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Hepatocellular carcinoma (HCC) remains one of themost lethal cancers around

theworld. Precision oncology will be crucial for further improving the prognosis

of HCC patients. Compared with traditional bulk RNA-seq, single-cell RNA

sequencing (scRNA-seq) enables the transcriptomes of a great deal of individual

cells assayed in an unbiased manner, showing the potential to deeply reveal

tumor heterogeneity. In this study, based on the scRNA-seq results of primary

neoplastic cells and paired normal liver cells from eight HCC patients, a new

strategy of machine learning algorithms was applied to screen core biomarkers

that distinguishedHCC tumor tissues from the adjacent normal liver. Expression

profiles of HCC cells and normal liver cells were first analyzed by maximum

relevanceminimum redundancy (mRMR) to get a top 50 signature gene feature.

For further analysis, the incremental feature selection (IFS) method and leave-

one-out cross validation (LOOCV) were conducted to build an optimal

classification model and to extract 21 potentially essential biomarkers for

HCC cells. Our results provided new insights into HCC pathogenesis that

might be valuable for HCC diagnosis and therapy.
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Introduction

Hepatocellular carcinoma (HCC), with an annual incidence of 8.3 per 1,00,000 in

population around the world, remains one of the most lethal malignancies in the digestive

system. It is estimated that the 5-years survival rate for HCC patients is 18%, only a little

bit higher than pancreatic cancer among all cancers, indicating that HCC is still one of the

worst prognostic tumors worldwide (Siegel et al., 2020). Fortunately, with the

development of modern cancer therapies, which integrate diverse neoadjuvant and

adjuvant strategies with classic surgical resection, the survival rate of HCC has been
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gradually improving in the past few decades (McGlynn et al.,

2020). However, the highly heterogeneous nature of HCC

determines that a large proportion of patients receiving

standardized treatment will inevitably relapse (Petrowsky

et al., 2020). Thus, precision oncology, including novel

predictive and therapeutic oncogenetic markers, signals in

tumor immune microenvironment and microbiome, etc. will

be crucial for further improving the prognosis of HCC patients

(Nault and Villanueva, 2020).

Tumor heterogeneity is the biggest obstacle to the

development of precision treatment for HCC, which is

decided by heterogeneous HCC cells, a changeful, complex

microenvironment, and their involuted interaction. With the

rapid development of profiling technology, bulk DNA and RNA

sequencing have provided a lot of information about molecular

phenotypes and evolutionary characteristics of HCC. In 2020,

Amanda J. Craig and her colleagues reviewed the most important

and common genetic alterations of HCC, including mutations in

the TERT promoter, TP53, and CTNNB1, copy number

variations in multiple genes, and aberrations in DNA

methylation at the genome level (Craig et al., 2020).

Rebouissou and Nault (2020) discovered signal pathways that

are frequently altered in HCC patients included telomere

maintenance, including Wnt/β-Catenin, P53/cell cycle

regulation, oxidative stress, epigenetic modifiers, AKT/mTOR

signaling, and MAPK pathway. These findings have generated

classification schemas of HCC molecular subtypes. However,

these results still encounter many difficulties in real-world

clinical applications. On the one hand, bulk sequencing could

only detect the average condition of gene alterations or

expression status, unable to distinguish the gene expression

signature of diverse cells in cancer samples, or get a

categorized gene feature between tumors and normal tissues.

On the other hand, limited by sample size and traditional

methods for differential expression analysis (like Limma and

EdgeR), results of bulk RNA-seq often lack stability and

repeatability among different batches of experiments. These

drawbacks reduce the potential practical value of bulk RNA-

seq results.

The advent of single-cell RNA sequencing (scRNA-seq) is a

revolutionary development in the field of profiling. Since

proposed by Professor F Tang in 2009 (Tang et al., 2010),

researchers have immediately realized the infinite value of this

technology. It enables the transcriptomes profiling of a lot of

individual cells assayed in an unbiased manner, allowing

researchers to sort and study the specific characteristics of a

single cell or a group of cells individually (Stegle et al., 2015). This

technology perfectly fits the research on cancer that has

innegligible internal heterogeneity. Thus, scRNA-seq for

tumor research has sprung up in the past decade, it has been

applied in multiple cancers including HCC. Zhang et al. (2019)

detected HCC specific immune cells for five HCC patients using

scRNA-seq and discovered that CD45 immune cells, LAMP3(+)

dendritic cells, and tumor-associated macrophages were specific

infiltrating immune cells in HCC and were associated with

patients’ poor prognosis. Ho et al. (2019) grouped HCC stem

cells for two subgroups through scRNA-seq according to the

expression of EPCAM; they also identified a CD24/CD44-

enriched cell subpopulation within the EPCAM(+) cells which

might indicate a novel stemness-related cell subclone of HCC.

These studies illustrate the significance of scRNA-seq for deeply

understanding the evolutionary differences among HCC

patients, the heterogeneity between HCC tissues and normal

livers, between HCC parenchymal cells and microenvironmental

FIGURE 1
Workflow diagram of this study.
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mesenchymal cells. Thus, the multi-dimensional interpretation

of tumor heterogeneity by scRNA-seq will effectively solve the

current clinical problem of chemoresistance and tumor

recurrence and guide tumor immunotherapy and targeted

therapy for HCC patients. However, limitations still exist in

scRNA-seq research nowadays. First, it seems difficult for

scRNA-seq to provide specific genetic markers to guide

clinical diagnosis and treatment, which focus more on the

alteration of organism and histology levels, making single-cell

profiling too “microscopic.” Second, even though scRNA-seq

provides a temporal map of the tumor microenvironment and

cell development and many new clusters of tumor progenitors

and immune cells were identified, it is still hard to conduct

molecular biological research on these new discoveries to

elucidate the pathogenesis underlying the course of diseases.

In a word, these limitations were mainly caused by

insufficient mining of scRNA-seq big data. Innovative

algorithmic strategies are demanded to provide new biological

implications for scRNA-seq.

Max-Relevance and Min-Redundancy (mRMR) algorithm

provides a highly robust feature selection scheme in machine

learning and has been applied in multi-omics medical research

in recent years. However, during the process of continuously

adding features, mRMR only considers the local optimal

solution. Thus, after obtaining the feature set with the

importance ranking from high to low through this algorithm, a

secondary feature selection is usually followed. For example,

Morgan et al. (2021) applied mRMR along with an explainable

boosting machine (EBM) classifier for CT radiomics to predict

local failure following chemoradiation for head and neck cancer

patients. Gao et al. (2020) chose an mRMR plus Random Forest

model to find the lncRNA signature in bulk RNA-seq for

immunophenotype prediction in Glioblastoma. In scRNA-seq,

Cheng et al. (2020) applied an mRMR plus Support Vector

Machines (SVM) to screen core biomarkers that distinguish the

FIGURE 2
The IFS curve of the top 50mRMR genes. The x-axis was the included number of top genes and the y-axis was the prediction performance. The
blue plot was the training set from patient NO. 8. The peak MCCwas 0.974 when top 21 genes included to IFSmodel. These 21 genes were chosen as
the optimal HCC biomarkers.

TABLE 1 The 21 optimal HCC biomarker genes got from IFS method.

Rank Gene Rank Gene Rank Gene

1 SPP1 8 GPR18 15 SLAMF6

2 FCN3 9 AKNA 16 TRGC1

3 FCRL6 10 FCMR 17 STAT4

4 S1PR5 11 AC092580.4 18 SCML4

5 CD8A 12 AIM1 19 HBB

6 SAA1 13 GZMM 20 PLAC8

7 CD160 14 IGHA1 21 APOA2
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discrepancy between GBM tumor and pericarcinomatous

environment. Based on the above research, we believed that the

algorithmic scheme centered on mRMR might be used to screen

biomarkers between cancer and non-cancer in scRNA-seq as well.

This might have biological significance in assisting tumor

diagnosis and tumor tissue identification during biopsy as well

as providing novel parenchyma and stromal biomarkers for a

certain cancer type.

In this study, based on paired scRNA-seq results of HCC and

adjacent normal liver cells from eight patients, we designed a new

computational strategy, consisting of machine learning algorithms,

to screen core biomarkers that could distinguish the discrepancy

between HCC and normal liver tissue. Gene expression profiles of

tumor cells and paired hepatocytes were analyzed by maximum

relevance minimum redundancy (mRMR) to get a 50-hub-gene

feature. For further screening and classification of the 50-gene-

feature, a support vector machine (SVM) algorithm was adopted.

Results yielded a gene set with 21 genes that might be essential

biomarkers for HCC tumor patients.

Materials and methods

Single cell gene expression profiles of
HCC tumors and normal liver tissues

Single-cell gene expression profile data of HCC was obtained

and downloaded from Gene Expression Omnibus (GEO)

database in NCBI, the accession number was GSE149614. In

this dataset, >70,000 single-cell transcriptomes for 10 HCC

patients were sequenced and further measured using Illumina

NovaSeq 6000 platform (GPL24676). Here we extracted

expression profiles of patient 8 as our training set and patient

three to seven and 9-10 as our validation set. Patient No. 1 and

2 were excluded from our study for a lack of sequencing data of

paired normal liver tissues. The number of expressed genes was

counted in paired HCC and normal liver samples of each patient.

We utilized this dataset to further establish our gene feature for

the purpose of discriminating HCC cells from normal liver cells.

mRMR ranking of discriminative genes

To achieve the goal of best discriminating the two types of

tissues using the least number of genes, the Max-Relevance and

Min-Redundancy (mRMR) algorithm was applied (Peng et al.,

2005). This algorithm aimed to find a gene set that had the

biggest correlation between the selected genes and samples (Max-

FIGURE 3
The t-SNE plots of predicted HCC cells and normal liver cells. (A) The t-SNE plots of predicted HCC cells. The true positive cells (black dots)
account for the vastmajority, while the false positive cells (red dots) occupied only a few andwasmixed in the true positive cells, whichwas difficult to
distinguish. (B) The t-SNE plots of predicted normal liver cells. The true negative cells (red dots) account for the vast majority, while the false negative
cells (black dots) occupied only a few.

TABLE 2 Confused matrix of the 21 selected genes.

Predicted HCC Predicted non-HCC

Actual HCC 4,713 82

Actual non-HCC 105 4,728

Frontiers in Genetics frontiersin.org04

Li et al. 10.3389/fgene.2022.8732181

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.873218


Relevance), but the least correlation between genes inside this

gene set (Min-Redundancy). The redundancy between genes was

minimized as genes with similar expression characteristics were

removed, except for the most representative genes remained.

This method was confirmed effective in finding core biomarkers

in sequencing analysis, especially in scRNA-seq with large and

spare expression data (Cheng et al., 2020). It effectively overcame

the shortcomings of traditional differential expression analysis in

bulk RNA-seq, helping us to get a smaller number of biomarkers

with the highest representation.

The mathematical model of this algorithm was shown as

followed. First, we defined all genes, selected genes, and to be

selected genes asΩ,Ωs, and Ωt, respectively. The relevance (D) of

gene g from Ωt with cell type t can be measured with mutual

information (I)

D � I(g , t)
And the redundancy R of the gene gwith the selected genes in

Ωs are

R � 1
m
⎛⎝ ∑

gi∈Ωs
I(g , gi)⎞⎠

Now, our goal is to get the gene gj from Ωt so that D takes the

maximum value (Dmax) and R takes the minimum value (Rmin),

which can be expressed as the following function

TABLE 4 Summary for markers related to the malignant phenotype or clinical prognosis of HCC.

GeneName Location Function summaries Related pathways Reported
functions in HCC

SPP1 4q22.1 1. Forming an integral part of the mineralized
matrix and is to cell-matrix interaction.

1. Cytokine activity 1. Prognostic marker for HCC Zheng et al. (2018),
Ouyang et al. (2020)

2. Acting as a cytokine enhancing IFN-γ and IL-
12, reducing production of IL-10, essential in type
I immunity.

2. Integrin binding 2. Enhancer of cell growth Wang et al. (2019)

3. Protein binding

4. Extracellular matrix
binding

SAA1 11p15.1 1. A major acute phase protein that is highly
expressed in response to inflammation

1. Heparin binding and
chemoattractant activity

Lowly expressed in HCC patients, indicating worse
prognosis Zhang et al. (2020)

2. Major biomarker for diverse tumors 2. Activated TLR4 signalling

3. Signaling by GPCR

STAT4 2q32.2-
q32.3

A member of the STAT family of transcription
factors activated by cytokines

1. DNA-binding
transcription factor activity

Tumor suppressor in HCC that inhibit proliferation
and promote apoptosis Li et al. (2016)

2. Sequence-specific DNA
binding

3. JAK-STAT signaling
pathway

PLAC8 4q21.22 A highly conservative protein, physiology function
unknown

1. Chromatin binding
activity

Downregulated in HCC, indicating poor prognosis
when lowly expressed by promoting cell proliferation
Zou et al. (2016)2. Differentiation of white

and brown adipocyte

TABLE 3 GO (BP) enrichment results of the 21 selected genes.

GO_Term P Adj.P Genes

Lymphocyte mediated immunity 2.49E-05 0.014115 CD8A/CD160/GZMM/IGHA1/
SLAMF6

Leukocyte mediated cytotoxicity 0.000165 0.030107 CD160/GZMM/SLAMF6

Positive regulation of natural killer cell mediated cytotoxicity 0.000262 0.030107 CD160/SLAMF6

Positive regulation of natural killer cell mediated immunity 0.000384 0.030107 CD160/SLAMF6

Alpha-beta T cell activation 0.000402 0.030107 CD160/GPR18/SLAMF6

Adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin
superfamily domains

0.000447 0.030107 CD8A/GZMM/IGHA1/SLAMF6

Cell killing 0.000648 0.030107 CD160/GZMM/SLAMF6
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max
gj∈Ωs

⎡⎢⎢⎣I(gj, t) − 1
m
⎛⎝ ∑

gi∈Ωs
I(gj, gi)⎞⎠⎤⎥⎥⎦ (j � 1, 2 . . . , n)

After n rounds of evaluation, all genes (Ω) will be ranked as a

new gene list

S � {g1′, g2′, . . . , g ′i, . . . g ′N}
The subscript i here reflects the trade-off between relevance

with tissue type and redundancy with selected genes. The smaller

index i is, the better discriminating power the gene has, and the

higher of the corresponding gene gi ranks.

Screening and optimization of single cell
HCC biomarkers

We then constructed 50 support vector machines (SVM)

classifiers and applied an incremental feature selection (IFS)

method (Ye et al., 2017) using Top 50 mRMR genes to

further screen optimized biomarker genes. The 50 gene sets

are defined as

Sk � {g1′, g2′, . . . , g ′k, } k � (1, 2, . . . , 50)

Each candidate gene set includes the top k genes in the

mRMR gene set S.

To prevent overfitting and evaluate the generalization ability

of prediction performance for each SVM classifier, the leave-one-

out cross validation (LOOCV) (Cheng et al., 2017) was then

applied. Here we briefly described the procedure of LOOCV.

Supposed that a dataset hasN samples, in each round of LOOCV,

there are (N−1) samples adopted for training and the remaining

one sample for testing. This process keeps running until all the N

samples have been tested for one time after N rounds.

Since the positive and negative sample sizes are imbalance,

the Matthews correlation coefficient (MCC) (Matthews, 1975),

which considered both sensitivity and specificity, seems idealized

for our IFS optimizing process. The calculation formula of MCC

is shown as followed:

MCC � TP × TN − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√
where TP, TN, FP, and FN are the abbreviation of true positive,

true negative, false positive, and false negative, respectively.

TABLE 5 Summary for markers reported in other cancers.

GeneName Location Function summaries Related pathways Reported functions in
other cancers

FCN3 1p36.11 1. Calcium-independent lectin activity,
found in all human serum.

1. Carbohydrate binding activity Highly expressed in ovarian cancer and leukaemia
patients Szala et al. (2013), Sokołowska et al. (2020).

2. Functioning in innate immunity 2. Antigen binding activity

3. Related to innate immune. system and
creation of C4 and C2 activators.

3. Complement pathway in association
with MASPs and sMAP

APOA2 1q23.3 1. The second most abundant protein in
high density lipoprotein (HDL) particles

1. Lipoprotein metabolism A minimally invasive biomarker for detecting
pancreatic cancer, bladder cancer, and metastatic
renal cell cancer patients Vermaat et al. (2012), Chen
et al. (2015), Sato et al. (2020)

2. Stabilizing HDL structure by its
association with lipids

2. Signaling by GPCR

3. Protein homodimerization

4. Activity of lipid binding

AC092580.4 2p25.1 Affiliated with the lncRNA class NA 1. Highly expressed in relapse AML patients Feng et al.
(2018)

S1PR5 19p13.2 1. Receptor for a bioactive
lysophospholipid S1P

1. G protein-coupled receptor activity 2. Highly expressed and promoting proliferation and
invasion in clear cell carcinoma (ccRCC) and colon
cancer patients Peng et al. (2020), Zhou et al. (2020)2. Both intracellular as a second

messenger and extracellular as a
receptor ligand

2. Sphingosine-1-phosphate receptor
activity

AKNA 9q32 1. Centrosomal protein that plays a key
role in cell delamination

1. RNA polymerase II proximal
promoter sequence-specific DNA
binding activity

1. A tumor suppressor in gastric cancer by modulating
EMT Wang et al. (2020)

2. An epithelial-to-mesenchymal
transition (EMT) regulator

2. Proximal promoter DNA-binding
transcription activator activity

2. An immune activator in cervical cancer
Manzo-Merino et al. (2018)

3. A transcription factor that specifically
activates the expression of the CD40

AIM1 6q21 NA NA 1. A classical tumor suppressor with high mutational
frenquency in melanoma Ray et al. (1997)

2. Suppressing tumor migration in prostate cancer
Haffner et al. (2017)
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After all the above procedures, an IFS curve was finally

formed. The x-axis of this curve denoted the number of genes

in the SVM classifier (1–100) and the y-axis indicated the MCCs

of it. Based on the IFS curve, an inflecting point that represented

the usage of relatively few genes to get a relatively higher

prediction accuracy was marked. The x-coordinate value of

this inflecting point indicated number of genes in the final

biomarker gene set and the y-coordinate value represented the

prediction performance. This point was regarded as the most

suitable SVM model for the final HCC biomarkers.

Biological significance analysis

For the gene signature predicted by the above algorithms, we

then analyzed their expressed cell types, chromosomal location,

and functions by GO, GENECARDS and literature reviewing.

For GO, biological process (BP) was enriched and the p value as

well as false discovery rate (FDR) based on hypergeometric

distribution were calculated, FDR <0.05 was considered

significantly enriched. GENECARDS database was available in

https://www.genecards.org/. Literature reviewing was applied

using NCBI pubmed databases (www.ncbi.nlm.nih.gov/

pubmed/) to search publications for every gene in recent

10 years.

The workflow diagram of this study was shown in Figure 1.

Results and discussion

Identifying the most discriminative feature
by mRMR algorithm

After mRMR algorithm was applied, a feature, composed of

top 50 most significant genes was established. This gene set was

listed in Supplementary Table S1. Based on the principle of the

mRMR algorithm, we believed that this feature was the most

relevant one to distinguish HCC tumor cells from normal liver

cells and had the least redundancy among the elements inside

this gene set.

TABLE 6 Summary for immune cell markers.

GeneName Location Function summaries Related pathways Immune cell
type

Reported in
HCC

IGHA1 14q32.33 Constant region of immunoglobulin heavy
chains

1. Cell surface interactions B cells Not Reported

2. Response to elevated platelet
cytosolic Ca2+

3. Antigen binding activity

4. Immunoglobulin receptor binding
activity

FCRL6 1q23.2 MHC class II receptor protein phosphatase binding NK cells and CTLs Not Reported

CD8A 2p11.2 1. A classic surface glycoprotein on most
CTLs mediateing immune cell interactions

1. Protein homodimerization activity CTLs Reported Sangro
et al. (2020)

2. A coreceptor for MHC class I molecule:
peptide complex

2. Coreceptor activity

CD160 1q21.1 1. A transmembrane on immune cells,
mainly NK cells and activated T cells

1. Innate Lymphoid Cell
Differentiation Pathways

NK cells and activated
T cells

Reported Sun et al.
(2018)

2. Upon persistent antigen stimulation, it
may contribute to CTL exhaustion

2. Class I MHC mediated antigen
processing and presentation

3. MHC class I receptor activity

GPR18 13q32.3 1. A cannabinoid-activated orphan G
protein-coupled receptor

1. Peptide ligand-binding receptors Tumor-infiltrating B
lymphocytes (TIL-Bs) and
CD8+ T cells

Not Reported

2. Selected expressed on immune cells 2. G protein-coupled receptor activity

GZMM 19p13.3 A member of granzymes, serine proteases
acctivity

1. Serine-type endopeptidase activity NK cells Not Reported

2. Endopeptidase activity

3. Creation of C4 and C2 activators

SLAMF6 1q23.2-
q23.3

A type I transmembrane protein, belonging
to the CD2 subfamily of the
immunoglobulin superfamily

1. Class I MHC mediated antigen
processing and presentation

Mainly in NK cells, also
existing in T and B cells

Not Reported

2. Immunoregulatory interactions
between a Lymphoid and a non-
Lymphoid cell
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Further screening for the optimal HCC
biomarker genes by IFS method

Given that our aim was to discriminate sample groups most

significantly using biomarker genes as few as possible, the feature

of 50 genes formed by mRMR algorithm was obviously too large

to possess a practical value. Thus, we needed to choose an

optimized group from these 50 genes as the final marker. To

achieve this goal, IFS method was adopted. In the first round,

only rank-first gene in mRMR was included as feature gene, then

an SVM classifier was built to predict the group of each sample

and validation was achieved by LOOCV and quantified by MCC

value. In the second round, the rank-second gene was added into

the previous 1-gene-feature and the above steps were repeated.

This process kept repeated for 500 times until all 50 mRMR genes

were included in the SVM model and an IFS curve was formed.

As shown in Figure 2, the best peak MCC was 0.974 when

21 genes were included in SVMmodel in patient No.8 (train set),

this peak MCC was also detected in other patients for validation

(Figure 2). This peak was also validated effective in other patients

except for patient No. 3 and No. 4, withMCC value nomore than

0.7 but acceptable. Thus, these 21 genes were adopted as our final

optimal HCC biomarkers (Table 1).

We further applied t-distributed stochastic neighbor

embedding (t-SNE) for predicted HCC and non-HCC cells to

detect both the tumor purity and the robustness of our classifier

based on the 21 genes. As shown in Figures 3A,B and Table 2,

there were only a few false positive (red dots in Figure 3A) and

false negative dots (black dots in Figure 3B) mixed with true

positive and true negative samples. However, the proportion of

those false dots was extremely low with true dots and hard to

classify. These t-SNE plots suggested that the HCC cells might

contain non-HCC cells and vice versa, but most cells from the

corresponding group were acceptable and the algorithms we

applied could get the robust single cell biomarkers even when

there were little tissue purity issues.

The biological functions of the 21 hub
genes

The machine learning methods provided us with a new set

of gene features for HCC to identify tumor from paired

normal liver tissues. However, nothing was learned from

the biological significance of this gene set. We first

performed Gene Ontology (GO) enrichment analysis for

biological process (BP) analysis of the selected 21 genes

(Table 3). Results of GO enrichment showed that they were

enriched in Natural Killer (NK) cells and T cells (Tc) related

pathways, indicating that changes in immune

microenvironment are the core difference between HCC

tumors and normal liver tissues.

To explore the functions of these 21 genes in more depth from a

biomedical perspective, we reviewed the location, basic functions, as

well as related biological pathways and processes for each gene

through Genecards database (https://www.genecards.org/).

Literatures about the biological functions of these 21 genes in

HCC and/or other malignant tumors were also thoroughly

searched through Pubmed database. We finally divided these

21 genes into four categories (Siegel et al., 2020) Markers related

to the malignant phenotype or clinical prognosis of HCC (Table 4);

(McGlynn et al., 2020) Markers without reports in HCC but were

related to the pathogenesis and/or prognosis of other malignant

tumors (Table 5); (Petrowsky et al., 2020)Marker genes expressed by

immune cells (Table 6); (Nault and Villanueva, 2020) Other genes

that have not yet been studied in cancers, including FCMR, TRGC1,

andHBB. Subsequent research was worth exploring the role of these

markers in the pathogenesis of HCC and their applicating prospects

in HCC diagnosis, monitoring and treatment. Furthermore, it was

worth mentioning the immune-specific genes in Table 6. These

genes were all markers for Natural Killer (NK) cells and T cells,

indicating that changes in cytotoxic effects might play a vital role in

the HCC immunity. These immune markers might be promising

targets for enhancing the efficacy of HCC immunotherapy.

In summary, using an integrated machine learning strategy,

mainly composed of mRMR and IFS, we analyzed scRNA-seq

data from eight paired HCC tissues and normal liver tissues. A

21-gene-feature consisted of both cancer markers and immune

cell markers was established. This feature was regarded as the

core to distinguish HCC from normal liver tissue. Considering

that the tissue obtained from clinical needle biopsy is often a

mixture of tumor parenchyma, stroma and normal liver tissue,

this 21-gene-feature might help both the clinical diagnosis of

HCC and the identification of biopsy-obtained tissue types.

Besides, given that these 21 genes, most of which had not

been fully explored in HCC, were expressed in different

parenchymal and mesenchymal cells, the following research

might focus on their biological function and molecular

mechanism in distinct HCC-related cell cluster.
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