguistic scale function to aggregate probabilistic linguistic terms, which
ignored the interactions among criteria and may lose the linguistic evaluation information.

7.3.2. Comparison with Liu et al.’s method
Liu et al.’s method [26] is used to solve the example in Section 7.1. The steps are listed as follows:
Step 1. Calculate the dependent weights ωq

ij for the criterion Cj with respect to the alternative Ai of DMs Eq by PLDWA operator
(i.e., Eq. (11)) in [26], where i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4 and q = 1, 2, 3, 4.

ω
q
1j =

⎡⎢⎢⎣
0.220 0.277 0.302 0.312
0.250 0.321 0.221 0.319
0.305 0.202 0.312 0.178
0.225 0.199 0.165 0.191

⎤⎥⎥⎦ , ωq
2j =

⎡⎢⎢⎣
0.224 0.199 0.280 0.291
0.314 0.332 0.081 0.328
0.151 0.152 0.317 0.166
0.311 0.317 0.322 0.215

⎤⎥⎥⎦ , ωq
3j =

⎡⎢⎢⎣
0.273 0.317 0.316 0.276
0.182 0.147 0.305 0.311
0.317 0.262 0.118 0.197
0.228 0.274 0.262 0.216

⎤⎥⎥⎦ ,

ω
q
4j =

⎡⎢⎢⎣
0.308 0.283 0.154 0.236
0.071 0.304 0.297 0.325
0.319 0.126 0.243 0.137

⎤⎥⎥⎦ , ωq
5j =

⎡⎢⎢⎣
0.206 0.313 0.263 0.249
0.227 0.318 0.118 0.283
0.280 0.045 0.320 0.311

⎤⎥⎥⎦ .

0.302 0.287 0.306 0.302 0.287 0.324 0.300 0.156
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Table 13
Collective decision matrix Û .

C1 C2 C3 C4

A1 {s4(0.12), s5(0.60), s6(0.28)} {s3(0.09), s4(0.34), s5(0.57)} {s4(0.12), s5(0.35), s6(0.53)} {s3(0.13), s4(0.46), s5(0.41)}
A2 {s3(0.11), s4(0.43), s5(0.46)} {s3(0.14), s4(0.60), s5(0.26)} {s4(0.28), s5(0.12), s6(0.60)} {s2(0.10), s3(0.35), s4(0.54)}
A3 {s3(0.11), s4(0.43), s5(0.46)} {s3(0), s3(0.67), s4(0.33)} {s4(0.11), s5(0.47), s6(0.42)} {s2(0.15), s3(0.35), s4(0.50)}
A4 {s3(0), s3(0.50), s4(0.50)} {s2(0.12), s3(0.37), s4(0.51)} {s4(0), s4(0.21), s5(0.79)} {s2(0.06), s3(0.45), s4(0.49)}
A5 {s3(0.03), s4(0.47), s5(0.50)} {s2(0.10), s3(0.43), s4(0.47)} {s4(0.04), s5(0.60), s6(0.36)} {s2(0.21), s3(0.35), s4(0.44)}

Table 14
Ranking results obtained using the PL-PT-MULTIMOORA method.

PL-PT-ratio system method PL-PT-reference point method PL-PT-full multiplicative method

TS ′

i Rank TS ′′

i Rank TS ′′′

i Rank

A1 0.5823 1 0.1251 3 3.5691 2
A2 0.3861 3 0.1732 1 3.7655 1
A3 0.4358 2 0.1388 2 3.1437 5
A4 0.3859 4 0.0934 4 3.3597 3
A5 0.2813 5 0.0932 5 3.2430 4

The decision matrices U1, U2, U3 and U4 are transformed into the collective decision matrix Û , as shown in Table 13.
Step 2. Determine the ranking results using the PL-PT-MULTIMOORA method [26]. The evaluation values of the alternatives and the

ranking results obtained by the PL-PT-ratio system method, PL-PT-reference point method, and PL-PT-full multiplicative method are
presented in Table 14. (Set α = 0.88, β = 0.88, λ = 2.25, γ = 0.61, δ = 0.69 and κ = (0.29, 0.22, 0.19, 0.17, 0.13)).

Step 3. Calculate the final ranking of the alternatives.
(1) The normalized results by using the PL-PT-MULTIMOORA method are obtained in the matrix:

GN
=
[
gN
ie

]
5×3 =

⎛⎜⎜⎜⎝
0.075 0.016 0.462
0.050 0.022 0.488
0.057 0.018 0.407
0.050 0.012 0.435
0.038 0.012 0.420

⎞⎟⎟⎟⎠ .
The weights of the three methods are obtained by Eq. (24) and Rnum

i are obtained by Eq. (25) in [26].

χe = (0.269, 0.085, 0.647), Rnum
i = (0.318, 0.327, 0.277, 0.294, 0.280).

(2) The ranking results by using the PL-PT-MULTIMOORA method are presented in matrix

K = [kie]5×3 =

⎛⎜⎜⎜⎝
1 3 2
3 1 1
2 2 5
4 4 3
5 5 4

⎞⎟⎟⎟⎠ ,
By Eq. (26) in [26], the synthesized ranking value of alternative Ai is obtained as

Rran
i = (4,

13
3
,
10
3
,
5
3
,
5
3
).

(3) By Eq. (27) in [26], the final ranking value of alternative Ai is obtained as

Rfinal
i = (2.326, 1.997, 1.972, 0.980, 0.974).

Step 4. Rank the alternatives according to Rfinal
i (i = 1, 2, 3, 4, 5) as follows:

A1 ≻ A2 ≻ A3 ≻ A4 ≻ A5.

The ranking result obtained by method [26] is slightly different from the ranking A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4 obtained by the proposed
method based on Form 1 (i.e., Eq. (4)), but completely the same as the ranking A1 ≻ A2 ≻ A3 ≻ A4 ≻ A5 obtained by the proposed
method based on Form 2 (i.e., Eq. (5)). The best alternative obtained by method in [26] is A1, which is the same as that obtained by
the proposed method based on Forms 1 and 2. Compared with Liu et al.’s method in [26], the proposed method of this paper has some
merits:

(1) The PLDWA operator in [26] provides the lower weight to the too small or too large evaluations, but the effect of the evaluations
is not obvious. This paper considers the different importance among the weights of DMs. The DMs’ weights are obtained objectively
by constructing a tri-objective nonlinear programming model, which makes the decision results more reasonable.

(2) For the PLDWA operator in [26] and the PLGHC operator in the proposed method, two operators both consider the interactions
among criteria. The ranking result of Archimedean copula function of this paper is similar to the ranking result of method in [26].
Besides the above, this paper also considers the interrelation among input arguments, which reflects the robustness and rationality of
the proposed method of this paper.

The ranking results obtained by Pang et al.’s method [12], Liu et al.’s method [26], the proposed method with Gumbel type (PLGHC),
the proposed method with Clayton type (PLCHC), the proposed method with Frank type (PLFHC) and the proposed method with Joe
type (PLJHC) based on Form 1 (i.e., Eq. (4)) are visually plotted in Fig. 2.
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Fig. 2. Ranking results obtained by six different methods.

It can be seen clearly from Fig. 2, A1 is the best alternative, A2 is the second best alternative and A3 is the third best alternative for
the above six methods. The ranking results based on common Archimedean copulas are the same, which is A1 ≻ A2 ≻ A3 ≻ A5 ≻ A4.
Thus, the ranking results verify the rationality and robustness of the proposed method.

8. Conclusion

To minimize the loss of people’s lives and property and to maintain social stability in the disaster areas, it is of great importance to
ensure the efficient and orderly emergency assistance after the occurrence of new coronavirus COVID-19. This paper develops a new
method for interactive MCGDM with PLTSs and applies to the emergency assistance area selection of COVID-19 for Wuhan. The primary
work and features of this paper are outlined as follows:

(1) In this paper, a new possibility degree of PLTSs is defined and then a new possibility degree algorithm is proposed to rank a
series of PLTSs. The proposed possibility degree algorithm can take DM’s different preferences of linguistic scale functions into account,
which is more robust and more in accordance with real situations.

(2) Some new operational laws of PLTSs based on the Archimedean copulas and co-copulas are defined. Archimedean copulas
functions are suitable to characterize probability distributions. They have been extended to PLTSs. The proposed operational laws greatly
generalize that defined by Mao et al. [24].

(3) Archimedean copulas are monotone non-decreasing, and they can be viewed as aggregation functions on one certain set.
Considering the interactions among criteria, the PLGC operator and PLGHC operator are developed. Besides, the properties of these
operators are studied, including idempotency, monotonicity and boundedness.

(4) To determine the weights of DMs, a tri-objective nonlinear programming model is constructed and transformed into a linear
programming model for resolution. To derive the fuzzy measures of criteria subsets, an optimization model is built and transformed
into a goal programming model for resolution. Th DMs’ weights and the fuzzy measures of criteria subsets are obtained objectively,
which can make the decision results more reasonable and objective.

(5) Use the PLGWA operator to determine the collective normalized decision matrix. Use the PLGHC operator to derive the overall
evaluation values of alternatives. The ranking order of alternatives is generated by the proposed possibility degree algorithm of PLTSs.
Thereby, a new method for the interactive MCGDM with PLTSs is put forward. The proposed method considers the different importance
among the weights of DMs and the interactions among criteria, which is more in accordance with the real decision making situations.

Although the emergence assistance example is provided to illustrate the validity of the proposed method, it can be employed to
solve many practical decision-making problems, such as supply chain management, college evaluation, plant siting selection, etc. For
future research, based on the defined new operational laws of PLTSs, some new generalized Choquet geometric operators of PLTSs will
be developed for MCGDM.
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ppendix A

roof of Theorem 2.

(1) L1(p) ⊕Cp L2(p)

=

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1(Cp∗(g(L(k1)1 ), g(L(k2)2 )))((p(k1)1 + p(k2)2 − p(k1)1 p(k2)2 )/L)

}

=

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1

[1 − Ge−1(Ge(1 − g(L(k1)1 )) + Ge(1 − g(L(k2)2 )))]((p(k1)1 + p(k2)2 − p(k1)1 p(k2)2 )/L)
}

=

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1(Cp∗(g(L(k2)2 ), g(L(k1)1 )))((p(k2)2 + p(k1)1 − p(k2)2 p(k1)1 )/L)

}
= L2(p) ⊕Cp L1(p);
(2) L1(p) ⊗Cp L2(p)

=

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1(Cp(g(L(k1)1 ), g(L(k1)1 )))(p(k1)1 p(k2)2 )

}

=

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1

[Ge−1(Ge(g(L(k1)1 )) + Ge(g(L(k2)2 )))](p(k1)1 p(k2)2 )
}

=

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1(Cp(g(L(k2)2 ), g(L(k1)1 )))(p(k2)2 p(k1)1 )

}
= L2(p) ⊗Cp L1(p);
(3) λ⊙Cp(L1(p) ⊕Cp L2(p))

= λ⊙Cp

⎛⎜⎜⎝ ⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1

[1 − Ge−1(Ge(1 − g(L(k1)1 )) + Ge(1 − g(L(k2)2 )))]((p(k1)1 + p(k2)2 − p(k1)1 p(k2)2 )/L)
}⎞⎟⎟⎠

=

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1

[1 − Ge−1(λGe(1 − g(L(k1)1 )) + λGe(1 − g(L(k2)2 )))]((p(k1)1 + p(k2)2 − p(k1)1 p(k2)2 )/L)
}

=

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1

[1 − Ge−1(λGe(1 − g(L(k2)2 )) + λGe(1 − g(L(k1)1 )))]((p(k2)2 + p(k1)1 − p(k2)2 p(k1)1 )/L)
}

= λ⊙Cp(L2(p) ⊕Cp L1(p));

(4) (L1(p) ⊗Cp L2(p))λ

=

⎛⎜⎜⎝ ⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1

[Ge−1(Ge(g(L(k1)1 )) + Ge(g(L(k2)2 )))](p(k1)1 p(k2)2 )
}⎞⎟⎟⎠

λ

=

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1

[Ge−1(λGe(g(L(k1)1 )))](p(k1)1 )
}

⊗Cp

⋃
k1=1,2,...,#L1(p)
k2=1,2,...,#L2(p)

{
g−1

[Ge−1(λGe(g(L(k2)2 )))](p(k2)2 )
}

= (L1(p))λ ⊗Cp (L2(p))λ;
(5) (λ1 + λ2)⊙CpL(p)

=

⋃
k=1,2,...,#L(p)

{
g−1

[1 − Ge−1(λ1Ge(1 − g(L(k))))](p(k))
}

⊕Cp

⋃
k=1,2,...,#L(p)

{
g−1

[1 − Ge−1(λ2Ge(1 − g(L(k))))](p(k))
}

= (λ1L(p)) ⊕Cp (λ2L(p));
λ1 λ2
(6) (L(p)) ⊗Cp (L(p))
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G

=

⋃
k=1,2,...,#L(p)

{
g−1

[Ge−1(λ1Ge(g(L(k))))](p(k))
}

⊗Cp

⋃
k=1,2,...,#L(p)

{
g−1

[Ge−1(λ2Ge(g(L(k))))](p(k))
}

=

⋃
k=1,2,...,#L(p)

{
g−1

[Ge−1((λ1 + λ2)Ge(g(L(k))))](p(k))
}

= (L(p))λ1+λ2;

(7) ((L(p))λ1 )λ2 =

⎛⎝ ⋃
k=1,2,...,#L(p)

{
g−1

[Ge−1(λ1Ge(g(L(k))))](p(k))
}⎞⎠λ2

=

⋃
k=1,2,...,#L(p)

{
g−1

[Ge−1(λ1λ2Ge(g(L(k))))](p(k))
}

= (L(p))λ1λ2 .

It is easy to prove formula (8) and formula (9), therefore, they were omitted.

Appendix B

Proof of Theorem 3. Theorem 3 is proved by mathematical induction in the following.
For n = 1, Eq. (26) is right.
Suppose Eq. (26) holds for n = t , namely,
GPLCΓ (L1(p), L2(p), . . . , Lt (p)) =

⋃
kj=1,2,...,#L(j)(p)

j=1,2,...,t

{
g−1

[(1 − Ge−1(
∑t

j=1(Γ (S(j)) − Γ (S(j−1)))(Ge(1 − A
(kj)
(j) ))ε)1/ε)1/λ](RK )

}
where A

(kj)
(j) =

e−1((λ(Ge(g(L
(kj)
(j) )))ε)1/ε), RK =

∑t
j=1 p

(kj)
(j) −

∑
1≤j<i≤t p

(kj)
(j) p

(ki)
(i) +

∑
1≤j<i<l≤t p

(kj)
(j) p

(ki)
(i) p

(kl)
(l) +···+(−1)t−1p

(k1)
(1) p

(k2)
(2) ···p(kt )(t)∑t

j=1(#L(j)(p))−1
, K = 1, 2, . . . , #L(1)(p) × #L(2)(p) ×

· · · × #L(t)(p).
For n = t + 1, the GPLC operator are obtained by operational laws in Definition 19.

GPLCΓ (L1(p), L2(p), . . . , Lt (p), Lt+1(p))

=

⋃
kj=1,2,...,#L(j)(p)

j=1,2,...,t

⎧⎨⎩g−1
[(1 − Ge−1(

t∑
j=1

(Γ (S(j)) − Γ (S(j−1)))(Ge(1 − A
(kj)
(j) ))ε)1/ε)1/λ](RK )

⎫⎬⎭
⊕Cp

⋃
kt+1=1,2,...,#L(t+1)(p)

{
g−1

[(1 − Ge−1((Γ (S(t+1)) − Γ (S(t)))(Ge(1 − A(kt+1)
(t+1) ))

ε)1/ε)1/λ](p(kt+1)
t+1 )

}

=

⋃
kj=1,2,...,#L(j)(p)

j=1,2,...,t+1

⎧⎪⎨⎪⎩g−1

⎡⎢⎣
⎛⎝ 1 − Ge−1(

∑t
j=1(Γ (S(j)) − Γ (S(j−1)))(Ge(1 − A

(kj)
(j) ))ε)

1/ε

+((Γ (S(t+1)) − Γ (S(t)))(Ge(1 − A(kt+1)
(t+1) ))

ε)
1/ε

⎞⎠1/λ
⎤⎥⎦(RK + p(kt+1)

(t+1) − RK · p(kt+1)
(t+1)∑t+1

j=1 (#L(j)(p)) − 1

)⎫⎪⎬⎪⎭
=

⋃
kj=1,2,...,#L(j)(p)

j=1,2,...,t+1

⎧⎨⎩g−1
[(1 − Ge−1(

t+1∑
j=1

(Γ (S(j)) − Γ (S(j−1)))(Ge(1 − A
(kj)
(j) ))ε)1/ε)1/λ](RK+1)

⎫⎬⎭
where A

(kj)
(j) = Ge−1((λ(Ge(g(L

(kj)
(j) )))ε)1/ε), RK+1 =

∑t+1
j=1 p

(kj)
(j) −

∑
1≤j<i≤t+1 p

(kj)
(j) p

(ki)
(i) +

∑
1≤j<i<l≤t+1 p

(kj)
(j) p

(ki)
(i) p

(kl)
(l) +···+(−1)tp

(k1)
(1) p

(k2)
(2) ···p

(kt+1)
t+1∑(t+1)

j=1 (#L(j)(p))−1
, K + 1 =

1, 2, . . . , #L(1)(p) × #L(2)(p) × · · · × #L(t+1)(p).

In conclusion, Eq. (26) satisfies n = t + 1. Thus, Eq. (26) holds for all n.

Appendix C

Proof of Property 3. For a set of PLTSs I = {Lj(p)
⏐⏐j = 1, 2, . . . , n}, if Lj(p) = L(p), then

GPLCΓ (L1(p), L2(p), . . . , Ln(p)) = GPLCΓ (L(p), L(p), . . . , L(p)  
n

)

According to Definition 19, the result is obtained as follows:

GPLCΓ (L(p), L(p), . . . , L(p)  
n

) = (
n∑

j=1

((Γ (S(j)) − Γ (S(j−1)))⊙Cp(L(p))λ))1/λ

= (((Γ (S(1)) − Γ (S(0)))⊙Cp(L(p))λ) ⊕Cp ((Γ (S(2)) − Γ (S(1)))⊙Cp(L(p))λ) ⊕Cp · · · ⊕Cp ((Γ (S(n)) − Γ (S(n−1)))⊙Cp(L(p))λ))1/λ

= ((L(p))λ
n∑

(Γ (S(j)) − Γ (S(j−1))))1/λ
j=1
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L

P

P
P

(

V

R

Note that

Note that
n∑

j=1

(Γ (S(j)) − Γ (S(j−1))) = (Γ (S(1)) − Γ (S(0))) + (Γ (S(2)) − Γ (S(1))) + · · · + (Γ (S(n)) − Γ (S(n−1)))

= Γ (S(n)) − Γ (S(0)) = 1,

Thus, GPLCΓ (L1(p), L2(p), . . . , Ln(p)) = ((L(p))λ)1/λ = L(p). Then, the proof of GPLCΓ (L1(p), L2(p), . . . , Ln(p)) = L(p) with respect to
j(p) = L(p) in Property 3 is proven.

roof of Property 4. For two sets of PLTSs I = {Lj(p)
⏐⏐j = 1, 2, . . . , n} and I ′ = {L′

j(p)
⏐⏐j = 1, 2, . . . , n}. Since Lj(p) ≥ L′

j(p),

GPLCΓ (L1(p), L2(p), . . . , Ln(p)) = (
n∑

j=1

((Γ (S(j)) − Γ (S(j−1)))⊙Cp(L(j)(p))λ))1/λ,

GPLCΓ (L′

1(p), L
′

2(p), . . . , L
′

n(p)) = (
n∑

j=1

((Γ (S(j)) − Γ (S(j−1)))⊙Cp(L′

(j)(p))
λ))1/λ.

Then L(j)(p) ≥ L′

(j)(p), further obtain that (
∑n

j=1((Γ (S(j)) − Γ (S(j−1)))⊙Cp(L(j)(p))λ))1/λ ≥ (
∑n

j=1((Γ (S(j)) − Γ (S(j−1)))⊙Cp(L′

(j)(p))
λ))1/λ,

namely

GPLCΓ (L1(p), L2(p), . . . , Ln(p)) ≥ GPLCΓ (L′

1(p), L
′

2(p), . . . , L
′

n(p)).

Then, the proof of GPLCΓ (L1(p), L2(p), . . . , Ln(p)) ≥ GPLCΓ (L′

1(p), L
′

2(p), . . . , L
′
n(p)) with respect to Lj(p) ≥ L′

j(p) in Property 4 is proven.

roof of Property 5. For a set of PLTSs I = {Lj(p)
⏐⏐j = 1, 2, . . . , n}, L′

j(p) = {L−

j (1)} and L′′

j (p) = {L+

j (1)}(j = 1, 2, . . . , n) are two special

LTSs, where L−

j and L+

j are the minimal and maximal linguistic terms of L
(kj)
j in Lj(p), respectively.

Since L−

(j) ≤ L(j) ≤ L+

(j), one has
∑n

j=1((Γ (S(j)) − Γ (S(j−1)))⊙Cp(L−

(j)(1))
λ)1/λ ≤ (

∑n
j=1((Γ (S(j)) − Γ (S(j−1)))⊙Cp(L(j)(p))λ))1/λ ≤∑n

j=1((Γ (S(j)) − Γ (S(j−1)))⊙Cp(L+

(j)(1))
λ))1/λ.

According to the conclusion of Property 4, it can easily obtain that GPLCΓ (V ) ≤ GPLCΓ (L1(p), L2(p), . . . , Ln(p)) ≤ GPLCΓ (U), where
= (L′

1(p), L
′

2(p), . . . , L
′
n(p)) and U = (L′′

1(p), L
′′

2(p), . . . , L
′′
n(p)) Thus, Property 5 is proven.
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