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Abstract

Hepatic steatosis droplet quantification with histology biopsies has high clinical significance for 

risk stratification and management of patients with fatty liver diseases and in the decision to use 

donor livers for transplantation. However, pathology reviewing processes, when conducted 

manually, are subject to a high inter- and intra-reader variability, due to the overwhelmingly large 

number and significantly varying appearance of steatosis instances. Meanwhile, this process is 

challenging as there is a large number of overlapped steatosis droplets with either missing or weak 

boundaries. In this study, we propose a deep learning based region-boundary integrated network 

for precise steatosis quantification with whole slide liver histopathology images. The proposed 

model consists of two sequential steps: a region extraction and a boundary prediction module for 

foreground regions and steatosis boundary prediction, followed by an integrated prediction map 
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generation. Missing steatosis boundaries are next recovered from the predicted map and assembled 

from adjacent image patches to generate results for the whole slide histopathology image. The 

resulting steatosis measures both at the pixel level and steatosis object level present strong 

correlation with pathologist annotations, radiology readouts and clinical data. In addition, the 

segregated steatosis object count is shown as a promising alternative measure to the traditional 

metrics at the pixel level. These results suggest a high potential of AI assisted technology to 

enhance liver disease decision support using whole slide images.
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Liver steatosis is a disease caused by an excessive accumulation of lipids in liver cells [1]. 

Clinically, it is important to accurately measure steatosis components, as steatosis 

quantification serves as a key step in the clinical decision to use donor livers for 

transplantation. It has been proved that liver transplant recipients with rich steatosis 

components tend to have a higher rate of primary graft dysfunction and/or renal failure in 

80% of cases [2]. In spite of the recent advance in non-invasive diagnostics, histopathology 

review of steatosis components in liver tissue biopsies is an important factor for the 

assessment of fatty liver disease and other liver conditions. Staging of steatosis can provide 

guidance to clinicians with regard to diagnosis severity and the necessity for liver disease 

treatment [3]. In clinical practices, pathologists determine the degree of steatosis 

components by examining the Hematoxylin and Eosin (H&E) stained tissue slides. However, 

their estimations are prone to both large intra- and inter-observer variability due to 

unacceptable sampling bias and poor reproducibility [4]. With the advent of high throughput 

digital scanners, computer-based methods have been developed to automate tissue 

microscopy image processing in a large variety of analyses, ranging from histopathology 

object detection, segmentation, to classification [5–8] . Despite the active development in 

this field, the ability to extract clinically relevant phenotype information from the whole 

slide images remains limited [9]. Deep learning based methods have become popular in the 

computer vision domain, due to their state-of-the-art performance in a wide range of 

applications, including image classification [10, 11], object detection, and segmentation 

tasks [12]. Deep learning is a class of emerging machine learning methods that can 

computationally learn low level image features for computerized image analysis [13]. Deep 

learning works with artificial neural networks that are comprised of layers of nodes as 

analogous to perceptron neurons interconnected in human brains. In each layer, the deep 

learning model has a convolution layer that applies different image filters to convolve with 

input image for low level image feature extraction. The final layer compiles the weighted 

inputs to produce an output. Unlike the traditional machine learning methods, no manual 

feature engineering is required for deep learning models. As the model keeps exploring new 

image features and optimizing node connection weights during the training stage, it can 

achieve promising performance after the model is fully trained. Numerous image 

segmentation methods based on Convolutional Neural Networks (CNNs) have been 

proposed, including nuclei detection, segmentation, and gland segmentation, among others. 
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For example, a CNN based model is trained for nucleus segmentation followed by a 

deformable shape model for touching nuclei separation [6]. In a similar study, CNN is 

applied to enhanced gray scale images for nuclei segmentation [14]. The segmented result is 

refined by morphological operators. In a gland segmentation study, CNN outperforms 

Support Vector Machine classifier that requires the handcrafted feature extraction for 

glandular structure segmentation in colon histology images [15]. Additionally, it has been 

demonstrated that fusing multiple channels with CNN models can lead to improved gland 

segmentation results [16, 17].

By comparison, Fully Convolutional Neural network (FCN) [18] is more efficient and 

accurate for the semantic segmentation scenarios, where fully connected layers are 

embedded in CNNs, enabling an end-to-end training and testing. With FCN as a building 

block, a novel Deep Contour-Aware Network (DCAN) with a unified multi-task learning 

framework is proposed [19]. Multi-level contextual features are explored based on an end-to-

end FCN for accurate gland detection and segmentation. Additionally, a nucleus-boundary 

model is introduced to predict nuclei regions and their boundaries simultaneously by a FCN 

[20]. U-Net [12] is yet another popular model in the FCN family that employs a U-shape 

deep convolutional network designed for biomedical image segmentation problems with the 

state-of-the-art performance even when the amount of training data is limited. Additionally, 

Holistically-nested Neural Networks (HNN) have demonstrated their promising 

performances for object segmentation in the medical imaging domain [16, 17, 21]. Their 

main advantage is that the resulting performance can be continuously improved as the 

training data scale increases. Additionally, this model can capture the underlying structure 

complexity and appearance of overlapping objects through an automatic feature learning 

mechanism in the training stage. Meanwhile, multiple network aggregation for the enhanced 

performance has been proposed. For example, ENet based models are trained for nuclear 

region and boundary prediction [22]. This is followed by the third ENet to combine the 

output of region- and boundary-ENets.

In clinical practice, there is a lack of objective ways to quantify steatosis due to multiple 

challenges. First, it is challenging to detect and segment the steatosis components from 

whole slide liver histopathology images, as steatosis droplets are subject to large variation in 

shape, size and appearance in distinct tissue sections [23]. Additionally, a large number of 

steatosis droplets are found in clumps with missing or weak separating borders. While 

isolated steatosis droplets are mostly circular in shape, overlapped instances have irregular 

shapes. Numerous methods based on hand-crafted features have been proposed for 

histopathology structure segmentation, ranging from thresholding [24], watershed, 

deformable models, morphological operations to sophisticated methods such as graph based 

methods [25]. However, hand-crafted features are limited in representation power and 

subject to feature parameters. Given the large variations in structures of overlapped steatosis 

droplets, it is challenging to define robust features suitable for all cases. The resulting 

performance of traditional supervised learning methods, such as Support Vector Machine 

(SVM), Adaboost or Bayesian, can be significantly deteriorated, as they highly depend on 

these hand-crafted features. Due to the presence of overlapped steatosis droplets in large 

tissue areas, no prior image analysis method for overlapped steatosis droplet quantification is 
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equipped with whole slide image analysis capability to improve the clinical decision 

support.

In this paper, we present a steatosis segmentation model to identify individual steatosis and 

delineate boundaries of overlapping steatosis instances in whole slide microscopy images of 

liver biopsies. Specifically, a region-based module is designed to segment the foreground 

steatosis droplet region from background pixels, while a boundary module is introduced to 

learn the perceptual boundary features for each overlapped steatosis region. Next, the region 

and boundary information are combined to train the third deep neural network responsible 

for dividing steatosis droplets in clumps. The proposed network architecture is named as 

DeEp LearnINg stEATosis sEgmentation (DELINEATE). We provide both patch-wise and 

whole slide steatosis prediction analysis. For each patch, the pixel-wise analysis strategy is 

applied. Although some partial steatosis components are found crossing adjacent patches in 

most cases, the border area in each patch lacks such contextual information. To address this 

problem, we use a spatial indexing based approach to identify partial steatosis droplet 

components from neighboring patches, and have them efficiently assembled by MaReIA 

[26], a tool we developed in our prior work.

We quantitatively assess the accuracy of our method and compare it with other state-of-the-

art methods. Our method is systematically validated with whole slide liver histopathology 

images of 36 patients with Nonalcoholic Fatty Liver Disease (NAFLD) collected from 

Children’s Hospital of Atlanta and Emory University. The resulting DELINEATE steatosis 

measurements at both steatosis pixel level and isolated steatosis object level are strongly 

correlated with gold standard pathological review results, patient clinical data, and fat 

readout from MRI images of the same patient cohort. Statistical tests suggest that 

DELINEATE derived steatosis measures both at steatosis pixel and isolated steatosis object 

level are promising clinical indicators presenting statistically significant difference between 

(1) two diagnostic groups - Nonalcoholic Steatohepatitis (NASH) and Nonalcoholic Fatty 

Liver (NAFL), and (2) groups with and without lobular inflammation. In addition, steatosis 

object level measure is found as an informative alternative to the pixel level measure for 

differentiating histological steatosis grades.

Materials and Methods

Data pre-processing

Whole slide images, human annotations, radiology readouts and clinical data were obtained 

from the Children’s Hospital of Atlanta and Emory University. All liver tissue permanent 

sections were formalin-fixed and paraffin-embedded, and stained by H&E. Resulting images 

of permanent section slides were reviewed to exclude those with unacceptable tissue-

processing artifacts. Portal tract areas with bile ducts and large vessels were manually 

excluded, leaving only hepatic lobules for quantitative analysis. Each whole slide image 

contains multiple tissue components. To reduce image size for analysis, we extracted 

complete tissue component images capturing minimum non-tissue areas by rotations at the 

highest image resolution level from original whole slide images [27]. The resulting whole 

tissue component images were still too large in size to feed into deep learning models for 

steatosis prediction. Therefore, each complete tissue component image was partitioned to 
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non-overlapping image patches of size 512 × 512 pixels. This process results in 2,050 image 

patches that are divided into training and validation cohorts with a ratio of 80:20. All image 

patches were extracted at 20× objective magnification using OpenSlide [28]. As colors of 

H&E stained images depend on numerous factors related to the tissue preparation, staining, 

and scanning process [20], they can vary significantly. Thus, all images were normalized to a 

standard H&E calibration image by the stain color [29] before analysis. Whole slide images 

of human liver biopsies from 36 unique patients were analyzed, with an average image 

resolution of 30,000 × 20,000 by pixels.

DELINEATE architecture

As demonstrated in Fig. 1(A), the proposed DELINEATE model for steatosis segmentation 

has an end-to-end deep learning process in two stages. First, the foreground steatosis regions 

and their boundaries are identified and separated. Next, the resulting prediction outputs are 

combined in the integrative module for the clumped steatosis segmentation.

The steatosis region extraction module has a modified U-Net [12] architecture consisting of 

four encoding and another four decoding layers, aiming at identification of the steatosis 

components from the background. Different levels of contextual feature maps are extracted 

by the encoding layers, while the decoding layers generate probability masks of steatosis 

regions. As a way to reduce spatial information loss, the high resolution feature maps from 

the encoder layers are connected to the corresponding decoder layers. Additionally, dilated 

convolution [30] is used to exponentially expand the receptive field, decrease space-

invariance, and reduce detailed spatial information loss by max-pooling and strided 

convolution in the down-sampling path, contributing to a promising segmentation accuracy 

as demonstrated in Table 1. Three dilated convolution layers at a rate of 1, 2 and 4 are 

stacked at the bottleneck block where the feature maps have the lowest resolution. This 

architecture, named as dil-Unet, is illustrated in Fig. 1(B). Input images of size 512 × 512 

are used for training and testing this model. All kernels used in each convolutional layer are 

initialized by the standard Xavier initialization [31] and the bias is initialized with zero.

The steatosis region extraction network minimizes the softmax cross entropy loss Lr 

between the prediction map Pr and the target Yr :

Lr = − ∑
c = 1

K
∑

i, j ∈ Ω
yr(i, j)log P r i, j ∣ c, wr (1)

Where K = 2 is the number of classes, yr is the binary indicator of the true label at pixel (i,j) 
in an image domain Ω, and Pr (i,j |c,wr, br) is the output of soft-max activation layer 

indicating the probability of the pixel (i,j) having label c. We use Adam optimizer [32] along 

with exponential learning rate decay to optimize the parameter set wr by back-propagation.

In addition to the region supporting information from dil-Unet, a complementary steatosis 

boundary detection module with Holistically-nested Neural Network (HNN) [33] derived 

from VGGNet is used to delineate the hidden boundaries of the overlapped steatosis 

droplets. The architecture of this module is depicted in Fig. 1(C). The module consists of 

five convolutional stages of distinct receptive field sizes and stride values (i.e. 1, 2, 4, 8, and 

Roy et al. Page 5

Lab Invest. Author manuscript; available in PMC 2021 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16), respectively. Additionally, it has M side-output layers serving as classifiers with weights 

w = (w(1),.… w(M)).

The steatosis boundary module is a combination of a HNN and a “weighted-fusion” layer 

trained in parallel during the training phase [21, 33]. The parameter set W is initialized by 

the pre-trained network [33] and updated with our training data (X, Yb). The training 

process minimizes the following loss function:

Lb(W , w) = ∑
m = 1

M
αmlm W , wm + Dist Y , Y 2 (2)

where lm is computed over all pixels of training image pair (X, Yb), and represents the image 

level loss function from side output m. Each side output lm is refined for minimization over 

iterations; Y 2 = σ ∑m = 1
M ℎmam(i, j)  is the output from the “weighted-fusion” layer with 

fusion weights {hi}. Sigmoid activation function σ (·) is used to compute the class 

probability of each pixel (i,j); Dist (·) is the cross-entropy loss with the fused predictions and 

the ground truth label maps. Resulting optimal parameters are found by the objective 

function minimization with stochastic gradient descent and back propagation in training. In 

the testing phase, the prediction is generated from side output layers and the weighted-fusion 

layer. The 5th side output is used to represent steatosis boundaries as it produces results with 

good contrast after careful visual inspections.

By experiments, neither region nor boundary information by its own is sufficient for 

accurate steatosis droplet segmentation. Additionally, neither direct combination nor simple 

concatenation of the two channels of outputs provides precise boundary information for 

overlapped steatosis droplets. As a result, a Fully Convolutional Network (FCN) [18] is used 

to integrate complementary information from steatosis region and boundary modules for 

final prediction.

Specifically, FCN-8s as illustrated in Fig. 1(D), with skip connections from pool3 and pool4 

are used for better deep semantic information integration on the down-sampling path. The 

final output has three channels representing the probabilities of each pixel being 

background, boundary, or region class, respectively. The integrated network is trained with 

softmax cross entropy loss and Adam optimizer [32]. Dropout with probability of 0.3 is used 

to overcome the over-fitting problem.

Training and validation of data

Each whole tissue component image was partitioned to non-overlapping image patches for 

generating training and validation data. Each steatosis component boundary was annotated 

by domain experts and served as the ground truth for the steatosis boundary prediction 

module. The region labels derived from the gold standard boundaries were used for the 

steatosis region extraction module. Deep learning model training requires a large set of 

training data to avoid the over-fitting problem. For pathology image review, however, it is 

highly time-consuming to manually label all steatosis boundaries in a large image patch set 

by domain experts. Therefore, the limited human-annotated training data set for the steatosis 
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region module was augmented by the horizontal flip, vertical flip, rotation in four degree 

angles, and re-scaling by 0.5 scales. Similarly, each image patch was rotated in 16 different 

angles and flipped at each angle to generate an augmented training set for the boundary 

module. A total of 1,471 patches of size 512 × 512 were used for this study where 735 were 

randomly selected for the region and boundary module training, with the remaining 736 for 

the integrative network training. Each cohort was split into 80:20 for training and validation 

image generation. The test set consists of 150 patches from a new set of tissues not seen in 

the training and validation sets. The region and boundary modules were trained separately. 

Their outputs were combined to train the integrated network in turn.

Post-processing

The FCN-8s integration network predicts steatosis region, boundary, and background 

classes. The resulting prediction map is binarized with a cutoff value of 0.5. Each connected 

component in the binary mask represents the internal region of a steatosis droplet. For 

overlapped steatosis droplet segregation, we further apply the high curvature point detection 

and an ellipse fitting quality assessment method in the post-processing [27]. Specifically, 

high curvature points on a steatosis contour are detected [34] and combined with adjacent 

high curvature points in aggregated point representations. High curvature points in all 

possible pairs are connected by straight lines for further division assessment. Each such 

candidate line partitions the overlapped steatosis region into two components. The 

partitioning quality is further assessed by fitting an ellipse for each component. For each 

divided component, we next compute the ratio of the intersection to union area of the 

resulting ellipse and the partitioned steatosis region. Of all possible candidate point pairs, we 

only connect the paired points with maximum ratios both greater than the fitting quality 

cutoff value of 0.7. Post-processing results are illustrated in Fig. S1.

Patch-wise segmentation assembly for whole tissue image analysis

Due to the limitation of GPU memory size, deep learning methods cannot process a single 

high-resolution whole slide histopathological image at once. Therefore, we divide each 

whole tissue image into 512 × 512 image patches for model training and prediction. As the 

FCN family algorithms do not provide accurate border area prediction [20], we use a generic 

MapReduce based Image Analysis framework (MaReIA) to avoid counting duplicates of 

steatosis droplets crossing patch borders [26]. The framework introduces an overlapping 

partitioning method that partitions whole tissue component images into patches with 

extended buffers for accurate segmentation, eliminating the boundary crossing object 

problem. The buffer zone is adjusted according to the histology structure size in such a way 

that it is large enough to completely contain histology objects of interest in the buffer zone. 

The block diagram in Fig. 5(B) illustrates individual steps of steatosis quantification with 

whole tissue component images. First, we extract the overlapping patches of size 512 × 512 

from each whole tissue image. The resulting patches are processed by the steatosis 

segmentation pipeline. Next, all patches are merged with MaReIA that generates a steatosis 

prediction map for each whole tissue component. The resulting output is further polished by 

the post-processing step. One typical whole tissue steatosis segmentation result is 

demonstrated in Fig. 5(A). As the proposed solution to patch wise result aggregation is 
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generic, it can be applied to a large number of whole slide image analysis research where 

aggregation of results from patches in whole slide images is important.

Hardware and software specifications

The developed framework is implemented with the open-source deep learning library 

TensorFlow [35] and Keras [36]. The experiments is carried out on Tesla K80 and V100 

GPUs with CUDA 9.1. Adam optimization algorithm [32] is used to train all three modules. 

The initial learning rate and learning rate decay are set as 0.0001 and 0.9 respectively for the 

steatosis region module, while the boundary detection module is trained with a learning rate 

of 0.001 and a weight decay of 0.0002. The parameters of boundary module and integration 

module are initialized by pre-trained VGG16 model [11]. In the training phase, the learning 

rate of the integration network FCN-8s is set as 1.00e−5.

Data availability

All source codes and annotation data related to this paper are available at GitHub [37]. We 

share image data in a public repository [38].

Results

Steatosis droplet segmentation using DELINEATE model

The overall DELINEATE framework is illustrated in Fig. 1. Our proposed DELINEATE 

model for steatosis segmentation is a region-boundary integrated network architecture and 

has an end-to-end deep learning process in two stages. First, the foreground steatosis droplet 

regions and their boundaries are identified separately. The resulting two output predictions 

are combined to create a final prediction map in the second stage where the clumped 

steatosis droplets are divided into separate components (Methods).

For steatosis region segmentation, we built the architecture based upon the FCN family 

model U-Net [12] by stacking dilated convolutional layers at the bottleneck of the U-Net 

model. The dilated convolution enhances the network performance with a wider receptive 

field without the down-sampling operation, resulting in more accurate segmentation than the 

standard U-Net model as demonstrated in Fig. 2(A). To better learn steatosis boundary 

features, we used Holistically-nested Neural Network (HNN) to capture low, middle and 

high level contour signatures from hierarchically embedded multi-scale edge fields [21, 33]. 

Instead of summing all side outputs by weights, we propose to retain the single side output 

from the fifth side as the steatosis boundary prediction result.

By detecting the boundary in an additional module, we can delineate the hidden boundaries 

of overlapped steatosis regions, and therefore, improve steatosis segmentation accuracy. 

Therefore, we further used a fully convolutional network [18] with skip connection to 

integrate the derived region and boundary information and produced the final prediction map 

of three classes: steatosis droplet region, steatosis boundary, and the background. 

Specifically, FCN with a transposed convolution layer having a stride 8 (FCN-8s) at the final 

layer was used to generate the resulting segmentation map. With extensive experiments, we 
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demonstrate that such integrative network leveraging information from both the region and 

the boundary detection module will help remove large false positive regions (Fig. 2(B)).

Evaluation of DELINEATE segmentation accuracy

To evaluate the DELINEATE model accuracy, we applied our method to whole slide liver 

histopathology images of 36 children with Nonalcoholic Fatty Liver Disease (NAFLD) 

collected from Children’s Hospital of Atlanta and Emory University. The corresponding 

demographics, steatosis diagnostics, radiology measures, and clinical outcome of the patient 

cohort are summarized in Table S1. As each whole slide liver image may contain multiple 

tissue components, we retained each such tissue component in a separate image for analysis 

[27] (Method).

The segmentation accuracy of DELINEATE model was evaluated by five-fold cross-

validation method. We randomly partitioned the dataset (Supplement S1: Dataset) into a 

training and a testing set by a ratio of 80:20. We trained the DELINEATE model with the 

training set and evaluated the accuracy of the model with testing. Steatosis quantification 

accuracy was measured both at the object level and the pixel level. The object-level 

measures include F1 score, Precision, Recall [39] and Hausdorff Distance. True Positive is 

counted when a segmented steatosis droplet shares more than 50% of its area with the 

ground truth. Otherwise, it is considered as a False Positive. Ground truth steatosis regions 

not segmented by DELINEATE are considered False Negative. To accurately assess 

overlapped steatosis segmentation results, we used object level Dice index [16, 19] for 

method evaluation at the pixel level. Without loss of generality, G is denoted as a ground 

truth set for steatosis instances and P as a set of machine segmented steatosis instances. For 

the i-th steatosis instance Gi in the ground truth set, we found the maximally overlapped 

segmented steatosis instance Pi in the same image and computed the Dice index D(Gi, Pi). 

Similarly, for the j-th segmented steatosis instance P j, we detected the maximally 

overlapped ground truth steatosis instance Gj and computed the Dice index D Gj, P j . The 

resulting object-level Dice score D(G, P ) is defined as follows:

D(G, P ) = 1
2 ∑

i = 1

NG
wiD Gi, Pi + ∑

i = 1

NP
wjD Gi, P i (3)

where wi is the ratio of the number of pixels in the i-th ground truth instance to the sum of 

all pixels in all steatosis components in the ground truth image; W i is the ratio of the number 

of pixels in the i-th instance from deep learning model to the sum of all pixels in all steatosis 

components in the automated segmented image. NG and NP are the numbers of steatosis 

instances in the ground truth set and the corresponding machine segmented result set. As 

morphological features are important for steatosis droplet identification, we computed 

Hausdorff distance to evaluate shape similarity. We computed an object-level Hausdorff 

distance in the same way as for the object-level Dice score.

Table 1 summarizes the segmentation performance of our proposed DELINEATE model, 

and comparison results with other methods, including baseline FCN, DeepLab [40], and 

multiple variations of our proposed model. By contrast to other methods, DELINEATE dil-
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Unet+HED+FCN-8s achieves the best overall performance, as indicated by F1-score, Recall, 

object-wise Dice index and object-wise Hausdorff distance [41]. We represent DELINEATE 

model and its variations by connecting three modules with ‘+’ sign for easy interpretation. 

Compared to the other models, DELINEATE results in a higher object-wise dice index and a 

lower object-wise Hausdorff distance [41], indicating its superior performance. Note that 

DELINEATE model substantially outperforms state-of-the-art FCN and DeepLab models 

and achieves better performance on delineating overlapped steatosis droplets guided by joint 

region and boundary information. Neither FCN nor DeepLab can process touching steatosis 

droplets accurately with missing region-boundary integrative information, resulting in lower 

performance scores. The salient difference in performance across these methods is visually 

confirmed by Fig. 3 where each segmented steatosis region is illustrated in a unique color. It 

is noticeable that touching regions highlighted by black boxes are well separated by 

DELINEATE model, whereas they are incorrectly segmented by other methods for 

comparison. Green boxes are used to highlight challenging steatosis regions where only 

DELINEATE model can accurately recognize steatosis components. We further visualize 

patch-wise and instance-wise steatosis segmentation accuracy heat maps of one 

representative tissue component in Fig.S5 and Fig.S6 within Supplemental Information. 

These visual results demonstrate a high concordance between the DELINEATE 

segmentation results and annotations and confirm the efficacy of our proposed model.

DELINEATE correlation with pathological grading, radiology, and clinical data

The results produced by the DELINEATE model present strong correlations with liver tissue 

pathological grading, fat quantity from MRI data, and patient clinical information. The 

correlation analysis includes 36 children diagnosed with NAFLD. This cohort of patients 

underwent a liver biopsy at the Children’s Hospital of Atlanta between 2014 and 2016. 

NAFLD diagnosis was established by liver biopsy, and other etiologies were excluded by 

standard clinical and laboratory assessment. All liver biopsies were clinically diagnosed and 

each section was blindly reassessed by an expert pathologist at Emory University Hospital. 

Basic demographic characteristics were collected at the time of the biopsy. All parents or 

guardians signed an informed consent form and all children provided written assent in these 

studies, which were approved by the Emory University IRB board. Spearman’s correlation 

was used to analyze the correlation between two variables. Mann-Whitney test (for non-

parametric data) was used to compare the difference between two groups. For comparisons 

across diverse steatosis groups, DELINEATE was logarithmically transformed before 

analysis. Analysis of Variance (ANOVA) was used to study the difference among four 

histological steatosis grading groups. This was followed by Tukey’s multiple comparison 

post-test. All statistical analyses were performed using R (version 3.4.2). Data were 

considered statistically significant for p-value < 0.05.

We present in Table 2 the Spearman correlation coefficients between steatosis measures 

from DELINEATE and all the following measures, including manual macrovesicular 

steatosis measure, manual total steatosis measure, fat readout from MRI images of the same 

patient cohort, and Positive Pixel Counting by Aperio [42], respectively. With DELINEATE, 

we computed both steatosis pixel percentage (DSP%) and isolated steatosis droplet count 

percentage (DSC%). Both measures were normalized by tissue sizes. Note that we report 
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steatosis droplet count in percentage to match to steatosis measure representation in prior 

work on the assessment of steatosis measure [43] and from the Nonalcoholic Steatohepatitis 

Clinical Research Network [44]. For comparison, a third-party commercial software Aperio 

Positive Pixel Counting was used to measure steatosis pixel percentage (ASP%). Note that 

this software supports pixel-wise classification. However, it cannot group pixels to form 

individual steatosis. It can neither detect weak or missing boundaries for dividing steatosis 

droplets in clumps. DSP% and DSC% present strong correlations with all these histology 

and radiology measures that are manually confirmed. Note that DSC% from DELINEATE 

presents the strongest correlation with Total Steatosis and Macrovesicular Steatosis by 

histology review, while DSP% from DELINEATE has the best correlation with MRI fat 

quantification. Enhanced correlations between measures from DELINEATE and well-

verified gold standard suggest accurate steatosis measures from histology images with our 

proposed DELINEATE method. In Fig. 4(A–C), we illustrate DSC% correlations with other 

histology and radiology measures, with overlaid linear regression lines in the scatter plots.

For group median and mean difference investigations, we applied Mann-Whitney test to 

steatosis measures between two diagnostic groups NAFL and NASH, and between groups 

with and without lobular inflammation, respectively. As this study cohort includes NASH 

cases, we can test the hypothesis that higher degrees of steatosis are associated with higher 

degrees of inflammation, which is in turn associated with more severe NASH cases. Three 

steatosis measures, ASP%, DSP% and DSC%, were used for group difference analysis. 

Specifically, box plots of these two analyses with DSC% are demonstrated in Fig.4(D–E). 

The mean, standard deviation and median of these measures and p-values of statistical tests 

are presented in Table 3. Notably, DELINEATE steatosis measures present statistically 

significant group difference in both analyses. Specifically, the steatosis object level measure 

DSC% produces the least p-value in lobular inflammation comparison, and both steatosis 

measures (DSC% and DSP%) yield a low p-value in diagnosis group comparison study.

Additionally, we assessed the difference of steatosis measurements across four histological 

steatosis percentage grades by DSP%, DSC%, and ASP%, respectively. The resulting p-

values of ANOVA and Tukey’s multiple comparison tests for ASP%, DSP%, and DSC% are 

presented in Table 4. Note that both DELINEATE steatosis measures demonstrate 

statistically significant difference across grades, with the proposed steatosis count measure 

DSC% presenting the least p-value. The box plot of this analysis with the use of DSC% is 

demonstrated in Fig. 4 (F). Table 5 contains the optimal threshold of DELINEATE Pixel, 

DELINEATE Count, and Aperio PPC for differentiation of patient groups by different 

steatosis grades assessed by an expert pathologist. Table 5 shows the area under the receiver 

operating curve (AUROC), sensitivity, specificity, and accuracy of these methods. 

Additionally, there was no significant difference for the AUROC across these methods in 

each stage.

Segmentation improvement by enhanced deep learning network

DELINEATE model used a dilated version of the standard U-Net [12] model for enhanced 

steatosis segmentation. Dilated convolution operation can reduce the down-sampling 

operation and information loss, empowering the network with an exponential receptive 
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expansion. As demonstrated in Fig. 2(A), certain steatosis regions bounded by green boxes 

in the middle column are missing from segmentation due to the down-sampling operations 

in the standard U-Net architecture. To compensate for such information loss, we 

incorporated dilated convolutional layers at the bottleneck block of U-Net model and 

managed to recover the missing steatosis regions with the dil-Unet architecture. The 

improved segmentation results illustrated in the right column in Fig. 2(A) well justifies the 

merit of the use of dilated convolutional layers.

We present in detail the way to combine the steatosis region and boundary prediction results 

with the third integration module in Methods Section. The top-right subfigure in Fig. 2(B) 

presents a typical image region where a large area (labeled by ‘1’) is falsely recognized as a 

steatosis component by the steatosis region module. This false positive (labeled by ‘2’) is 

removed from the final prediction result by the following integration module. The removal 

of falsely segmented regions by the third integration network further improves the overall 

performance of the DELINEATE model.

Whole tissue analysis and visualization

We further extended our analysis on steatosis component quantification to whole liver tissue 

images. A representative whole tissue image region at a low image resolution is presented in 

Fig. 5(A:(a)) where multiple tissue components are included. Each tissue component was 

extracted and rotated in a way such that the area of the resulting tissue bounding box was 

minimized, as illustrated in Fig. 5(A:(b)). With estimated tissue component location and 

rotation angle at a low image resolution, each tissue component was next extracted at the 

highest image resolution as depicted in Fig. 5(A:(c)). Each extracted whole tissue 

component at the highest resolution was further partitioned into multiple overlapping 

patches (512 × 512 pixels) with a buffer region of 16 pixel distance on each side by MaReIA 

[26] framework. Each patch was analyzed by the DELINEATE model for steatosis 

segmentation and the resulting steatosis prediction maps were assembled for each whole 

tissue component by the MaReIA framework. One representative steatosis segmentation 

result of a whole tissue component is presented in Fig. 5(A:(d)). Close-up views of two 

representative regions (purple boxes) from this tissue component are shown in Fig. 5(A :(e) 

and (f)), where recognized steatosis regions and boundaries are represented in red and green, 

respectively. These typical visual results demonstrate the efficacy of DELINEATE model for 

overlapped steatosis droplet segmentation.

The complete analysis procedure for each rotated whole tissue component image at the 

highest resolution is presented in Fig. 5(B). The overall steatosis prediction maps were 

assembled from patch-wise prediction maps with MaReIA. For comparisons, we extracted 

non-overlapping patches from each whole tissue component as illustrated in Fig. 5(C:(a)) 

and combined the adjacent patch prediction outputs with simple concatenation as depicted in 

Fig. 5(C:(b)). The end result in this way becomes much degraded as demonstrated in Fig. 

5(C:(c)). Specifically, it is noticeable that steatosis components distributed to neighboring 

patches are not fully recovered. It is not rare to see broken, incomplete, or misaligned 

boundaries of steatosis droplets crossing patch borders. Some such examples are illustrated 

in Fig. 5(C:(c)) where problematic recovered boundaries are highlighted by rectangles. By 
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contrast, the MaReIA framework can help assemble results in a much better way, as 

illustrated in Fig. 5(C:(f)).

Discussion

DELINEATE summary

Motivated by the strong feature representation capability and remarkably superior 

performance of the recently emerged deep neural networks, we have developed an end-to-

end deep learning based model for overlapped steatosis droplet segmentation and 

quantification with liver whole slide histopathology images. The overall model consists of 

whole slide tissue extraction, color normalization, steatosis region prediction, boundary 

detection, integrated prediction map production, and post-processing. The developed 

DELINEATE model is in sharp contrast to prior work on liver steatosis quantification [9, 43, 

45], as it does not require any manual feature engineering and presents promising accuracy, 

robustness and efficiency for delineating overlapped histology structures. Our study offers a 

new avenue for histology phenotype information extraction essential to clinical decision 

support. We provide a generic multi-layer framework that can be extended to analyses of a 

large set of histology structures with similar processing principles. To support analysis of 

extremely large-scale whole slide histopathology images, we have proposed a whole tissue 

component extraction method by estimating each tissue component location and rotation 

angle at multiple image resolution levels. For accurate measurement and better result 

visualization, we have also applied our assembling framework developed in our previous 

work to gracefully aggregate boundaries of steatosis droplets crossing neighboring image 

patches. We have systematically validated the efficacy of our approaches and correlated 

DELINEATE derived steatosis quantification measures with ground truth grading, 

pathologist measurements, radiology readouts, and clinical data, leading to multiple 

discoveries of high correlations.

The developed DELINEATE model is based on Deep Neural Network (DNN) that consists 

of two layers processing visual information with different focuses. The first layer has two 

parallel modules designed to extract multi-scaled image texture information within steatosis 

regions and on steatosis boundaries. The resulting visual hues from these two sources are 

further integrated by the third learning network that can make joint use of the perceptual 

information from steatosis internal regions and boundaries to delineate the missing or weak 

boundaries of overlapped steatosis droplets. In the post-processing step, we detect high 

curvature points on steatosis boundaries and assess ellipse fitting quality with identified 

steatosis contours to improve steatosis droplet recovery [27].

DELINEATE analysis consists of two phases, training and testing. Our DELINEATE model 

only needs to be trained once. After the model is trained, it can be used to analyze new cases 

for testing. DELINEATE model can generate patch-level prediction result in 0.26 second on 

average. The average number of image patches per whole-slide image is 1,600 in our 

dataset. Our current experiments are carried out on a machine with one CPU and one 

Graphical Processing Unit (GPU). We expect the execution time cost can be further 

significantly decreased to potentially less than a minute for each whole slide image by 

multiple CPUs and GPUs using parallel computing. For future clinical deployment, 
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DELINEATE can be scheduled to run in the background and complete the analysis before a 

pathologist reviews tissue slides.

Clinical significance

Analysis of the steatosis extent is important for clinical care since systems that describe the 

severity of fatty liver disease rely on an accurate quantification of the degree of steatosis [1]. 

Hepatic steatosis is one of the most common incidental findings with radiology imaging, 

which leads to further patient evaluations in order to rule out liver diseases like NAFLD. 

Health implications of hepatic steatosis have been largely studied, and are associated with 

insulin resistance, dyslipidemia, and a chronic low-grade inflammation. Moreover, in 

transplantation, the graft survival is associated with the fat percentage of the graft, since 

hepatic steatosis increases the hepatocyte necrosis and impairs the regeneration. To date, 

liver biopsy remains an important information source for the assessment of fatty liver 

disease and other liver conditions. Steatosis droplets are accumulation of fat in liver tissues 

and present varying shapes even within a single tissue. Individual steatosis droplets are 

mostly circular in shape. However, the clumped steatosis regions have irregular shapes as the 

dividing boundaries for overlapped steatosis droplets are often weak or even missing. 

Additionally, tissue regions of interest are often selected from whole-slide images for 

clinical review by human pathologists. Such review bias and analysis obstacle on clumped 

steatosis regions limit quantification accuracy and impact the clinical decision. Our study 

has explored a new computational way to quantitatively measure overlapped steatosis 

components in liver biopsies for better clinical support of liver transplantation decision. The 

developed deep learning-based model DELINEATE can analyze the whole slide images in a 

definitive, robust, and consistent manner. As only annotated steatosis regions are marked as 

foreground in the training set, DELINEATE learns a large set of low level characteristics 

unique to the steatosis regions. Therefore, the fully trained model is able to selectively target 

the steatosis regions. Our proposed method DELINEATE can be a powerful addition to the 

current pathology analysis pipelines, as it can provide automated and precise analysis to 

complement standard pathological reviews.

Model optimization

We have systematically investigated multiple model variations at distinct stages and tested 

their performances with comprehensive comparison experiments. The first model U-Net+U-

Net+U-Net consists of three U-Net modules for region extraction, boundary detection, and 

information integration. In addition, we have created the second model U-Net+U-Net

+FCN-8s by replacing the U-Net module with FCN-8s at the integration layer. Neither of 

these two models produces consistently promising results evaluated by all metrics in Table 1. 

The third model variation is prompted by the observation that the boundary prediction 

results from U-Net module are incomplete in most cases. As the total number of boundary 

pixels is much less than that of pixels in steatosis droplet regions, it results in a numerical 

challenge for the network to converge in the training stage. Therefore, we further replace the 

boundary module in U-Net+UNet+FCN-8s with Holistically-nested Neural Network (HNN) 

[21, 33] for steatosis boundary prediction. The resulting network variation U-Net+HNN

+FCN-8s consists of a U-Net module for steatosis region prediction, a HNN for boundary 

detection, and a FCN-8s integration network for region and boundary information synergy. 
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As the HNN can effectively recover boundary information from multi-scale edge fields, U-

Net+HNN+FCN-8s achieves the best overall segmentation performance. To further improve 

the steatosis region mask prediction, we have modified the standard U-Net module by 

stacking the dilated convolution layers (depth = 3) at the bottleneck block with the lowest 

resolution feature maps. This extended U-Net module, named as dil-Unet, presents superior 

performance to that of the standard U-Net, as demonstrated in Fig. 2(A). The resulting 

model variation with dil-Unet is named as dil-Unet+HNN+FCN-8s. In our comprehensive 

comparison study, we have also tested the integration network FCN-4s with an additional 

layer of skip connection introduced from pool2 for more detailed semantic information. The 

performance of this model dil-Unet+HNN+FCN-4s is comparable to that of dil-Unet+HNN

+FCN-8s, as suggested in Table 1. Finally, we test with dilated FCN module dil-FCN using 

atrous convolution at the convolutional layer 6 with dilation rate 3 for the integration layer. 

The resulting model dil-Unet+HNN+dil-FCN, however, does not substantially improve 

recovery of the weak boundaries of steatosis droplets in clumps. All these models are 

rigorously evaluated by F-Score, Dice score and Hausdorff-distance, with resulting 

performance listed in Table 1. By comprehensive evaluations, dil-Unet+HNN+FCN-8s is the 

best performing model compared to all other variations. This is confirmed with visual 

segmentation results for overlapping steatosis droplets in Fig. 3. Both quantitative and 

qualitative results of baseline experiments with DELINEATE model, its network variations, 

and the state-of-the-art deep learning based segmentation methods demonstrate the 

superiority of DELINEATE model to others.

Parallel computation and result aggregation

Our study presents a generic analysis work flow to support histology image analysis result 

assembly and visualization for whole tissue microscopy images. As each liver whole slide 

histopathology image in our dataset contains several tissue needle biopsy components, we 

extract each whole tissue biopsy image region by estimating each tissue component location 

and rotation angle at multiple image resolution levels. The resolution of the resulting image 

region still remains overwhelmingly large. Therefore, we partition each image region into 

overlapping patches for analysis. The resulting steatosis contours in neighboring patches are 

seamlessly assembled with the MaReIA framework that gracefully handles such patch 

crossing steatosis droplets with efficient spatial indexing based matching and merging [26].

Discovery of a novel indicator for steatosis measurement

With DELINEATE, the resulting quantitative steatosis measures both at the pixel level and 

steatosis object level from whole slide liver histopathology images of 36 children with the 

diagnosis of NAFLD are highly correlated with liver tissue pathological grading, radiology 

readouts, and patient clinical data, respectively. Importantly, the count of recovered steatosis 

droplets, a promising novel indicator, has enhanced correlation with results from histology 

review on total and macrovesicular steatosis than pixel level measures. Statistical tests with 

DELINEATE measures at pixel and object levels between NAFL and NASH diagnostic 

groups, and groups with and without lobular inflammation produce statistically significant 

difference. In particular, steatosis object based measure demonstrates its strong 

discriminative power in these tests. Through statistical tests, DELINEATE steatosis count% 

(DSC%) is demonstrated as a new promising indicator of histology steatosis profiles 
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predictive of hepatic steatosis grade. These strong correlations and findings of DELINEATE 

derived steatosis measures with other dimensions of data from the same patient cohort 

suggest its potential for enhanced clinical decision support.

Method benefits

This steatosis quantitation algorithm can potentially serve as an assistant in the routine 

steatosis assessment. As our DELINEATE method enables steatosis object level quantitation 

with recovered contours of individual steatosis droplets in clumps, it enables steatosis 

measures from the pixel to object level. Thus, DELINEATE allows for individual steatosis 

size measure and research investigations exploring new steatosis object level morphology 

features with diagnostic and prognostic value. Our developed DELINEATE method can also 

alleviate inter- and intra-observer variability in steatosis assessment. Once the DELINEATE 

model is trained, it can be used as a tool to improve agreement among pathologists and 

across multiple clinical sites. Furthermore, the DELINEATE method is fully automated. 

Leveraging parallel computation, DELINEATE model can generate and aggregate steatosis 

analysis results from whole slide images efficiently. We have made the DELINEATE 

algorithm open source, which can be modified, upgraded, and customized beyond what can 

be done with commercial software. Finally, our new algorithm can be readily integrated into 

existing open-source or commercial software already prevalent in clinical sites.

Limitations and future work

Although our study provides a new framework for quantitative liver steatosis measures, there 

are some limitations to be addressed in future. As manual annotations on overlapped 

steatosis droplets are time consuming, only very limited number of tissue regions were 

included in the training set. Additionally, the training set was composed with randomly 

selected regions of interest and thus may miss some representative steatosis droplets in 

clumps. As steatosis droplets have three-dimensional morphology, limiting our current 

analysis to sampled two-dimensional tissue slides may result in large measure errors and 

sampling bias. In future study, we will incorporate more annotated tissue samples and 

explore methods that can identify representative tissue regions for training. For more precise 

steatosis measure, we plan to extend our analysis from two to three-dimensional tissue space 

with serial liver slides. In this study, we segment overlapping steatosis droplets in liver 

tissues. As our proposed deep learning method is generic to histology objects, we will 

extend our method to segment other overlapping histopathology components that can 

provide more insights on disease tissues. To better support clinical liver disease diagnosis, 

we will proceed with measuring morphometric and space organizational features of 

segmented steatosis droplets. We expect the resulting feature distributions derived from 

whole slide tissues can be used to indicate liver disease severity quantitatively.

As we use permanent sections of a patient cohort in this study, we do not train the 

DELINEATE model with frozen section slides enriched with image artifacts. In our future 

studies, we plan to enhance our method to automatically recognize frozen section artifact 

with similar appearance to steatosis droplets. Additionally, we plan to extend our analysis to 

accommodate other stains such as Periodic Acid Schiff (PAS) stains with and without 

diastase for glycogenation assessment. As permanent sections in this investigation do not 
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present strong microvesicular steatosis components, this study is not designed to detect the 

microvesicular steatosis. In our follow up study, we will collect microvesicular steatosis 

cases for model training. We plan to construct steatosis droplet size histograms to determine 

the optimal cutoff size for microvesicular steatosis, and link this with such outcome 

parameter as delayed graft function after transplantation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The DELINEATE Model. The DELINEATE model first identifies regions and boundaries of 

steatosis droplets individually (A). The resulting two output predictions are combined for 

generating an integrated prediction map where the clumped steatosis regions are separated. 

The region extraction module detects steatosis regions with a dil-Unet module (B). The 

steatosis boundary detection module is based on a Holistically-Nested Network (HNN) (C). 

The region-boundary integration network generates the final prediction output from the 

integrated region and boundary information (D).
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Figure 2. 
Comparison of segmentation results. Comparison of segmentation results between dil-Unet 

and the standard U-Net model (A). Left: original images; Middle: steatosis segmentation by 

U-Net model; Right: steatosis segmentation by the proposed dil-Unet model. By contrast, 

dil-Unet can recover steatosis regions with a substantially improved accuracy. Comparison 

of results from the DELINEATE model (B). Top-Left: input image; Top-Right: output from 

the region extraction module; Bottom-Left: output from the boundary detection module; and 

Bottom-Right: final output of the integration module. “1” labels the false positive steatosis 

region captured by the region prediction module, and “2” labels the corrected steatosis 

regions by the final integration module.
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Figure 3. 
Visualization of segmented steatosis droplets in masks of distinct colors. From left to right 

column: original image, ground truth, results from FCN, DeepLab V2, U-Net+U-Net+U-Net 

(one variation of our proposed model), and dil-Unet+HNN+FCN-8s (proposed DELINEATE 

model), respectively. The clumped steatosis regions indicated by black boxes in all images 

are well separated by DELINEATE model but failed by other methods in the comparison 

study. Additionally, problematic regions in green boxes are only fully recovered by 

DELINEATE model.
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Figure 4. 
Pair-wise scatter plots with correlation coefficients (p-values) are illustrated for 

DELINEATE Steatosis Count% (DSC%) at individual droplet level and manual 

macrovesicular steatosis measures (A); manual total steatosis measures (B); manual fat 

readout from MRI images (C). We applied Mann-Whitney test to DSC% measures between 

Lobular Inflammation presence and absence (D); and between NAFL (i.e. Non-NASH) and 

NASH (E), respectively. We applied ANOVA to DSC% measurements of tissue samples 

among four manually graded histological steatosis percentage groups with p-value less than 

5.25e−14 (F).
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Figure 5. 
(A) Whole tissue steatosis prediction. (a) a low resolution whole slide liver image containing 

multiple tissue components; (b) one complete tissue component extracted at a low 

resolution; (c) the highest resolution tissue component extracted after rotation and 

interpolation; (d) steatosis regions and the boundary masks in the complete tissue 

component detected by DELINEATE model; (e-f): close-up views of two representative 

tissue regions in purple rectangles in (d). (B) Block diagram of steatosis quantification in 

whole slide liver tissue images. It consists of high resolution tissue component extraction, 

overlapped tissue region partitioning, steatosis segmentation by DELINEATE model, and 

patch-wise steatosis segmentation assembled by MaReIA. (C) Steatosis segmentation 

assembled by different methods. (a) typical four adjacent non-overlapping patches; (b) 

steatosis segmentation with simple concatenation; (c) close-up views of steatosis droplets 

with simple concatenation; (d) overlapping patches; (e) steatosis segmentation assembled by 

MaReIA; and (f) close-up views of assembled steatosis droplets by our proposed MaReIA.
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Table 1:

Comprehensive performance comparison of steatosis segmentation methods.

 Models Approach Precision Recall F1-Score
Object wise
Dice Index

Object wise
Hausdorff Distance

Standard FCN 0.99 0.01 0.86 0.06 0.92 0.04 0.8338 3.8521

Models DeepLab V2 0.99 0.01 0.83 0.08 0.90 0.05 0.9083 5.3179

dil-Unet + HNN + FCN-8s 0.98 0.01 0.91 0.06 0.94 0.03 0.9492 3.4591

dil-Unet + HNN + FCN-4s 0.97 0.01 0.91 0.06 0.94 0.03 0.9480 3.5753

Variations of Unet + HNN + FCN-4s 0.97 0.01 0.91 0.06 0.94 0.03 0.9489 3.4685

Our Models dil-Unet + HNN + dil-FCN 0.97 0.01 0.91 0.06 0.94 0.03 0.9459 3.6658

Unet + Unet + Unet 0.97 0.04 0.83 0.07 0.90 0.05 0.9247 5.8289

Unet + Unet + FCN-8s 0.96 0.03 0.90 0.06 0.93 0.04 0.9458 3.8773
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Table 2:

Correlation coefficients and p-values are presented for pairwise correlations using steatosis measures, results 

of a gold standard histology review, and manual fat readout from MRI images. Steatosis measures include 

DELINEATE Steatosis Pixel% (DSP%), DELINEATE Steatosis Count% (DSC%) and Aperio Steatosis Pixel

% (ASP%), respectively.

Correlation Measure DSP % (p-value) DSC %(p-value) ASP % (p-value)

Macrovesicular steatosis% 0.85(<0.001) 0.90(<0.001) 0.83(<0.001)

Total steatosis% 0.85(<0.001) 0.90(<0.001) 0.84(<0.001)

MRI fat readout 0.85(<0.001) 0.82(<0.001) 0.83(<0.001)

Aperio Pixel% 0.94(<0.001) 0.91(<0.001) -
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Table 3:

Mean, median, and range of DELINEATE Steatosis Pixel% (DSP%), DELINEATE Steatosis Count% (DSC

%), and Aperio Steatosis Pixel% (ASP%) are presented with the associated p-values of Mann-Whitney test.

 Steatosis Measure Lobular Inflammation Diagnosis  Overall

 Absent  Present p-Value  NAFL  NASH p-Value

 DSP%

Mean(SD) 5.24 (7.01) 12.1 (8.20)

0.036

8.75 (7.75) 17.0 (7.64)

0.010

10.6 (8.38)

Min, Median, 
Max

0.538, 2.15, 
21.5

0.300, 12.6, 
27.4

0.300, 7.34, 
26.2

2.20, 17.4, 
27.4

0.300, 8.49, 
27.4

DSC%

Mean (SD) 1.37e-3 
(1.43e-3)

2.72e-3 
(1.52e-3)

0.030

2.08e-3 
(1.54e-3)

3.62e-3 
(1.11e-3)

0.010

2.42e-3 
(1.58e-3)

Min, Median, 
Max

2.89e-4, 
8.64e-4, 
4.55e-3

1.84e-4, 
2.76e-3, 
5.08e-3

1.84e-4, 
1.84e-3, 
5.08e-3

1.72e-3, 
3.9e-3, 4.9e-3

1.84e-4, 
2.37e-3, 
5.08e-3

 ASP%

Mean(SD) 10.1 (8.04) 16.5 (9.51)

0.070

13.1 (8.72) 22.2 (9.12)

0.020

15.1 (9.49)

Min, Median, 
Max

1.88, 9.57, 
27.1

0.641, 18.1, 
31.5

0.641, 11.9, 
31.5

1.84, 24.2, 
30.9

0.641, 13.5, 
31.5
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Table 4:

ANOVA and Tukey’s multiple comparisons test with liver tissue steatosis measures across four manually 

annotated steatosis percentage groups with p-values adjusted by the Benjamini-Hochberg method. The 

adjusted p-value for DELINEATE Steatosis Pixel% (DSP%), DELINEATE Steatosis Count% (DSC%) and 

Aperio Steatosis Pixel% (ASP%) are shown in column 2, 3 and 4, respectively.

Statistical Test DSP% DSC% ASP%

ANOVA 7.86e-09 5.25e-14 3.37e-09

<5% vs 5%−33% 0.005 0.25 0.69

<5% vs 33%−66% <0.001 <0.001 0.002

5%−33% vs 33%−66% <0.001 <0.001 0.005

<5% vs >66% <0.001 <0.001 <0.001

5%−33% vs >66% <0.001 <0.001 <0.001

33%−66% vs >66% 0.01 <0.001 0.001
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Table 5:

Performance of DELINEATE Steatosis Pixel% (DSP%), DELINEATE Steatosis Count% (DSC%), and Aperio 

Steatosis Pixel%, (ASP%) for differentiation of patient groups of steatosis grades by pathologist assessment.

Steatosis Measure
 Steatosis Grade

 0 vs 1–3  0–1 vs 2–3  0–2 vs 3

 DSP%

 Threshold  1.26  7.34  11.91

 AUROC (95% CI)  0.992 (0.971–1.00)  0.977 (0.938–1.00)  0.930 (0.851–1.00)

 Sensitivity  96.80%  91.30%  92.30%

 Specificity  100%  100%  82.60%

 Accuracy  97%  94%  86%

 DSC%

 Threshold  0.0004145  0.0018375  0.002755

 AUROC (95% CI)  0.977 (0.928–1.00)  0.990 (0.970–1.00)  0.983 (0.954–1.00)

 Sensitivity  96.80%  91.30%  100%

 Specificity  100%  100%  91.30%

 Accuracy  97%  94%  94%

 ASP%

 Threshold  7.45  11.89  13.48

 AUROC (95% CI)  0.922 (0.819–1.00)  0.957 (0.883–1.00)  0.946 (0.880–1.00)

 Sensitivity  81.25%  91.30%  100%

 Specificity  100%  100%  78.20%

 Accuracy  83%  94%  86%
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