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Abstract Annotating cell types is a critical step in single-cell RNA sequencing (scRNA-seq) data

analysis. Some supervised or semi-supervised classificationmethods have recently emerged to enable

automated cell type identification. However, comprehensive evaluations of these methods are

lacking. Moreover, it is not clear whether some classification methods originally designed for ana-

lyzing other bulk omics data are adaptable to scRNA-seq analysis. In this study, we evaluated ten

cell type annotation methods publicly available as R packages. Eight of them are popular methods

developed specifically for single-cell research, including Seurat, scmap, SingleR, CHETAH, Sin-

gleCellNet, scID, Garnett, and SCINA. The other two methods were repurposed from deconvolut-

ing DNA methylation data, i.e., linear constrained projection (CP) and robust partial correlations

(RPC). We conducted systematic comparisons on a wide variety of public scRNA-seq datasets as

well as simulation data. We assessed the accuracy through intra-dataset and inter-dataset predic-

tions; the robustness over practical challenges such as gene filtering, high similarity among cell

types, and increased cell type classes; as well as the detection of rare and unknown cell types. Over-

all, methods such as Seurat, SingleR, CP, RPC, and SingleCellNet performed well, with Seurat

being the best at annotating major cell types. Additionally, Seurat, SingleR, CP, and RPC were

more robust against downsampling. However, Seurat did have a major drawback at predicting rare

cell populations, and it was suboptimal at differentiating cell types highly similar to each other,

compared to SingleR and RPC. All the code and data are available from https://github.com/qian-

huiSenn/scRNA_cell_deconv_benchmark.
Introduction

Single-cell RNA sequencing (scRNA-seq) has emerged as a
powerful tool to enable the characterization of cell types and
states in complex tissues and organisms at the single-cell level

[1–5]. Annotating cell types amongst cell clusters is a critical
step before other downstream analyses, such as differential
ciences /
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gene expression and pseudo time analysis [6–9]. Convention-
ally, a set of previously known cell type-specific markers is
used to label clusters manually. This process is laborious and

often a rate-limiting step for scRNA-seq analysis. It is also
prone to bias and errors. The marker may not be specific
enough to differentiate the cell subpopulations in the same

dataset or be generic enough to be applied from one study to
another. Automating cell type labeling is critical for enhancing
reproducibility and consistency among single-cell studies.

Recently some annotation methods have emerged to sys-
tematically assign cell types in a new scRNA-seq dataset
based on existing annotations from another dataset. Instead
of using only top differentiating markers, most methods

project or correlate new cells onto similar cells in the well-
annotated reference dataset, by leveraging the whole tran-
scriptome profile. These annotation methods have developed

rapidly. However, benchmark datasets that the bioinformat-
ics community agrees upon are lacking. These issues pose
an urgent need to comprehensively evaluate the annotation

methods using datasets with different biological variabilities,
protocols, and platforms. It is essential to provide practical
guidelines for users. Identification of each method’s advan-

tages and limitations will provide practical guidelines and
help boost further algorithmic development, which in turn
will benefit the scRNA-seq community.

In this study, we evaluated ten cell annotation methods

publicly available as R packages (Table 1). Eight are popular
methods developed specifically for single-cell research (Seurat
[10], scmap [11], SingleR [12], CHETAH [13], SingleCellNet

[14], scID [15], Garnett [16], and SCINA [17]). Those methods
can be further divided into two categories: Seurat, scmap, Sin-
gleR, CHETAH, SingleCellNet, and scID utilize the gene

expression profile as a reference without prior knowledge in
signature sets, while Garnett and SCINA require additional
pre-defined gene markers as inputs. To leverage existing decon-

volution methods for bulk omics data, we also included two
modified methods: linear constrained projection (CP) and
robust partial correlations (RPC) that are popular in DNA
methylation analysis [18]. We conducted systematic compar-

isons on six publicly available scRNA-seq datasets (Table 2),
varied by species, tissue types, and sequencing protocols, as
well as five sets of simulation data with known true

measurements.
Table 1 List of scRNA-seq and methylation cell type annotation tools

Software Method/algorithm Bulk/s

referen

SingleR Correlation-based with iterative tuning Bulk

CP Reference-based method using CP Bulk

RPC Reference-based RPC Bulk

Garnett Elastic net multinomial regression Single

SCINA Bimodal distribution assumption for marker genes Single

Seurat Define anchor with CCA, L2-norm, and MNN Single

SingleCellNet Multi-class random forest Single

CHETAH Correlation-based with hierarchical classification Single

scmap KNN classification with cosine similarity Single

scID Fisher’s linear discriminant analysis-like framework Single

Note: CP, constrained projection; RPC, robust partial correlation; CCA, c

K-nearest neighbors.
Results

Intra-dataset annotation and performance comparison

We first tested the classification accuracy of ten methods
(Table 1) on six publicly available scRNA-seq datasets

(Table 2). These datasets include two peripheral blood
mononuclear cell (PBMC) datasets, two human pancreatic
islet datasets, and two whole mouse datasets (Tabula Muris,
or TM full). Since Tabula Muris datasets are heterogeneous

in terms of tissue contents, to evaluate the tools’ performance
on homogeneous data, we downsampled them separately into
two mouse lung datasets (Tabula Muris lung, or TM lung) by

taking cells from lung tissue. This resulted in eight real
scRNA-seq datasets (Table 2). To avoid potential bias, we
used the 5-fold cross validation scheme to measure the

averaged accuracy in the 1-fold hold-out subset. We used three
different performance measurement metrics: overall accuracy,
adjusted rand index (ARI), and V-measure [19,20] (see

Materials and methods). The evaluation workflow is depicted
in Figure S1.

Figure 1A–C show the classification performance on eight
datasets. The five top-performing annotation methods were

Seurat, SingleR, CP, SingleCellNet, and RPC. Seurat had
the best overall classification performance in the 5-fold cross
validation evaluation. On average, the three evaluation metrics

from Seurat were significantly higher (Wilcoxon paired rank
test, P < 0.05) than the other nine methods. SingleR had
the second-best performance, with all three metrics higher than

the other eight methods, among which six pair-wise method
comparisons achieved statistical significance (Wilcoxon paired
rank test, P < 0.05). Though slightly lower in average metrics,

the classification performance of both SingleCellNet and CP
was comparable to SingleR.

In order to test the influence of the cell type classes on the
tools’ performance, we next evaluated the TM full and TM

lung results. As shown in Table 2, for two TM full datasets
from 10X and Smart-Seq2 platforms (with 32 and 37 cell types,
respectively), we used a subset to create two smaller TM lung

datasets (with 8 and 10 cell types, respectively). Most methods
performed well for both TM lung datasets with ARI > 0.9.
However, some methods did not have high performances on
benchmarked in this study

ingle-cell

ce data

Pre-defined marker

genes required

Unknown cell

types allowed

Software version

in R 3.6.0

Ref.

No No SingleR_1.0.0 [12]

No No EpiDISH_2.0.2 [18]

No No EpiDISH_2.0.2 [18]

-cell Yes Yes garnett_0.1.4 [16]

-cell Yes Yes SCINA_1.1.0 [17]

-cell No No Seurat_3.0.1 [10]

-cell No No SingleCellNet_0.1.0 [14]

-cell No Yes CHETAH_1.1.2 [13]

-cell No Yes scmap_1.6.0 [11]

-cell No Yes scID_0.0.0.9000 [15]

anonical-correlation analysis; MNN, mutual nearest neighbors; KNN,



Table 2 Datasets used in this study

Dataset name Protocol No. of cells No. of genes No. of cell types Species/tissue description Refs.

PBMC sorted 10X 91,649 18,986 7 Human PBMCs [33]

PBMC-3K 10X 2467 13,714 6 Human PBMCs

Pancreas sorted CEL-Seq2 2285 34,363 13 Human pancreas [10,31]

Pancreas Fluidigm C1 638 34,363 13 Human pancreas [10,32]

TM full sorted Smart-Seq2 24,622 22,252 37 Mouse [3]

TM full 10X 20,000 17,866 32 Mouse [3]

TM lung sorted Smart-Seq2 1563 22,253 10 Mouse lung [3]

TM lung 10X 1303 17,866 8 Mouse lung [3]

Simulation 1 true Splatter 2000 4000 5 Simulation data for cross-dataset

prediction

Simulation 1 raw Splatter 2000 4000 5 Simulation data for cross-dataset

prediction

Simulation 2 true Splatter 2000 10,000 5 Simulation data with increasing

differential expression scales from low,

low–moderate, moderate to high, each

generated with 5 random seeds

Simulation 2 raw Splatter 2000 10,000 5 Simulation data with increasing

differential expression scales from low,

low–moderate, moderate to high, each

generated with 5 random seeds

Simulation 3 true Splatter 10,000 20,000 10/20/30/40/50 Simulation data with increasing No. of

cell type classes from 10 to 50

Simulation 3 raw Splatter 10,000 20,000 10/20/30/40/50 Simulation data with increasing No. of

cell type classes from 10 to 50

Simulation 4 true Splatter 2000 10,000 9 Simulation data with descending cell

proportion for each cell group, generated

with 10 random seeds

Simulation 4 raw Splatter 2000 10,000 9 Simulation data with descending cell

proportion for each cell group, generated

with 10 random seeds

Simulation 5 true Splatter 5000/10,000/15,000/

20,000/25,000/50,000

20,000 5 Simulation data with increasing No. of

cells from 5000 to 50,000

Simulation 5 raw Splatter 5000/10,000/15,000/

20,000/25,000/50,000

20,000 5 Simulation data with increasing No. of

cells from 5000 to 50,000

Note: PBMC-3K data were obtained from https://support.10xgenomics.com/single-cell-gene-expression/datasets/. Raw data indicate the true

simulation data with the addition of dropouts. Sorted data were generated from the fluorescence-activated cell sorting. TM, Tabula Muris; PBMC,

peripheral blood mononuclear cell.
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the two TM full datasets as the increased classification labels
imposed challenges. Garnett failed to perform prediction on

such large TM full datasets. Additionally, SCINA, CHETAH,
and scmap had significantly lower classification metrics on TM
full datasets than on TM lung datasets. In contrast, the previ-

ously mentioned top-five methods were more robust despite
the increase of complexity in TM full datasets. Again, Seurat
yielded the best performance in both TM full datasets, demon-

strating its capability at analyzing complex datasets.

Inter-dataset annotation and performance comparison

To evaluate the annotation tools in a more realistic setting, we

conducted inter-dataset performance evaluation on ten data-
sets (five pairs), where the referencing labels were obtained
from one dataset and the classification was done on the other

dataset of the same tissue type (Table 2). Within a pair, we
used the fluorescence-activated cell sorting (FACS) sorted
dataset as the reference data, and the remaining one as the

query data (see Materials and methods). Among the five pairs
of datasets, four were real experimental data: PBMC pair with
PBMC sorted data as the reference and PBMC-3K data as the
query; human pancreas cell pair with pancreas CEL-Seq2 data

as the reference and pancreas Fluidigm C1 data as the query;
TM full pair with TM full Smart-Seq2 data as the reference
and TM full 10X data as the query; TM lung pair with TM

lung Smart-Seq2 data as the reference and TM lung 10X data
as the query. The last pair was simulation datasets with the
pre-defined truth, where the true assay without dropouts was

used as the reference, and the raw assay with dropout mask
was used as the query.

Figure 1D–F show the classification performance on the
aforementioned five pairs of query and reference datasets.

The top-three performing annotation methods in descending
rank order were Seurat, SingleR, and CP, same as the intra-
dataset cross validation results (Figure 1A–C). In particular,

they all performed well on the simulation data with known
true measurements, as the three metrics were all above 0.96.
RPC was ranked 4th, slightly better than SCINA. Similar to

the 5-fold cross validation evaluation, methods such as scID,
CHETAH, scmap, and Garnett were consistently ranked
among the lowest-performing methods for classification met-

https://support.10xgenomics.com/single-cell-gene-expression/datasets/


Figure 1 Intra-dataset and inter-dataset accuracy comparison

A.–C. Results of intra-dataset accuracy comparison over eight real datasets are shown as heatmaps of three classification metrics: overall

accuracy (A), ARI (B), and V-measure (C). For each dataset, a 5-fold cross validation was performed: using 4-fold as the reference and 1-

fold as the query. D.–F. Results of inter-dataset accuracy comparison over four pairs of experimental datasets and one pair of simulation

datasets are shown as heatmaps of three classification metrics: overall accuracy (D), ARI (E), and V-measure (F). PBMC pair: PBMC

sorted and PBMC-3K; pancreas cell pair: pancreas CEL-Seq2 and pancreas Fluidigm C1; TM full pair: TM full Smart-Seq2 and TM full

10X; TM lung pair: TM lung Smart-Seq2 and TM lung 10X; simulation: true assay and raw assay. TM lung datasets were downsampled

from TM full datasets by taking cells from lung tissue only. Within the simulation dataset pair, the true assay without dropouts was used

as the reference and the raw assay with dropout mask was used as the query. The columns are datasets, and the rows are annotation

methods. The heatmap scale is shown on the figure, where the brighter yellow color indicates a better classification performance. On the

right of each heatmap is a boxplot to summarize the classification metrics across all datasets for each method. Box colors represent

different methods. The methods in the heatmap and the boxplot are arranged in descending order by their average metrics across all

datasets. Some methods failed to produce a prediction for certain datasets (indicated by gray squares). ****, significantly higher (P < 0.05)

than nine other methods using Wilcoxon paired rank test; *, significantly higher (P < 0.05) than six other methods using Wilcoxon paired

rank test. ARI, adjusted rand index; PBMC, peripheral blood mononuclear cell; TM, Tabula Muris.
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rics. Interestingly, SingleCellNet, the method that performed
relatively well (ranked 4th) in the intra-dataset cross valida-
tion, was now ranked 6th, behind RPC and SCINA, due to

the drop of performance in TM full datasets. The accuracy
scores were also much dependent on the datasets. For example,
on complex PBMC datasets, even Seurat only reached 0.76 for

ARI. A further examination of the confusion matrix (Fig-
ure S2) for Seurat, SingleR, CP, SingleCellNet, and RPC
revealed that the challenge arose when distinguishing highly

similar cell types such as CD4+ T cells vs. CD8+ T cells or
dendritic cells vs. CD14+ monocytes in PBMC datasets.

We also performed batch-corrected inter-dataset predic-
tions on four pairs of experimental datasets. For each pair of

data, both reference and query datasets were aligned using
canonical-correlation analysis (CCA) [10,21]. The result is
illustrated in Figure S3A and B. Most methods did not benefit

from aligning or integrating the datasets (Figure S3B). None of
the other methods exceeded the performance of Seurat in any
of the three metrics after batch correction (Figure S3A). The

drop of performance in those methods may be attributed to
the fact that aligned datasets contain negative values after
the matrix correction and subtraction from the integration

algorithm used in Seurat. In addition, some algorithms require
non-normalized data matrix as the input, while batch-
corrected matrix from Seurat is normalized. This may violate
some models’ assumptions.

Altogether, these results from both experimental and simu-
lation data demonstrate that Seurat has the best overall perfor-
mance among the annotation methods, based on intra-dataset

prediction and inter-dataset prediction.

The effect of cell type similarity on performance

Since it is challenging to distinguish highly similar cell popula-
tions using inter-data evaluation, we next conducted simula-
tions. We designed 20 simulation datasets composed of five

cell groups with varying levels of differential expression (DE)
scales. Similar to others [22], we used Splatter [23] to pre-
define the same set of DE genes in simulation datasets, and
only differed the magnitude of DE, from low, low–moderate,

moderate to high (Figure 2A). For most methods, the classifi-
cation task was easier when cell populations were more separa-
ble with the higher gene DE scale. As cell populations became

less separable with the lower gene DE scale, all methods had a
decrease in their performance (Figure 2B) and the degree of
such decrease varied among methods. SingleR, RPC, Seurat,

SingleCellNet, and CP were in the first class that were rela-
tively more robust than the other five methods. SingleR and
RPC were respectively ranked 1st and 2nd for their robustness
against cell type similarity, with all three metrics above 0.9.

When cells were least separable (low DE), Seurat was ranked
4th after SingleCellNet (which was 3rd), exposing its slight dis-
advantage. Garnett failed to predict when cell–cell similarity

was high (low DE). In this context, the pre-defined marker
genes may be ‘ambiguous’ to differentiate multiple cell types,
which may cause problems for Garnett to train the classifier.

The effect of cell type class number on performance

The increased cell type class number imposes a challenge for

some methods in intra- and inter-dataset predictions. We
designed five simulation datasets, and each was composed of
an increased number (N) of cell type classes (N = 10, 20, 30,
40, 50) with constant total cell number, gene number, and

DE level among cell groups. Similar to the performance that
we observed on intra-dataset and inter-dataset classification
experiments, the increased number of classification labels led

to dropping accuracy for most methods, except SingleR, which
was extremely robust without drop of performance (Fig-
ure 2C). RPC was consistently ranked 2nd regardless of cell

type class number. Seurat and CP were respectively ranked
3rd and 4th for their robustness before N = 30, with small dif-
ferences in metrics. However, after N= 30, the performance of
Seurat deteriorated faster and was ranked 4th. The perfor-

mance issue in Seurat may be due to its susceptibility towards
cell–cell similarity; as we keep a constant DE level despite the
increased cell type classes, more cell types have similar expres-

sion profiles, and are more likely to be misclassified. On the
other hand, Garnett failed to predict when N > 20. Therefore,
the simulation study confirms the practical challenge of

increased cell type classes in the multi-label classification task
for most methods. Collectively, results from both real data
and simulation data demonstrate that SingleR is the most

robust method against increased data complexity.

The effect of gene filtering on performance stability

We also evaluated the stability of annotation methods in inter-

dataset predictions by downsampling the number of query
input features. For this purpose, we used the human pancreas
data pair (Table 2). We randomly downsampled the features

(genes) from Fluidigm C1 data into 15,000, 10,000 and 5000
input genes, based on the original log count distribution (Fig-
ure 3A). When the number of features decreased, most meth-

ods had decreased performance metrics as expected
(Figure 3B). Seurat and SingleR were the top-two most robust
methods over the decreased number of features, and their ARI

scores remained high across all sampling sizes (ARI > 0.9).
Again, methods such as Garnett, scID, and scmap were more
susceptible to low number of features, since their performances
decreased as the feature number decreased. Therefore, using

query data with fewer features than the reference data may
affect the prediction performance of those methods. Alterna-
tively, we also downsized the samples by reducing the number

of raw reads before alignment and tag counting steps (Fig-
ure 3C). While most methods kept consistent performance
metrics with reduced raw reads as expected, a couple of meth-

ods, such as SingleCellNet and scID, were perturbed by this
procedure (Figure 3D).

Rare cell type detection

Identifying rare populations in single-cell data is a biologically
important aspect. We evaluated the inter-dataset classification
accuracy per cell group for the top-five methods selected by

overall accuracy and ARI over all the rare population simula-
tion data (Figure S4): Seurat, SingleR, CP, SingleCellNet, and
RPC. We used a mixture of nine cell groups with a wide variety

of percentages (51.25%, 24.70%, 11.85%, 6.50%, 2.70%,
1.70%, 0.85%, 0.30%, and 0.15%) in ten repeated simulation
datasets with different seeds (Figure 4A). When the size of the

cell group was larger than 50 cells out of 2000 cells, all five



Figure 2 Effect of increased DE scales and cell type classes on annotation performance

A. PCA plots of simulation datasets generated by Splatter. Each dataset is composed of 10,000 genes and 2000 cells, splitting into 5 cell

types with equal proportion. Each dataset contains the same proportion of DE genes in each cell type. The datasets differ by the

magnitude of DE factors for those DE genes to modify cell–cell similarities. We generated 20 datasets with the cell group similarity

ranging from low, low–moderate, moderate to high DE (see Materials and methods). Colors represent different cell types. B. The

evaluation of each annotation method applied to the datasets in (A) is shown by plots of three classification metrics: overall accuracy,

ARI, and V-measure. The x-axis is the gene DE scale in each cell group, and the y-axis is the metric score. Results are shown as

mean ± SD over five repetitions. Line colors and point shapes correspond to different methods. C. The performance of each method for

increased cell type classes is shown by plots of three classification metrics: overall accuracy, ARI, and V-measure. Each simulation dataset

is composed of an increased number (N) of cell types (N = 10, 20, 30, 40, 50) with constant total cell number (10,000), gene number

(20,000), and DE level among cell types. The x-axis is the number of cell type classes in each dataset, and the y-axis is the metric score.

PCA, principal component analysis; DE, differential expression.
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Figure 3 Effect of gene filtering on annotation performance

A. The features (genes) in the human pancreas Fluidigm C1 dataset were filtered by removing genes that are present in less than three cells,

resulting in 19,211 genes. The filtered genes were randomly downsampled into 5000, 10,000, and 15,000 input features, following the

original log count distribution. Such downsampling was repeated five times. SCINA failed when the number of features reached 5000, thus

no point is shown. B. Plots depicting three classification metrics (overall accuracy, ARI, and V-measure) of each method applied to

downsampling approaches in (A). C. The BAM file reads in the human pancreas Fluidigm C1 dataset were randomly downsampled into

25%, 50%, and 75% of the original read depth. D. Plots depicting three classification metrics (overall accuracy, ARI, and V-measure) of

each method applied to downsampling approaches in (C). In (B) and (D), the x-axis is the downsampling size for feature number or read

depth, and the y-axis is the metric score. Results are shown as mean ± SD. Line colors and point shapes correspond to different methods.
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methods achieved high cell type-specific accuracy of over 0.8
(Figure 4B). However, Seurat and SingleCellNet both had a

drop of performance when the size of the cell group was 50
cells or less. On the other hand, most low-performing methods
had fluctuating performance and did not perform well in clas-

sifying major cell groups (Figure S4B). Interestingly, bulk-
reference based methods such as SingleR, CP, and RPC were
extremely robust against the size change of a cell group as their

algorithms use averaged profiles as the reference and are not
susceptible to low cell counts. One challenge for some single-
cell methods is that there are insufficient cell counts from
low-proportion cell types. In fact, some methods remove or

ignore low-proportion cell types in the training phase (such
as Garnett), or during alignment (such as Seurat) using their
threshold parameters.

Rejection option evaluation

Among scRNA-seq specific annotation tools, five methods

(Garnett, SCINA, scmap, CHETAH, and scID) contain the
rejection option that allows ‘‘unknown” labels. This is a prac-
tical option, as the reference data may not contain all cell

labels present in the query data. In order to assess how accu-
rate these methods are at labeling ‘‘unknown” cells, we used
the scheme of ‘‘leave-out 1-cell-type evaluation” on the same

simulation dataset pair utilized in the inter-dataset prediction
experiment. That is, we removed the signature of one cell type
in the reference matrix while keeping the query intact. We

repeated the simulation five times for all five cell types. For
each method, we measured the classification performance after
excluding the leave-out group (Figure 4C), and the overall

accuracy of assigning ‘‘unknown” to the leave-out group in
the query (Figure 4D). Among the five methods compared,
SCINA and scmap all had metrics above the average level of
all tools tested for performance after excluding the leave-out

group (Figure 4C). However, SCINA had a better overall
accuracy in rejecting cell types existing in the query dataset
but not in the reference (Figure 4D). Similar results were

observed from ‘‘leave-out 2-cell-type evaluation” (Figure S5).
Both evaluations demonstrate that SCINA has a relatively bet-
ter balance between classification performance in existing cell

types and precise rejection of non-existing cell types.
However, the caveat is that none of the rejection-enabled

methods are among the best performing methods for evalua-
tions such as inter-dataset predictions and robustness to cell

type similarities. Since accuracy, stability, and robustness are



Figure 4 Performance comparison on rare or unknown cell group detection

All datasets were generated by Splatter. A. Cell population distribution of simulation data (10 repeats), composed of 10,000 genes and

2000 cells, splitting into 9 cell types with cell number proportions of 51.25%, 24.70%, 11.85%, 6.50%, 2.70%, 1.70%, 0.85%, 0.30%,

and 0.15%, respectively. B. Plot illustrating cell type-specific accuracy across 9 cell groups in (A), for the five annotation methods with

overall accuracy > 0.8 and ARI > 0.8. The x-axis is cell groups in descending order for their cell proportions, and the y-axis is the cell

type-specific accuracy score. Results are shown as mean ± SD over ten repetitions. C. Boxplots showing performance metrics (overall

accuracy, ARI, and V-measure) of another simulation dataset, composed of 4000 genes and 2000 cells splitting into 5 cell types. During

each prediction, one cell group was removed from the reference matrix and the query remained intact. The x-axis lists methods with the

rejection option (i.e., allowing ‘‘unknown” labels), and the y-axis is the classification metric after excluding the leave-out group. D. A

boxplot showing the overall accuracy of methods in (C), when assigning ‘‘unknown” class to the leave-out group in the query.
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probably more important attributes, the ability to detect
unknown populations is less useful when the overall accuracy

is low.

Runtime and memory comparison

In order to compare the runtime and memory utilization of
annotation methods, we simulated six pairs of datasets each
composed of 20,000 genes, with 5 cell types of equal propor-
tion (20%), in total cell numbers of 5000, 10,000, 15,000,

20,000, 25,000, and 50,000, respectively (see Materials and
methods). All methods had increased computation time and
memory usage when the number of cells increased (Figure 5).

Of the five overall top-performing methods ranked averagely
by intra-dataset and inter-dataset annotation evaluations (Seu-
rat, SingleR, CP, RPC, and SingleCellNet) (Figure 6), Sin-



Figure 5 Speed and memory usage comparison

Speed and memory usage comparison on six pairs of simulation data with increasing number of cells (5000, 10,000, 15,000, 20,000, 25,000,

and 50,000). True assay (without dropouts) was used as the reference and the raw assay (with dropout mask) was used as the query. Both

reference and query datasets contain the same number of cells. Color depicts different annotation methods. A. Natural log of runtime in

second (y-axis) vs. number of cells (x-axis) over five repetitions at each data point. B. Natural log of peak memory usage in GB (y-axis) vs.

number of cells (x-axis) over five repetitions at each data point. Results are shown as mean ± SD. GB, gigabyte.
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gleCellNet and CP outperformed others on speed (Figure 5A).
As the dataset size increased beyond 50,000 cells, methods such
as RPC required a runtime as long as 6 h. For memory utiliza-
tion, SingleCellNet and CP consistently required less memory

than other three top-performing methods (Figure 5B). Nota-
bly, the best performing method Seurat (ranked by intra-
and inter-dataset predictions) required memory as large as

100 GB when the data size increased beyond 50,000 cells,
which was significantly more than most methods. In all, Sin-
gleCellNet and CP outperformed in terms of computational

speed and memory efficiency among top-five accurate annota-
tion methods (ranked by intra- and inter-dataset predictions).

Discussion

In this study, we presented a comprehensive evaluation of
ten cell type annotation methods in R packages on

scRNA-seq data. Of the ten methods, eight are designed
for scRNA-seq data, and two are our unique adaptation
from DNA methylation analysis. We evaluated these meth-

ods on six publicly available scRNA-seq datasets as well
as additional simulation datasets. We systematically assessed
the accuracy (through intra-dataset and inter-dataset predic-

tions), the robustness of each method with challenges from
gene filtering, cell types with high similarity, and increased
cell type classes, the capability on rare or unknown cell type
detection, and runtime and memory utilization (Figure 6). In
summary, we found that methods such as Seurat, SingleR,
CP, RPC, and SingleCellNet performed relatively well over-
all, with Seurat being the best-performing methods in anno-
tating major cell types. Seurat, SingleR, RPC, and CP were

more robust against downsampling of features and read
depth. However, Seurat had a major drawback at predicting
rare cell types, as well as minor issues at differentiating

highly similar cell types and coping with increased cell type
classes, compared to SingleR and RPC.

During the manuscript preparation, another evaluation

paper was published in a special edition of Genome Biology
[24]. We, therefore, address the differences between these two
studies’ methodologies and highlight the unique insights of

our own, before discussing findings in detail. Firstly, rather
than simply comparing methods claimed to be ‘‘single-cell
specific,” we uniquely repurposed two methods: CP and
RPC. Although they were originally developed for DNA

methylation data deconvolution, their regression-based princi-
ple could be adapted to scRNA-seq supervised or semi-
supervised classification. We modified the final regression coef-

ficient as the probability of one specific cell type label, rather
than the cell content as in DNA methylation-based deconvolu-
tion. As our results indicate, CP and RPC have comparable

performance with SingleR (the overall second-best method).
This shows the potential of repurposing existing deconvolution
methods from another bulk omics analysis. With the rapid
accumulation of so-called ‘‘single-cell specific” computational



Figure 6 Benchmark summary

Summary of the classification performance in each evaluation criteria. Each column is a method and each row is an evaluation criterion

from intra-dataset and inter-dataset prediction (intra/inter), cell–cell similarity (DE scale), increased cell type classes, downsampling of

gene count, downsampling of read depth, rare cell type detection, unknown cell type detection (rejection option), as well as runtime and

memory utilization. The heatmap shows the rank of individual methods based on averaged metrics over overall accuracy, ARI, and V-

measure for each evaluation indicated in the left row. Rare cell type detection was ranked by averaged cell type-specific accuracy for

classifying cell types < 1.70% in population. Unknown cell type detection was ranked by the averaged accuracy of assigning ‘‘unknown”

to the leave-out group. Runtime and memory were ranked by utilization efficiency. Gray box indicates that the method was not included

in the evaluation. The methods in the heatmap are arranged in ascending order by their average rank over intra-dataset and inter-dataset

predictions.
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methods, where not all are thoroughly evaluated, users (includ-
ing bioinformaticians) have increasing difficulty in determining

which method is most appropriate for a given dataset and bio-
logical condition(s). Repurposing pre-existing, sound, and top-
performing methods may be an effective alternative approach.

Secondly, for benchmark datasets, we used fewer real experi-
mental datasets. However, we uniquely included many simu-
lated datasets while the other study did not use any. We
argue that it is important to have additional simulation data-
sets, as all evaluations based on manually annotated cell

type-specific markers in real experimental data are subject to
bias. From the computation point of view, simulation datasets
can avoid such bias as they provide unambiguous ‘‘ground

truth,” even under tricky scenarios such as identifying highly
similar cell types or very rare cell types. Thirdly, Seurat, the
method with the best overall performance in our study, was
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not included in the other study. The high annotation perfor-
mance of Seurat on intra-data and inter-data predictions, is
mostly due to the fact that it’s a classification method using

an integrated reference. Its data transfer feature shares the
same anchors’ identification step as the data integration fea-
ture. However, unlike data integration, the cell type classifica-

tion method in Seurat does not correct the query expression
data. Additionally, its default setting projects the principal
component analysis (PCA) structure of a reference onto the

query, instead of learning a joint structure with CCA [10,21].
Thus, Seurat represents a new kind of ‘‘transfer learning”
method not discussed in the Genome Biology paper. As the
single-cell field develops, more scRNA-seq datasets of similar

conditions need comparative analysis, and more multi-omics
data will be generated from the same single cells. Forward-
thinking methods, such as Seurat and a series of scRNA-seq

data integration methods (LIGER, Harmony, scAlign, etc.
[25–27]) will allow seamless data integration, and automatic
cell annotation will be part of this process. Lastly, we only

selected packages in R with good documentation, as R is still
the most popular bioinformatics platform for open-source
scRNA-seq analysis packages.

Although having slightly lower performance metrics than
Seurat, SingleR and CP still have excellent intra-data and
inter-data prediction performances, with resilience toward
gene filtering and increased complexity in datasets. In addition,

SingleR has a better performance than Seurat in predicting
rare cell types, dealing with increased cell type classes, and dif-
ferentiating highly similar cell types. This advantage of Sin-

gleR may benefit from its method and the pseudo-bulk
reference matrix. SingleR uses pseudo-bulk RNA-seq reference
to correlate averaged cell type expression profiles to each of the

single cells in query data, and it uses highly variable genes to
find the best fit iteratively. The averaged pseudo-bulk reference
profile may potentially remove the variation and noise from

the original single-cell reference profile. In addition, it can
retain expression profiles of all cell types and is not affected
by the low cell count for rare cell types. For Seurat, the anno-
tation of cell labels on query data is informed by the nearest

anchor pairs. If two or more cell types have similar profiles,
their alignments may overlap, which could cause misclassifica-
tion. Seurat also has requirements on the minimum number of

defined anchor pairs. In the case of rare cell types, the lack of
the neighborhood information makes the prediction difficult.
Similar to other study [24], we also found that the method that

incorporates the prior knowledge (e.g., Garnett and SCINA)
does not improve the classification performance over other
methods without such requirements. This prior knowledge is
limited when cell–cell similarity is large. In addition, as the

number of cell types increases, the search for marker genes will
become more challenging, making these methods even less
desirable.

Compared with intra-dataset prediction, inter-dataset pre-
diction is more realistic but also more challenging. Technical,
platform, and batch differences in inter-dataset prediction

may impose major challenges to the classification process, even
when tissue and cell type contents are the same. In our study,
the CCA batch-correction preprocessing step did not improve

the classification accuracy for most methods. Among all exper-
imental data used as the benchmark in this study, PBMC data-
sets had the worst accuracy results (ARI = 0.76 for the best
method Seurat). Further inspection of the confusion matrix
revealed that the challenge came from distinguishing highly
similar cell types, which themselves may have some level of
inaccuracy from the original experiments. If the upstream

unsupervised clustering methods are not sufficiently sensitive
to categorize similar cell populations, this uncertainty may
be carried through to the downstream cell annotation step.

This again highlights the potential issue of evaluating super-
vised or semi-supervised methods in single-cell data, where
we are not certain about the ‘‘ground truth” of cell labels to

begin with. Recently, some studies improved unsupervised
clustering methods through multi-omics integration, and/or
reconstruction of gene regulatory networks [28,29], represent-
ing a new trend in this area. As the multi-omics technology

continues to advance [30], where both multi-omics and pre-
defined marker information are available for the same sample,
we can expect both unsupervised clustering methods and cell

type annotation methods to be further improved.
Overall, we recommend using Seurat for general annotation

tasks for cell types that are relatively separable and without

rare cell type identification as the objective. However, for data-
sets containing cell types with high similarities or rare cell pop-
ulations, if a reference dataset with clean annotations is

available, SingleR, RPC, and CP are preferable.

Materials and methods

Real datasets

Six real scRNA-seq datasets were downloaded and used for
evaluations and validations (Table 2). Two human pancreatic
islet datasets [10,31,32] were obtained via Gene Expression

Omnibus (GEO: GSE85241 and GSE86469; https://www.
ncbi.nlm.nih.gov/geo/). The Tabula Muris datasets Version 2
[3] were downloaded from the Chan Zuckerberg Biohub
(https://tabula-muris.ds.czbiohub.org/). The bead-purified

PBMC dataset [33] was obtained from the Zheng dataset
(https://github.com/10XGenomics/single-cell-3prime-paper),
and the PBMC-3K dataset was downloaded from 10X Geno-

mics (https://support.10xgenomics.com/single-cell-gene-
expression/datasets/).

These datasets differ by species, tissue contents, and

sequencing protocols. For each dataset, we collected both
the raw count matrix and cell type annotations from the corre-
sponding publication, except PBMC-3K, for which cell type

annotations were obtained through the standard scRNA-seq
analysis and classified using cell type-specific marker genes.
The extracted cell type annotations for each dataset were used
as the ground truth for evaluations (Table S1).

Data cleaning

Datasets were paired in groups by tissue types (Table 2).

Within a pair, we used the data generated by the FACS
method as reference data. Both reference data and query data
were further processed to ensure the number of cell types in

reference data was larger or equal to that in query data. When
necessary, query data were downsampled following the origi-
nal cell type count distribution. For the two TM full datasets

from 10X and Smart-Seq2 platforms, which contain a large
number of cell types (32 and 37 cell types, respectively), we
took a subset to create two TM lung datasets (8 and 10 cell
types, respectively). As a result, we generated four pairs of

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://tabula-muris.ds.czbiohub.org/
https://github.com/10XGenomics/single-cell-3prime-paper
https://support.10xgenomics.com/single-cell-gene-expression/datasets/
https://support.10xgenomics.com/single-cell-gene-expression/datasets/
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experimental datasets: PBMC pair with PBMC sorted data as
the reference and PBMC-3K data as the query; human pan-
creas cell pair with pancreas CEL-Seq2 data as the reference

and pancreas Fluidigm C1 data as the query; TM full pair with
TM full Smart-Seq2 data as the reference and TM full 10X
data as the query; TM lung pair with TM lung Smart-Seq2

data as the reference and TM lung 10X data as the query.

Data downsampling

To explore the effects of different feature number and read
depth on the performance of tools, we randomly downsampled
features (genes) from human pancreas Fluidigm C1 dataset

into 5000, 10,000 and 15,000 input genes, following the origi-
nal log count distribution. We repeated five times for each
downsampling scheme. We also downsampled the reads into
25%, 50%, 75% of the original read depth (with two repeti-

tions) on BAM files, and then realigned files following the
method provided by the original manuscript [32].

Simulated datasets

We first simulated a dataset using Splatter, with 4000 genes and
2000 cells (Splatter parameters, dropout.shape = –0.5, drop-

out.mid = 1), and then split the dataset into five cell groups
with proportions of 10%, 30%, 30%, 10%, and 20%. In addi-
tion, we also generated four additional simulation sets to eval-
uate the robustness of tools. The first set contains 20 simulation

datasets, with each composed of 10,000 genes and 2000 cells
splitting into 5 cell types with equal proportion. These datasets
have the same set of DE genes but differ by the magnitude of

DE factors. We simulated each DE scale five times with five dif-
ferent seeds. The DE scale and the parameterization in Splatter
were: low: de.facScale = (0.1, 0.3, 0.1, 0.3, 0.2); low–moderate:

de.facScale = (0.3, 0.5, 0.3, 0.5, 0.4); moderate: de.facS-
cale = (0.5, 0.7, 0.5, 0.7, 0.6); high: de.facScale = (0.7, 0.9,
0.7, 0.9, 0.8). The second set contains five simulation datasets

each composed of an increased number (N) of cell type classes
(N = 10, 20, 30, 40, 50) with constant total cell number
(10,000), gene number (20,000), and DE level among cell
groups. In the third set, we generated ten simulation datasets

each with 10,000 genes and 2000 cells (using ten different seeds),
and then split each into 9 cell groups with proportions of 51.
25%, 24.70%, 11.85%, 6.50%, 2.70%, 1.70%, 0.85%, 0.30%,

and 0.15%, respectively. The fourth simulation set contains
six datasets with total cell numbers of 5000, 10,000, 15,000,
20,000, 25,000, and 50,000, respectively. Each dataset contains

20,000 genes and 5 cell types with the equal proportion.
Each simulation dataset contains two paired assays. The

true assay without dropouts was used as the reference and

the raw assay with dropout mask was used as the query.

Data preprocessing

Cell and gene filtering

We filtered out cells for which fewer than 200 genes were
detected and genes that were expressed in fewer than 3 cells.

Normalization

For annotation tools that require a normalized count matrix as
the input, we performed log-normalization using a size factor

of 10,000.
Pseudo-bulk reference matrix

For annotation tools that use bulk rather than single-cell

expression profiles as reference, we took the average of the
normalized count of each cell type group and made a
pseudo-bulk RNA-seq reference.

Marker gene selection

Some classification tools (SCINA and Garnett) require cell
type-specific markers as the input. When such marker informa-

tion was neither provided by the corresponding tools nor
retrievable by public research, we extracted them from the ref-
erence data by performing differential expression analysis

using Wilcoxon rank sum test (FindAllMarkers function from
Seurat with parameters only.pos = TRUE, min.pct = 0.25,
and logfc.threshold = 0.25). Wilcoxon rank sum test is the

most common nonparametric test for a difference in mean
expression between cell groups. The ten top-ranked marker
genes for each cell type were used as the input for correspond-
ing tools.

Annotation methods

We only considered pre-printed or published methods with

detailed documentation on installation and execution. We
excluded any methods that required extensive runtime, and
where we were unable to customize the reference dataset, or

inconsistent predictions were produced. In the end, ten cell
annotation methods, publicly available as R packages, were
evaluated in this study. This included eight commonly used

scRNA-seq annotation methods: Seurat, scmap, SingleR,
CHETAH, SingleCellNet, scID, Garnett, and SCINA. In
addition, to investigate the potential to repurpose deconvolu-
tion methods for other bulk omics analysis, we also included

and modified two methods originally designed for DNA
methylation analysis that use algorithms not yet reported in
scRNA-seq specific tools: CP and RPC.

All parameters were set to default values following the
authors’ recommendations or the respective manuals (Table 1).
For methods that allow ‘‘unknown” assignments (scmap,

CHETAH, scID, Garnett, and SCINA), we modified the
parameter to force assignments where possible (except for eval-
uations where unknown assignments were allowed).

Adaptation of CP and RPC methods for scRNA-seq analysis

IIn order to accommodate the methylation-based methods for
scRNA-seq data, we made some modifications. In original

papers, both RPC and CP model the methylation profile of
any given sample as a linear combination of a given reference
profile representing underlying cell types present in the sample.
We assumed that the number of underlying cell types to be C,

and each cell type has a profile bc that constitutes the signature
matrix H [34–36]. Let y be the profile of a given sample and wc

be the weight estimation of cellular proportion of each cell

type, and the underlying model becomes:

y ¼
XC

c¼1

wcbc þ �

Both methods assume that reference profiles contain the
major cell types present in the sample y and sum of weights

equal to 1. RPC estimates the weight coefficient using robust
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multivariate linear regression or robust partial correlation,
while CP uses a quadratic programming technique known as
linear constrained projection to estimate the weights [37].

In the modified version, we first converted the scRNA-seq
reference data into pseudo-bulk RNA-seq data matrix by tak-
ing the average of the normalized count of each cell type

group. Then we took a subset of pseudo-bulk RNA-seq matrix
with a small condition number by keeping 2000 features that
exhibited high cell-to-cell variations across C distinct cell

types, as the signature matrix H [34]. We set the highly variable
genes to 2000, using FindVaraibleFeatures function from Seu-
rat (Figure S6). We let y be the profile of a given single cell
from the query data with the same 2000 genes from the signa-

ture matrix H. While applying both algorithms, we treated the
estimated weight for each cell type as the probability and the
cell type with the highest weight was the identity of the corre-

sponding single-cell sample in the query data. This conversion
is based on the fact that y no longer represents averages over
many different cell types, but instead contains expression pro-

files from one cell type (since we have single-cell data).
Benchmarking

Five-fold cross validation and inter-dataset prediction

For each dataset in four pairs of real experimental datasets
mentioned above, we used a 5-fold cross validation where

the 4-fold data were used as the reference and the remaining
1-fold as the query. For the inter-dataset prediction, in addi-
tion to the four pairs of real datasets, we used a pair of simu-

lation datasets containing true assay (without dropouts) as the
reference and raw assay (with dropout mask) as the query.

To evaluate whether batch correction and data integration

benefit the classification performance, for each pair of real
datasets, we aligned both reference and query data using
CCA [10,21] from Seurat data integration function. Then we

separated the aligned data and performed the inter-dataset
evaluation again.

Performance evaluation on the effect of feature number and read

depth

To investigate the robustness of different methods with regards
to feature number and read depth, we used the downsampled
human pancreas Fluidigm C1 dataset as described in the data

downsampling section. In such evaluation, the human pan-
creas CEL-Seq2 dataset was used as the reference and the
downsampled human pancreas Fluidigm C1 dataset was used

as a query.

Performance evaluation on the effect of DE scale

In this assessment, we used 20 simulation datasets containing

the same DE gene set but differing only by DE factors as
described earlier in the simulated datasets section. Each simu-
lation dataset contains two paired assays. The true assay (with-

out dropouts) was used as the reference and the raw assay
(with dropout mask) was used as the query.

Performance evaluation on the effect of classification labels

In this evaluation, we designed five simulation datasets, each
composed of an increased number (N) of cell groups
(N = 10, 20, 30, 40, 50) with constant total cell number, gene
number, and DE level among cell groups. Each simulation
dataset contains two paired assays. The true assay (without
dropouts) was used as the reference and the raw assay (with

dropout mask) was used as the query.

Rare and unknown cell type detection

Each of the ten simulation datasets in the rare cell type detec-

tion was composed of 10,000 genes and 2000 cells splitting into
9 cell types with proportions of 51.25%, 24.70%, 11.85%,
6.50%, 2.70%, 1.70%, 0.85%, 0.30%, and 0.15%, respec-

tively. The simulation dataset in the unknown cell type detec-
tion was composed of 4000 genes and 2000 cells splitting into 5
cell types. We used the scheme of ‘‘leave-out 1-cell-type evalu-

ation” to evaluate prediction on the unknown cell groups, that
is, removing the signature of one cell type in the reference
matrix while predicting the query. During each prediction,

one cell group was removed from the reference matrix and
the query remained intact. We repeated the evaluation five
times for all five cell types. We additionally employed a
‘‘leave-out 2-cell-type evaluation”, in which we removed signa-

tures of any combination of two cell types in the reference
matrix while keeping the query intact. The evaluation was
repeated ten times for all ten different combinations. Similarly,

for each simulation dataset, the true assay (without dropouts)
was used as the reference and the raw assay (with dropout
mask) was used as the query.

Runtime and memory utilization assessment

To compare the computational runtime and memory utiliza-
tion of annotation methods, we simulated six datasets, with

total cell numbers of 5000, 10,000, 15,000, 20,000, 25,000,
and 50,000, respectively. Each dataset contains 20,000 genes
and 5 cell types with equal proportion. The true assay (without

dropouts) was used as the reference, and the raw assay (with
dropout mask) was used as the query. Each execution was per-
formed in a separate R session on our lab server [four nodes
(Dell PowerEdge C6420) of 2X Intel(R) Xeon(R) Gold 6154

CPU @ 3.00 GHz, 192 GB RAM, one node (Dell Poweredge
R740) with 2X Xeon(R) Gold 6148 CPU@ 2.40 GHz, 192 GB
RAM, and two 16 GB Nvidia V100 GPUs] with Slurm job

scheduler. One processor and 100 GB memory were reserved
for each job. From the job summary, we collected ‘Job Wall-
clock time’ and ‘Memory Utilized’ for evaluation. We ran each

method on each dataset five times to estimate the average com-
putation time and memory usage.

Evaluation criteria

The prediction results of all methods were evaluated using
three different metrics: overall accuracy, ARI, and V-
measure. We used three different metrics to avoid possible bias

in evaluating the performance. The detailed explanations on
these metrics were described earlier [22,38,39]. Briefly, overall
accuracy is the percent agreement between the predicted label

and the true label. ARI is the ratio of all cell pairs that are
either correctly classified together or correctly not classified
together, among all possible pairs, with adjustment for chance.

V-measure is the harmonic mean of distinct homogeneity and
completeness score. In specific, homogeneity was used to assess
whether each predicted cell type group contains only members

of a single class, while completeness was used to assess whether
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all members of a given class are assigned to the same predicted
cell label.

Availability

All the code and data are available from https://github.com/

qianhuiSenn/scRNA_cell_deconv_benchmark.
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