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Introduction

Hidden Markov Models (HMMs), being computation-
ally straightforward underpinned by powerful math-
ematical formalism, provide a good statistical frame-
work for solving a wide range of time-series problems,
and have been successfully applied to pattern recog-
nition and classification for almost thirty years.

The study of Markov Chains (MCs) was initiated
in early 1900s by Markov (1 ), who laid the foundation
for the theory of stochastic processes. From 1940s to
1960s, HMMs had been investigated as a representa-
tion of stochastic functions of MCs (2–5). Its initial
development was predominated by theoretical reason-
ings that attempt to solve problems pertaining to the
issues of uniqueness and identifiability. HMMs did not
gain much popularity until early 1970s when Baum et
al successfully applied the technique to speech recog-
nition by developing an efficient training algorithm for
HMMs (6 ).

In the late 1980s and early 1990s, HMMs were
subsequently introduced to computational sequence
analysis (7 ) and protein structural modeling (8 , 9 ) in
molecular biology. However, HMMs have gained their
popularity in the computational biology community
only after three groups explored HMM-based profile
methods for sequence alignment (10–12). In his excel-
lent survey papers, Eddy addressed what HMMs are,
their strength and limitation, and how profile HMMs
were beginning to be used in protein structural mod-
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eling and sequence analysis (13 , 14 ). Our article em-
phasizes on recent HMM applications appearing in
computational biology in the last five years since the
last review of the field (14 ).

Hidden Markov Model

A wonderful description of the HMM theory has
been written by Rabiner (15 ). In a nutshell, HMMs
are composed of two components. Associated with
each HMM is a discrete-state, time-homologous, first-
order MC with suitable transition probabilities be-
tween states and an initial distribution. In addition,
each state emits symbols according to a pre-specified
probability distribution over emission symbols or val-
ues. Emission probabilities are dependent only on
the present state of the MC, regardless of previous
states. Starting from some initial states with the
initial probability, a sequence of states is generated
by moving from one state to another according to
the state-transition probabilities until a final state is
reached, creating an observable sequence of symbols
as each state emits a symbol when it is visited.

The key idea is that an HMM is a sequence “gen-
erator”. It is a finite model describing a probability
distribution over a set of possible sequences. A simple
HMM for generating a DNA sequence is specified in
Figure 1A.

In the model, state transitions and their associ-
ated probabilities are indicated by arrows; and sym-
bol emission probabilities for A, C, G, T at each state
are indicated below the state. For clarity, we omit the
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Fig. 1 A. a simple HMM model for generating DNA sequences; B. a generated state sequence and the associated

DNA sequence

initial and final states as well as the initial probabil-
ity distribution. For instance, this model can generate
the state sequence given in Figure 1B and each state
emits a nucleotide according to the emission proba-
bility distribution.

When producing sequences of emissions, only the
output symbols can be observed. The sequences of
states underlying MC are hidden and cannot be ob-
served, hence the name Hidden Markov Model. Any
sequence can be represented by a state sequence in
the model. The probability of any sequence, given
the model, is computed by multiplying the emission
and transition probabilities along the path.

HMM topologies

The topology of an HMM refers to the set of states,
and in particular the permitted and prohibited transi-
tions between the states of the underlying MC, that is,
the respective non-zero and zero entries of the transi-
tion matrix. To date, many different HMM topologies
have been proposed, which include the fully connected
model, circular model and left-right model.

Fully connected model

An HMM is termed a fully connected model (Figure
2A) when the states are pairwise connected such that
the underlying digraph is complete. There are no dis-

tinguishable starting and terminating states and the
transition matrix does not contain any zero entries
with the exception of diagonal entries that correspond
to loops or self-transitions.

Circular model

In a circular model (Figure 2B), the underlying di-
rected graph is ergodic where the probability that any
state will recur with the exception of states with zero
probability. It is insensitive to size changes and there
are no unique starting and terminating states.

Left-right model

When the underlying directed graph is acyclic, with
the exception of loops, hence supporting a partial or-
der of the states, it is known as left-right model (Fig-
ure 2C). In principle, there is one start state and one
end state, which can be attained through the use of a
special symbol for the end of an observation sequence
and silent states (states with no output). Transitions
from state to state proceed from left to right through
the model, with the exception of loops. A more strin-
gent form of this topology is defined by the strict
left-right model that forbids the existence of loops
and only permits transitions from a state of graph-
theoretical distance d to distance d+1.
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Fig. 2 Some existing HMM topologies. A. a fully connected HMM; B. a circular HMM; C. a left-right HMM.

HMM models

Standard HMMs

The standard HMM formalization utilizes a number of
simple assumptions with the intention of making the
approach viable both mathematically and computa-
tionally. State sequences are modeled as a first-order
MC. Each state generates one output.

Let X1, X2, . . . , Xi, . . . denote the state vari-
ables in a standard HMM with state space S =
{s1, s2, . . . , sN}. The initial state is selected accord-
ing to the initial distribution π = (π1, π2, . . . , πN ) and
the transition probabilities are

aij = P (Xt+1 = sj |Xt = si).

Let Y1, Y2, . . ., Yi, . . . denote the observed pro-
cess generating symbols depending on the current
state with the following probabilities

bj(Yt+1 |Y1, Y2, . . . , Yt) =

P (Yt+1 |Y1, Y2, . . . , Yt, Xt+1 = sj).

Note that the output Yt+1 depends on the en-
tire previous process, not just the current state Xt+1.
However, in most applications in computational biol-
ogy, Yt+1 depends only on the current state Xt+1.

Generalized HMM (GHMM)

A Generalized HMM (GHMM), also known as a hid-
den semi-Markov model, is structurally and opera-
tionally similar to standard HMMs but with a gener-
alized distribution on the duration of a state, which is
defined as the time the HMM stays at the particular
state. In a standard HMM, the duration is geometri-
cally distributed, that is, if p denotes the probability
of self-transition in a state, then, the probability that
l outputs are generated from the state is p l−1(1− p).

However, in a GHMM, the duration d of a state X is
usually selected from some generalized distribution,
commonly derived from the training data and then
called an empirical distribution. Each state generates
outputs by first choosing the length according to some
duration distribution, and then producing an output
sequence of that duration. In addition, the positions
in the output sequence from the state need not to be
identically and independently distributed.

The GHMM model has been successfully imple-
mented in gene finding programs, such as GENSCAN
(16 ) and GENIE (17 ), and has been adopted by oth-
ers for cross-species gene finding (18 ) since the exon
lengths are not geometrically distributed.

Pair HMM (PHMM)

It represents yet another variant to the standard
HMM and has been widely adopted for the generation
of pairwise alignment of two sequences (19 ). The op-
erational mechanism of PHMM is the same as stan-
dard HMM with the exception that each state out-
puts a pair of symbols. The probability of generating
any particular alignment can be derived by taking the
product of the probabilities at each step. A common
problem encountered in sequence alignment is the dif-
ficulty in identifying the correct alignment when sim-
ilarity is weak. Using PHMM, the probability that
a given pair of sequences is related can be computed
independent of a specific alignment by summing all
possible alignments using the forward algorithm.

Generalized pair HMM (GPHMM)

It is a hybrid probabilistic model (20 ) that general-
izes both GHMM and PHMM. A GPHMM can be
considered as a sequence machine, generating a pair
of observed sequences with different lengths in tan-
dem.
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Let S = {s1, s2, . . . , sm} denote the state space of
a GPHMM and X1, X2, . . . , XL denote the sequence
of hidden states that the GPHMM follows as it gener-
ates the pair of observed sequence Y = Y1, Y2, . . . , YT

and Z = Z1, Z2, . . . , ZU , where L ≤ T, U . As a
standard HMM, the first state X1 is distributed ac-
cording to the initial distribution πX1 , and moving
from a state to another state occurs according to
the associated transition probability. With each hid-
den state Xi, we associate a pair of duration lengths
(di, ei) generated from some joint distribution, repre-
senting the number of symbols in each observed se-
quence generated from the state. Let p i =

∑
1≤k≤i

dk

and qi =
∑

1≤k≤i

ek denote the partial sum of the dura-

tion. Then, in state Xi, the GPHMM generates the
sequences Y [pi−1+1, p i] and Z [qi−1+1, qi], according
to joint distribution

bXi

(
Y [pi−1+1, pi], Z[qi−1+1, qi]

∣∣Y [1, pi−1], Z[1, qi−1]
)
.

Here, we use the notation Y [a, b] to represent the sub-
sequence Ya, Ya+1, . . . , Yb of Y .

In practice, only the sequences Y and Z observed
and variables L,X, {(di, ei) | i ≤ L} are hidden to us.
Assume that we have all the observed sequences by
the time the final state XL is reached, then, we have
pL = T and qL = U . The probability of a particu-
lar combination of hidden and observed sequences is
calculated as

P
(
X, Y, Z, {(di, ei)| i ≤ L}) = πX1fX1(d1, e1)bX1

(
Y [1, p1], Z[1, q1]

) L∏

i=2

aXi−1Xj
fXi

(di, ei)bXi

(
Y [pi−1 + 1, pi], Z[qi−1 + 1, qi]

∣∣Y [1, pi−1], Z[1, qi−1]
)
,

where fXi
(, ) is the duration distribution at state Xi

and aij is the transition probability from state i to
state j.

Profile HMMs

They are linear, left-right models commonly used
for detecting structural similarities and homologies.
The profile HMM architecture (21 ) consists of three
classes of states: the match state, the insert state
and the delete state; and two sets of parameters:
transition probabilities and emission probabilities.
The match and insert states always emit a symbol,
whereas the delete states are silent states without
emission probabilities. Emitted symbols are assumed

to be conditionally independent given the states.
Match states model conserved positions of an align-
ment; insert states model insertions of residue(s) at
a specific position, while delete states are responsi-
ble for deleting the consensus residue. The model
always begins from the start state and finishes with
the end state. Transitions from state to state progress
from left to right through the model, with the excep-
tion of self-loops on insertion states. The gap penal-
ties for insertions and deletions, by which positions of
the conserved regions are controlled, are provided by
transition probabilities back and forth the insert and
delete states. A profile HMM topology widely used in
protein sequence analysis is illustrated in Figure 3.

Fig. 3 A profile HMM topology. The square states are

match states, the diamond states are insert states and the

circles are delete states. State transition probabilities are

indicated as arrows.

One main drawback of profile HMMs is that both
signal and noise are treated equally, resulting in a
large number of estimated emission parameters. This
overfitting problem is typically avoided by using a reg-
ularizer (22 ) which replaces the observed amino acid
distribution by its estimator as described in the next
section.

In general, in almost all applications of HMMs,
we are requested to solve one or more of the following
questions:

1) Given an existing HMM and an observed se-
quence, what is the probability that the HMM could
generate the sequence?

2) What is the optimal state sequence that the
HMM would use to generate the observed sequence?

3) Given a large amount of data, how to find the
structure and parameters of the HMM that best ac-
counts for the data?

Both 1) and 2) can be solved in polynomial time
using dynamic programming technique. The respec-
tive algorithms, called Forward and Viterbi, have a
worst-case time complexity O(NM2) and space com-
plexity O(NM), for a sequence of length N and an
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HMM of M states. However, there are only several
heuristic algorithms for 3). Here, we omit the detailed
description of these algorithms due to the space limit.
For details of these algorithms, the reader is referred
to the survey paper by Rabiner (15 ) or books written
by Ewens and Grant (23 ) and Durbin et al (21 ).

Estimation of HMM Emission

Probabilities

Overfitting occurs when the HMM adapts too well to
the training data and includes random disturbances
in the training set as being significant. As these dis-
turbances do not reflect the underlying distribution,
the performance of the HMM on the given dataset is
affected. A variety of approaches known as regular-
ization have been developed to address it. In general,
regularizers can be broadly classified into two main
categories: (1) substitution matrices and (2) statisti-
cal techniques.

The uses of substitution matrices for regulating
the emission of noise and signals from HMMs have
been widely adopted by several groups. The Gribskov
profile (24 ) or average-score method (25 ) computes
the weighted average of scores from a score matrix,
such as the Dayhoff matrices (26 ) or the BLOSUM
matrices (27 ). With this approach, each of the amino
acid residues at every position along the peptide for
a group of sequences previously aligned by structural
or sequence similarity is assigned a weight to produce
a matrix. Within each matrix, each row corresponds
to a position of a certain length of protein sequence,
and each column corresponds to an amino acid. An
additional column contains a penalty for insertions
or deletions at that position. Each entry of the ma-
trix indicates a score for finding the amino acid at
the position specified by a row and a column respec-
tively. Scores are assigned by summing up the posi-
tion specific weights, based on their sequence and the
appropriate matrix. The work of Tatusov et al (25 )
involves using an evolving position-dependent weight
matrix derived from a coevolving set of aligned con-
served segments to perform iterative database scans.
At each step, a cutoff score is obtained from the ex-
pected distribution of matrix scores for the chance
inclusion of either a fixed number or a fixed propor-
tion of false positive segments in the following iter-
ation. Another approach known as feature-alphabet
(28 ) divides the set of amino acids into disjoint fea-
ture sets and treats the contents of each feature sets

equivalently. There are several ways to generate fea-
ture alphabets, such as computing their scores based
only on the set of amino acids previously seen in a
context (29 ), or together with the frequency of oc-
currences of amino acids.

Statistical techniques which include zero-offset,
pseudocounts (25 ), and likelihood-based approaches
such as Dirichlet mixture distribution (30 ) and effi-
cient emission probability (EEP) estimation (31 ) rep-
resent an alternative way for regularization. The sim-
plest statistical method is the zero-offset technique
(22 ) that prevents probabilities from being estimated
as zero by introducing the addition of a small posi-
tive zero-offset z to each count s(i), the number of
occurrences of amino acid i, to generate the posterior
counts Xs(i):

Xs(i) ← s(i) + z

However, a poor estimation to the amino acid dis-
tribution may result if the estimated probability dis-
tribution is constant due to non-occurrences of amino
acid i in the sample. Hence, the pseudocount method
represents a slight variant to the zero-offset technique
that aims to overcome this problem by introducing a
positive constant z(i) for each amino acid:

Xs(i) ← s(i) + z(i)

The Dirichlet mixture method (22 , 32 , 33 ) offers
a similar but more complex alternative to the pseudo-
count methods. Dirichlet mixtures are constructed by
analyzing the amino acid distributions at specific posi-
tions in a large set of proteins using Dirichlet density
functions. A Dirichlet density is a probability den-
sity function over all possible combinations of amino
acids appearing in a particular position. It gives high
probability to certain distributions (for example, con-
served distributions or common features at a specific
location) and low probability to others. The posterior
counts of Dirichlet mixtures are defined as:

Xs(i) ←
∑

1≤c≤k

qc
β(zc + ε)

β(zc)
(
zc(i) + s(i)

)
,

where the vector zc + ε refers to the component-wise
sum of the two vectors, β refers to the generalization
of the binomial coefficients and is defined as

β(a) =
∏

i Γ
(
a(i)

)

Γ
(∑

i a(i)
) ,

in which Γ refers to the continuous generalization of
the integer factorial function Γ(n) = n! and a(i) is the
i-th coordinate of the vector a.
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An alternative likelihood-based approach is pre-
sented by the EEP technique (31 ) that takes into
account conservation of the alignment. Here, amino
acids are first divided into the subset J1 of effective
(or conserved) amino acids and the subset J2 of inef-
fective (noise) ones and then the estimation is based
on the assumption that ineffective residues follow a
background distribution. EEP explicitly models the
conserved residues in the alignment instead of only
considering the general characteristics of the amino
acids by using the log-likelihood function of the multi-
nomial distribution:

l =
∑

i∈J

nj log bj ,

where nj is a frequency of an amino acid j, bj is
the residue with the largest relative frequency with
respect to its background probability bo

j . The con-
straints of the log-likelihood function are determined
as

bi

bo
i

=
be

bo
e∑

j∈J1
bj∑

j∈J2
bj
≤ c

∑
j∈J1

bo
j∑

j∈J2
bo
j

∑

j∈J1

bj +
∑

j∈J2

bj = 1 ,

where i, e ∈ J2 and c is a constant. The first con-
straint ensures that the mutual ratios of the ineffective
residues remain the same as the background distribu-
tion. The second condition is only needed to make
sure that the total proportion of the effective residues
compared to the proportion of the ineffective ones
does not increase too much when compared to the
proportions in the background distribution. The op-
timization part is performed with the Lagrange mul-
tipliers method.

An important advantage of the EEP method over
other regularization techniques is the reduction in the
dimension of the parameter space. This decrease is
significant for protein sequence alignments because
only a small number of residues can be considered
effective in conserved positions. Based on a study of
20 well-defined protein families by Ahola et al (31 ), it
was shown that the EEP method is capable of detect-
ing sequences with an average of 98% sensitivity and
99% specificity. The sensitivity proved to be better
than the Dirichlet mixture distribution method, even
if the number of emission parameters was reduced
down to 11% of the original. As a consequence of
the reduction of the parameter space, the variance of

the ineffective residues decreases without influencing
variance of the effective residues. This improvement
is significant when shortening confidence intervals for
emission probabilities and improves the sensitivity of
database search results. However, despite the high ac-
curacy of EEP, the technique does suffer from a major
disadvantage of being unable to account for the phys-
ical and chemical characteristics of the amino acids,
and thus, it ignores the relationships among the amino
acids.

Applications of HMMs in Com-

putational Biology

Algorithms such as BLAST (32 ) or FASTA (34 ) used
in sequence comparison to infer biological function
of a protein work well for highly similar sequences,
nonetheless produce mediocre results for highly diver-
gent sequences. Profile or motif based analyses that
exploit information such as residual position and con-
served residues derived from multiple sequence align-
ments to construct and search for sequence patterns
were developed to address this deficiency. The follow-
ing sections review recent applications of HMMs in
the different areas of computational biology.

Pairwise sequence alignment

Pairwise sequence alignment involves aligning two
sequences based on similarity between them to in-
fer functional similarity. Using PHMM, Smith et al
viewed the alignment problem as random process and
adopted a probability model to tackle the problem
(19 ). Most importantly, they presented a unique
training method for estimating parameters (or prob-
ability) and extended the alignment model to allow
multiple parameters sets, all of which are selected us-
ing HMM.

For training, one specifies a collection of pairs of
sequences. After some initializations of the parame-
ter values are assigned, training then takes place it-
eratively to learn the parameters that will produce
overall maximal forward probabilities for the set of
training pairs.

Suppose two sequences Y and Z with length M =
(M1,M2) are observed in a PHMM with state space
S = {s1, s2, . . . , sm}. A position in the observation
is specified by coordinates r = (r1, r2) such that
1 ≤ ri ≤ Mi for i = 1, 2. Then, the observation
corresponding to the position r is the pair of subse-
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quences Y1, Y2, . . . , Yr1 and Z1, Z2, . . . , Zr2 . This pair
of subsequences is denoted by O[1 → r]. Moreover,
a move from one position to another denoted by ε is
one of (0, 1), (1, 0), or (1, 1). For a position r, a move
ε indicates a move from the position r to the position
r + ε if this is valid. The output corresponding to
this valid move is denoted by O[r → r + ε], which
is (−, Zr2+1), (Yr1+1,−) or (Yr1+1, Zr2+1), depending
on ε = (0, 1), (1, 0) or (1, 1), where ‘−’ denotes a gap.

Finally, assume X1, X2, . . . , Xt is the hidden state
sequence that the PHMM follows as it generates the
observed pairs P1, P2, . . . , Pt′ with the reduced se-
quence pair Ot′ = O. Set

ξr(si, ε) = P (Ot = O[1 → r], Pt = O[r − ε → r],

Xt = si | t ≤ t′);

ηr(si, sj) = P (Ot = O[1 → r], Xt = si,

Xt+1 = sj | t ≤ t′).

Then, both ξr(si, ε) and ηr(si, sj) can be computed
easily given P (O), the probability of observing O,
which can be computed using the forward-backward
algorithm in turn. Then, the training formulas are

πi ∝
∑

ε

ξε(si, ε)

aij ∝
∑

1≤r≤M

ηr(si, sj)

bi(x) ∝
∑

ε,ε≤r≤M

ξr(si, ε) ,

where the proportionality signs are used to indicate
that the estimates are to be normalized to define prob-
abilities.

Using this approach, multiple mutation matrices
selection is made possible and estimation of model pa-
rameters given a training set of paired sequences can
be done. However, this approach does suffer from var-
ious limitations including huge consumption of mem-
ory and time taken.

Multiple sequence alignment

Multiple sequence alignment (MSA) is commonly
used in finding conserved regions in protein families
and in predicting protein structures. Profile HMMs,
in particular, have been applied with much success
and continue to gain momentum. Multiple alignments
from a group of unaligned sequences are automatically
created using the Viterbi algorithm (15 ). Viterbi al-
gorithm computes the probability of the maximum

path by finding the most likely path through the
HMM for each sequence. Each match state in the
HMM corresponds to a column in the multiple align-
ment. A delete state is represented by a dash. Amino
acids from insert states are either not shown or are
displayed in lower case letters. It is this best align-
ment to the model that is used to produce multiple
alignments of a set of sequences. Some popular im-
plementations of profile HMMs include SAM (35 , 36 )
and HMMER (14 ).

The Sequence Alignment and Modeling system
(SAM) is a collection of software tools for multiple
protein sequence alignment and profiling using HMMs
(33 ). SAM provides programs and scripts for SAM-
T2K, which is an iterative HMM-based method for
finding proteins similar to a single target sequence
and aligning them. It aligns sequences to an HMM
and improves the alignment by retraining the HMM
on the sequences. A multiple alignment can be used
to build an HMM, which can then be used to search
for new members of the family. When new members
are found, the HMM can be retrained to include them,
new multiple alignments are made, and the process is
repeated.

Alexandersson et al (37 ) implemented a cross-
species gene finding and alignment program SLAM
using GPHMM, which simultaneously aligns and pre-
dicts genes in two orthologous sequences. The in-
put to SLAM consists of two sequences and an ap-
proximate alignment (20 ). The approximate align-
ment is used to reduce the search space for the
Viterbi algorithm and allows for improvement in
speed and reduction in memory usage. The main
components of SLAM consist of a splice-site detec-
tor, an intron/intergene model, an exon pair scoring
model, and a conserved noncoding sequence model.
The accuracy of the technique is validated on the
ROSETTA testset of 117 single-gene sequences as well
as multigene lloxA cluster. SLAM compares favor-
ably to other gene finders including GENSCAN (16 ),
ROSETTA (38 ), SGP-1 (39 ), SGP-2 (40 ), TWIN-
SCAN (41 ), particularly with regard to the false-
positive rate.

Protein homology detection

In the protein homology problem, the goal is to de-
termine which proteins are derived from a common
ancestor. The common ancestor model makes the as-
sumption that, at some point in the past, each pro-
tein sequence in a family was derived from a common
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ancestor sequence. That is, at each amino acid po-
sition in the sequence, the observed amino acid oc-
curs due to a mutation (or set of mutations) from a
common amino acid ancestor. There are many pro-
tein sequences sharing similarity but there are many
with varying divergence as well such that structural
and functional similarity is hard to detect based on
sequence data alone.

Pairwise sequence comparison methods such as
BLAST accept two sequences and calculate a score for
their optimal alignment. This score may then be used
to decide whether the two sequences are related. Park
et al (42 ) showed that profile-based methods, partic-
ularly profile-based HMMs (10 , 13 ), which consider
profiles of protein families, perform much better than
pairwise methods. A more recent study by Lindahl
and Elofsson (43 ) compared the relative performance
of pairwise and profile methods.

Examples of popular profile HMM software pack-
ages include SAM (35 , 36 ) and HMMER (14 ). HM-
MER (14 ) provides the necessary model building and
scoring programs for homology detection. It con-
tains a program that calibrates a model by scoring it
against a set of random sequences and fitting an ex-
treme value distribution to the resultant raw scores;
the parameters of this distribution are then used to
calculate accurate E-values for sequences of interest.

Truong et al (44 ) utilized the HMMER package
to classify unknown protein sequences into subfam-
ilies within structurally and functionally diverse su-
perfamilies. Their technique begins with an MSA
of the subfamily followed by constructing an HMM
database representing all sliding windows of the MSA
of a fixed size. Finally, they constructed an HMM
histogram of the matches of each sliding window in
the entire superfamily. The complete set of HMMs
created from all subfamily signatures is concatenated
to build the HMM database for the protein super-
family. The analysis of a query sequence follows a
two-step process. First, search the query sequence
for the conserved domain of the protein superfam-
ily. If the conserved domain is found, then search for
subfamily signatures. If the subfamily signatures are
found, the sequence belongs to the subfamily whose
signature has the lowest e-value. Otherwise, the se-
quence is classified to a new protein superfamily. The
classification system has achieved an equivalent level
of success as most profile and motif databases. This
technique was applied to find subfamily signatures in
the cadherin and the EF-hand protein superfamilies.
The HMM histograms of the analyzed subfamilies re-

vealed information about their Ca2+ binding sites and
loops.

Protein structure prediction

The strong formalism and underlying theory of HMMs
and extensive applications in sequence alignment have
prompted researchers to apply them to the domain
of protein structure prediction (36 , 45 ). Identifica-
tion of homologous proteins becomes important since
these proteins descending from common ancestry root
share similar overall structure and function.

Karplus et al (45 ) made protein structure pre-
diction for target sequences in CASP3 relying solely
on sequence information using the method SAM-T98.
This iterative method steps through the template li-
brary and target models several times. The first step
involves building an HMM from a sequence or a mul-
tiple sequence alignment. The resulting HMM is used
to score a non-redundant database. Sequences that
exceed certain threshold are collected to form the
training set. This threshold is relaxed in each iter-
ation to include less similar sequences that may still
be homolog. Scoring is based on log odds where the
likelihood of HMM-generated sequence is compared
to that of null model generated sequence. Null model
in this case is taken as the reverse of the HMM.
Re-estimation of the HMM using these sequences is
based on sequence weighting and Dirichlet mixture
prior follows. The final step realigns the training set
using the re-trained HMM. The multiple alignments
from this step serve as initial input in next iteration.
Database searching is then carried out based on the
HMM constructed from the final multiple alignment,
known as SAM-T98 alignment. SAM-T98 considered
only sequence information and hence yielded poor re-
sults in more difficult targets. It was subsequently
augmented to include structural information in SAM-
T02. Karplus et al also extended the use of SAM-T98
multiple alignments of the target sequences to sec-
ondary structure prediction where favorable results
were observed.

A coiled-coil structure is formed by the intra- or
extra-molecular association of two or more alpha-
helices, which wrap around each other. Each of
these single helices is referred as a coiled-coil do-
main (CCD). CCDs are frequently involved in protein-
protein interactions, and play central roles in diverse
processes including signaling and transcription. Most
CCDs have a “heptad” repeat that is a periodic se-
quence pattern of seven characteristic residues: the
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two hydrophobic core positions are designed a and d ;
they are separated by two positions b and c; and b
and c are separated by three positions (e, f, and g)
in turn that are occupied by mainly hydrophilic and
often charged residues.

Delorenzi and Speed (46 ) developed a 64-state cir-
cular HMM for recognition of proteins with a CCD
that outperforms traditional Position Specific Scor-
ing Matrix (PSSM) using 150-fold cross-validation
on datasets extracted from various protein databases
including CCDs, SWISSPROT and PDB. This ap-
proach initializes the background state to 0 and the
remaining 63 states are assigned a group number 1–
9 with a letter that refers to the heptad position.
Groups 1–4 model the first four residues in a CCD
(the N-terminal helical turn); Group 5 models inter-
nal coiled-coil residues; while Groups 6–9 model the
last four residues (the C-terminal turn). In the model,
a CCD has a minimal length of nine, one residue per
group.

In a more recent work, Bagos et al came up with
an HMM method based solely on amino acid sequence
capable of predicting the transmembrane β-strands of
the outer membrane proteins of gram-negative bacte-
ria, and discriminating those from water-soluble pro-
teins in large datasets (47 ). The model maximizes the
probability of correct predictions instead of likelihood
of the sequences. This method fares equally good in
terms of true positives and overall topologies as com-
pared to some of the best method (48 , 49 ) proposed
so far for the prediction of transmembrane β-barrel
proteins.

Numerous previous works on structural studies
(50 , 51 ) were based on single dimensional HMM pro-
file encoding structural information in symbols (that
is, H for helix), none of which work with 3D coordi-
nates. Alexandrov and Gerstein used 3D HMMs to
explicitly model spatial coordinates to compare pro-
tein structures (52 ). Conventional dynamic program-
ming fails when attempting to match query structure
of the model due to the assumption that the best
match between query and model in any region of the
alignment is independent and does not affect the opti-
mum match before it. They made the core structures
using ellipsoidal Gaussian distributions by centering
on aligned Cα positions. Each Gaussian distribution
is then normalized to 1 to obtain probability distribu-
tion based on coordinates. The cores are essentially
structural profiles similar to sequence profiles, each
representing a statistical distribution of potential co-
ordinates. Each match state denotes the probability

of a given Cα position falling within a prescribed vol-
ume, where the probability is the coordinate differ-
ences. Score increases if the aligned Cα of the query
is closer to the centroid and vice versa. The 3D HMMs
were tested on globin family and IgV fold and other
SCOP domains. Their results are promising.

Genomic Annotation

With many genomes having been sequenced, HMMs
have been increasingly applied in computational ge-
nomic annotation. In general, computational genome
annotation includes structural annotation for genes
and other functional elements, and functional annota-
tion for assigning functions to the predicted functional
elements.

The sequences of entire chromosomes consist of a
collection of genes separated from each other by long
stretches of “junk” sequences. The computational ap-
proach for gene identification involves bring together
a large amount of diverse information. Up to now,
the most popular and successful gene finder probably
is GENSCAN (16 ). It is based on generalized HMMs.
We sketch it below in order to illustrate the basic con-
cept of an HMM-based gene finder.

Roughly speaking, a protein-coding gene consists
of a consecutive sequence of the DNA that is tran-
scribed into RNA, called premessenger RNA (or pre-
mRNA for short). This pre-mRNA consists of an al-
ternating sequence of exons and introns. After tran-
scription, the introns are edited out, and the final
molecule, called mRNA, is translated into protein.

The region of the DNA before the start of the tran-
scribed region is called the “upstream region”. This
is where the promoter of the gene locates. In the pro-
moter region, transcription factors bind and initiate
transcription. The 5′ untranslated region (5′UTR)
follows the promoter. This stretch does not get trans-
lated into protein. Near the end of 5′UTR is a sig-
nal that indicates the start of translation, called the
translation initiation signal (TIE); TIE just locates
before the first codon in the first exon. TIE is followed
either by a single exon or by a sequence of exons sepa-
rated by introns. An intron may break a codon in any
position. Finally, following the final exon is the 3′ un-
translated region (3′UTR), which is another stretch of
sequence that is transcribed but not translated. Near
the end of the 3′UTR are poly-A signals indicating
the end of transcription. Each poly-A signal is six
bases long with the typical sequence AATAAA.

GENSCAN model has two identical components
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Fig. 4 The complete GENSCAN model.

(Figure 4) for finding genes in both the forward (5′

to 3′) and reverse directions in one pass. In the left
component corresponding to the forward direction,
the intergenic, promoter, 5′UTR , 3′UTR and poly-A
regions are modeled with a state separately. How-
ever, modeling the exons and introns is more compli-
cated. It uses 19 states drawn between the 5′UTR and
3′UTR states. There are two paths from the 5′UTR
state to the 3′UTR state. The path through the sin-
gle gene state corresponds to single exon genes. The
reason for considering single exon genes separately is
that the distribution of their lengths is quite differ-
ent from that of the multiexon genes. In a multiexon
gene, a single codon can be split between two exons.
Therefore, 18 states are used for copying these differ-
ent combinations.

In this generalized HMM model, all the transition
probabilities from a state to itself are zero, and when
the process visits a state, it produces a sequence of
length following a distribution such as geometric dis-
tribution.

With the model, given an uncharacterized genomic
sequence, GENSCAN applies a generalized Viterbi al-
gorithm to obtain an optimal parse. The parse gives
a list of the states visited and the lengths of the se-
quences generated at those states. Thus, a decompo-
sition of the original sequence into gene predictions is
obtained.

Recently, Meyer and Durbin (53 ) developed DOU-
BLESCAN, a pair HMM model, for ab initio predic-
tion of gene structures using two different algorithms:
the Viterbi algorithm and the stepping stone algo-

rithm. The emission probabilities are based on match
exon states in orthologous genes with identical coding
lengths derived from a subset of the data set in Jare-
borg et al (54 ) and are estimated using Dirichlet dis-
tribution. Marginalization is performed for all states
except the stop state to introduce symmetry with re-
spect to the two sequences into the emission proba-
bilities and avoid potential compositional bias. Tran-
sition probabilities are initialized to values estimated
from event frequencies and manually refined. Transi-
tions into splice site states are controlled by posterior
probabilities generated using a splice site predictor
(55 ) while transitions between the match intergenic
and the START are controlled by a weight matrix
model. This method performs well with a higher sen-
sitivity and specificity as compared to GENSCAN.

Walker et al (56 ) employed two HMMs simulta-
neously to identify prokaryotic translation initiation
sites. Specifically, the HMM-termed product hidden
Markov model (PROD-HMM) with a total of 100
states attempts to model species-specific trinucleotide
frequency patterns in two orthologous DNA sequences
adjacent to a translation start site and to detect the
contrasting amino acid substitution rates that differ-
entiate prokaryotic coding from intergenic regions.

Conclusion

This paper has explored various topologies of HMMs
and estimation probabilities. Subsequently, we pre-
sented several of the variant models from the stan-
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dard HMMs. We then reviewed recent applications
using HMMs in areas like sequence alignment, homol-
ogy detection, and so on. Hopefully, this review can
provide an insight into applications of HMMs in com-
putational biology. In general, application of HMMs
is not straightforward, since the architecture of the
model often has to be expressly designed.

Finally, despite many of these models have proven
to be successful, these models suffer from certain lim-

itations. The linear nature of HMM also makes it
difficult to capture higher-level information or corre-
lations among amino acids. Prediction of actual dis-
tance when a protein folds as opposed to when it is
spread out, and prediction of chemical and electrical
interactions are just some examples. These limita-
tions have prompted research into new kinds of sta-
tistical models (21 ).

Appendix—HMM Software

Name Description URL

HMMER It produces profile hidden Markov

models for homolog search in a

database.

http://hmmer.wustl.edu/

SAM A suite of tools for biological sequence

analysis including homology detection,

secondary structure prediction and so

on.

http://www.cse.ucsc.edu/research/compbio/sam.html

TMHMM It models and predicts the location

and orientation of alpha helices in

membrane-spanning proteins.

http://www.cbs.dtu.dk/services/TMHMM/

SignalP A signal peptide prediction program.

It was originally developed using arti-

ficial neural network and later updated

to HMMs.

http://www.cbs.dtu.dk/services/SignalP/

Phobius It predicts transmembrane regions and

signal peptide.

http://phobius.cgb.ki.se/

Meta-MEME A motif-based hidden Markov model

used for database search for homologs.

http://metameme.sdsc.edu/

SATCHMO It aligns sequences and constructs tree

using HMMs in situation where se-

quence identity is low.

http://www.drive5.com/lobster/index.htm

COACH It performs pairwise alignment or pro-

files of alignments.

http://www.drive5.com/lobster

HMMSPECTR A protein structure prediction tool. http://biology.sdsc.edu/HMM-SPECTR/

HMMSTR A tool to predict the structure (includ-

ing secondary, local, supersecondary,

and tertiary) of proteins from their se-

quences.

http://www.bioinfo.rpi.edu/ bystrc/hmmstr/server.php

Listed in this table are programs mentioned in this survey that employ HMMs and are freely available for use or

download.
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