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Bacteriome and mycobiome associations in oral tongue cancer
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ABSTRACT

Squamous cell carcinoma of the oral (mobile) tongue (OMTC), a non-human 
papilloma virus-associated oral cancer, is rapidly increasing without clear etiology. 
Poor oral hygiene has been associated with oral cancers, suggesting that oral 
bacteriome (bacterial community) and mycobiome (fungal community) could play 
a role. While the bacteriome is increasingly recognized as an active participant in 
health, the role of the mycobiome has not been studied in OMTC. Tissue DNA was 
extracted from 39 paired tumor and adjacent normal tissues from patients with OMTC. 
Microbiome profiling, principal coordinate, and dissimilarity index analyses showed 
bacterial diversity and richness, and fungal richness, were significantly reduced in 
tumor tissue (TT) compared to their matched non-tumor tissues (NTT, P<0.006). 
Firmicutes was the most abundant bacterial phylum, which was significantly 
increased in TT compared to NTT (48% vs. 40%, respectively; P=0.004). Abundance 
of Bacteroidetes and Fusobacteria were significantly decreased in TT compared to 
matched NTT (P≤0.003 for both). Abundance of 22 bacterial and 7 fungal genera was 
significantly different between the TT and NTT, including Streptococcus, which was 
the most abundant and significantly increased in the tumor group (34% vs. 22%, 
P<0.001). Abundance of fungal genus Aspergillus in TT correlated negatively with 
bacteria (Actinomyces, Prevotella, Streptococcus), but positively with Aggregatibacter. 
Patients with high T-stage disease had lower mean differences between TT and NTT 
compared with patients with low T-stage disease (0.07 vs. 0.21, P=0.04). Our results 
demonstrate differences in bacteriome and mycobiome between OMTC and their 
matched normal oral epithelium, and their association with T-stage.
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INTRODUCTION

Squamous cell carcinoma of the oral (mobile) 
tongue, arising at the anterior two-thirds of the tongue, 
has been rapidly increasing and has now become the 
second most common malignancy in the oral cavity [1, 
2]. While human papillomavirus (HPV) is etiologic for 
the increased incidence of base of tongue tumors (89% 
HPV+), HPV is rarely found (2.3%) in oral tongue cancer 
[3-5]. The etiology of this increasingly common disease 
has remained unclear, and warrants investigation for 
discovery of additional pathogenic pathways.

The microbiome, defined as the total collection 
of microorganisms that inhabit any environment, is 
increasingly recognized as an active participant in human 
body functions, and has been even proposed to be an 
organ. The microbiota comprise bacterial community 
(bacteriome) and fungal community (mycobiome).

In/on the human body, bacterial cells outnumber 
human cells 10:1, with the total bacteriome-to-human 
gene content ratio approximating 350:1. The notion that 
bacteria can be oncogenic is demonstrated in the example 
of Helicobacter pylori in gastric cancer [6], and more 
recently, Fusobacterium nucleatum in colorectal cancer 
[7, 8]. The discovery of H. pylori as a trigger for gastric 
cancer shifted the paradigm of oncogenesis to one that 
includes bacteria. Studying the microbiota was largely 
limited to culturable organisms before the advent of 
metagenomics, the detection of the genomic content of 
microbes. Metagenomics now allows for detection of both 
culturable and nonculturable microbes, permitting us to 
describe bacterial communities.

Our pilot work profiling the microbiome of 42 
mixed (heterogenous) head and neck squamous cell 
carcinomas (HNSCCs) revealed that microbial variation 
could correlate with clinical outcomes such as nodal and 
tumor stage as well as gene methylation status, but was 
limited by diversity of involved sites [9]. Another study 
with a more limited sample size used superficial bacterial 
sampling of 15 oral cavity cancers by means of oral swabs, 
and found differences in taxonomic abundance between 
normal and tumor surfaces at the phylum level [10]. 
However, bacteria in the head and neck populate both 
the deep and mucosal tissues [9, 11, 12]. With increasing 
evidence that a rich community of bacteria live within 
the oral cavity, it follows that bacterial inhabitants should 
contribute to the tumor microenvironment.

In addition to the bacteriome, another major 
component of the human microbiome is the mycobiome. 
Recent studies point to the importance of our commensal 
fungal inhabitants as critical players in human health 
and disease [13]. Although the role of the mycobiome in 
oral cancer, including oral tongue cancer, has not been 
investigated, a recent study by Shelburne et al. [14] 
combined genetic analyses of the infecting agent, host 
whole exome sequencing, and longitudinal determination 

of the oral and stool micro- and mycobiomes in a leukemic 
patient, and suggested that the dysbiotic nature of the oral 
bacteriome may have provided a permissive environment 
for establishment and the eventual development of invasive 
mucormycosis. Their findings generated new interest in 
understanding mechanisms driving maintenance or loss 
of microbial diversity during cancer therapy. Moreover, 
studies are starting to emerge demonstrating interactions 
between bacteria and fungi (i.e. inter-kingdom interactions) 
suggesting that bacteriome or mycobiome alone may 
not exclusively play a role in disease pathogenesis [15, 
16]. Thus, studies aimed at understanding how these two 
communities influence or are influenced in disease setting 
such as oral tongue cancer are needed.

Based on the above, we sought to explore the 
bacteriome and mycobiome in mobile tongue cancers. In 
this exploratory study, we selected oral tongue cancers to 
minimize confounding contributions from HPV and from 
multiple oral sites, and sought to determine whether there 
were differences in the bacteriome and/or mycobiome 
between oral tongue cancers and matched normal 
tissue, and to evaluate if bacteriome and/or mycobiome 
differences are correlated with clinico-pathologic features.

RESULTS

Tissue samples from 39 patients were analyzed in 
this study (Table 1). The total number of reads associated 
with bacteriome and mycobiome were 3,093,772 and 
4,550,121 respectively, which were passed through quality 
filters, resulting in 1,997,240 and 1,149,569 sequences 
used for OTU assignments (26,279 and 14,369 mean 
sequences per sample, respectively). Non-tumor samples 
had significantly higher numbers of reads compared to 
tumor samples for both bacterial (median, Q1-Q3; 13,561, 
8,522-18,804 vs. 6,294, 592-11,504; P < 0.0001) and 
fungal sequences (3,482, 1,493-6168 vs. 1,806, 654-3119; 
P = 0.005). Principal coordinate analysis (PCO), clustered 
dendograms, and Bray-Curtis dissimilarity index analyses 
showed that the tumor and non-tumor samples exhibited 
considerable overlap in clustering at both phylum and 
genus levels, for bacterial and fungal biota (Figure 1). A 
total of 7 fungal and 25 bacterial phyla were identified in 
the collected samples.

We determined the Shannon diversity index 
(measure of microbial abundance taking into account their 
distribution) as well as richness (species count, without 
taking into account the abundance) of bacterial and fungal 
communities in the collected samples. These analyses 
revealed that diversity and richness of the bacteriome, 
and richness of the mycobiome, in tumor samples were 
significantly reduced compared to their matched non-
tumor samples (P≤0.006, Figure 2). No significant 
difference in Shannon diversity index was observed for 
the mycobiome between tumor and non-tumor samples 
at either phylum or genus levels (P>0.05, Figure 2E, 
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2G). Within the tumor group, there were no significant 
differences when comparing diversity indices by different 
gender (male vs. female), race, age (≤ 40 years vs. older), 
or smoking status (never smoked vs. current or past 
smokers, data not shown). Interestingly, richness of both 
bacterial and fungal phyla was significantly increased 
in high T-stage tumor samples compared to low T-stage 
samples (P≤0.047, Supplementary Figure 1). Within 
the non-tumor (matched normal) tissues, there was no 
difference in diversity indices between different T-stage, 
age or race. However, richness was significantly decreased 
among fungal phyla in smokers compared to non-smokers 
in normal non-tumor samples (4.96 ± 0.82 vs. 5.08 ± 0.79, 
P=0.045).

Analysis of relative abundance at the phylum level 
revealed that 6 bacterial phyla and one fungal phylum 
were significantly different between non-tumor and tumor 
groups (Figure 3). Among the bacterial phyla, Firmicutes 
was the most abundant, and significantly increased in 
the tumor group compared to their matched non-tumor 
tissues (48% vs. 40%, respectively; P=0.004, Figure 3A). 
Levels of Actinobacteria were also significantly increased 
in tumor group compared to non-tumor tissue (20% vs. 
11%, P<0.001). In contrast, abundance of Bacteroidetes 
and Fusobacteria was significantly decreased in the tumor 
group compared to matched non-tumor samples (P≤0.003 

for both phyla). The fungal phylum Glomeromycota was 
significantly decreased in the tumor group compared to 
their matched non-tumor tissues (Figure 3B, 2.2% vs. 
2.7%, P=0.01). There was no difference in abundance 
of any other fungal phyla between the tumors and their 
matched non-tumor tissues. Within the tumor group, 
there were no significant differences when comparing 
abundance levels between different gender (male vs. 
female), race, age (≤40 vs. older), or smoking status 
(data not shown). Interestingly, relative abundance of 
three bacterial phyla (Tenericutes, Spirochaetes, and 
Bacteroidetes) were significantly increased in high T-stage 
samples compared to low T-stage samples (P= 0.022, 
0.009, and 0.046, respectively, Supplementary Figure 2). 
Within the non-tumor (matched normal) tissues, relative 
abundance of Spirochaetes increased in high T-stage 
samples compared to low T-stage samples (P=0.018), 
while that of Fusobacteria increased in smokers compared 
to non-smokers (P=0.02).

At the genus level, 22 bacterial and 7 fungal genera 
were significantly different in abundance in the tumor and 
non-tumor groups (Supplementary Tables 1, 2). Among the 
22 significantly different bacterial genera, Streptococcus 
was the most abundant, and was significantly increased 
in the tumor group compared to their matched non-
tumors (34% vs. 22%, P< 0.001). In addition, levels of 

Figure 1: Principal coordinates analysis of oral tongue tumor samples and matched non-tumor oral epithelium samples at the 
phylum (left) and genus (right) levels for (A-B) bacteriome or (C-D) mycobiome. Overall oral microbiomic diversity of patient 
tumor (green) and matched non-tumor (orange) samples as represented by the first two principal coordinates on principal coordinates 
analysis of unweighted UniFrac distances. Each point represents a single sample.
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Actinomyces and Rothia (and three lower abundance 
genera, Corynebacterium, Enterococcus, Micrococcus) 
were also significantly increased in the tumor group (P≤ 
0.017, Supplementary Table 1). Fungal Genus Wallemia 
was the most abundant in both tumor and non-tumor 
groups (1.23% and 1.24%, P= 0.047, Supplementary 
Table 2). While six additional fungal genera differed 
significantly in abundance between the two groups (P≤ 
0.043), their mean abundance was less than 1%. Among 
bacterial species, abundance of Rothia mucilaginosa was 
significantly increased in tumor samples compared to non-
tumor samples (Table 2, 27% vs. 13%, P≤ 0.001).

Random forest (RF) modeling based on both 
bacteriome and mycobiome showed that the relative 
abundances of 112 bacterial and fungal genera could 
distinguish tumor from non-tumor tissue with an 
accuracy of 70% (Figure 4A, 4B). In this model, the 
top 30 variables had higher predictive value for the 
groupings of tumor versus non-tumor as measured by 
mean decrease in accuracy than would be expected for 
a model in which samples were assigned to random 
groups (Figure 4C). Of the 15 bacterial genera found to 
be significantly different between tumor and non-tumor 
samples by Kruskal-Wallis analysis, 10 (Rothia, Eikenella, 
Streptococcus, Porphyromonas, Aggregatibacter, 
Fusobacterium, Prevotella, Actinomyces, Campylobacter, 
Capnocytophaga) were found among the RF model’s 
top 30 variables. Of the 3 fungal genera identified as 
significant by Kruskal-Wallis, only one (Emericella) was 
among the RF model’s top 30 variables. The variable 
importance was not very stable, with the majority of 
variables appearing in fewer than half of the backward 
variable selection iterations (Figure 5). The model’s OOB 
error rate of 30% was relatively stable upon evaluation 
using 1000 bootstrap iterations, with a 0.632+ estimate 
of prediction error at 33% (Figure 6A). Using backward 
variable selection on bootstrapped samples, the optimal 
number of variables was shown to be 8 (asterisks, Figure 
5). An RF model constructed on the full data set using 
these 8 variables had an OOB error rate of 12%.

For each sample, the RF model reports the 
percentage of trees the sample traversed and was 
categorized as belonging to the tumor group, referred 
to here as the vote fraction. A vote fraction above 0.5 
indicates the model predicted the sample to be tumor; a 
vote fraction below 0.5 indicates the sample is predicted 
to be non-tumor. The higher the vote fraction the more 
“tumor-like” the sample is, according to the model. We 
found that half of the patients with at least one incorrectly 
predicted sample still had tumor/non-tumor pairs with 
vote fractions that trended in the correct direction (Figure 
7). In other words, the difference between vote fractions 
for the patient’s tumor sample and non-tumor sample was 
positive.

Next, we investigated whether the value of the 
difference in vote fractions for each individual patient 

Table 1: Demographic and clinical characteristics of 
study patients

Variable All Patients 
(N = 39)

Age (years) 60.5 ± 13.2

Male 30 (76.9)

Race

 White 32 (88.9)

 Non-White 4 (11.1)

 Unknown 3

T-stage

 Low T-stage (T1-T2) 17 (45.9)

 High T-stage (T3-T4) 20 (54.1)

 Unknown 2

N-stage

 Node Negative (N0) 19 (51.4)

 Node Positive (N1-N2) 18 (48.6)

 Unknown 2

Overall Stage

 Stage I-II 7 (20.6)

 Stage III-IV 27 (79.4)

 Unknown 5

Smoking History

 Current 7 (17.9)

 Past 19 (48.7)

 Never 13 (33.3)

Alcohol Use

 Heavy 2 (5.2)

 Social 14 (36.8)

 Histroy 6 (15.8)

 Never 16 (42.1)

 Unknown 1

Site

 CHTH 10 (25.6)

 HN 27 (69.2)

 Duke 1 (2.6)

 Vanderbilt 1 (2.6)

Values are presented as means ± standard deviations or 
number (percent). Percentages were calculated out of a 
denominator that does not include samples with missing 
data.
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Figure 2: Box and whisker plots of diversity and richness of mycobiome and bacteriome at the phylum and genus levels 
from oral tongue tumor (green) and their matched non-tumor (orange) samples. Diversity was analyzed in an unbiased 
manner using Shannon diversity index (A, C, E, G), which characterizes species diversity, and richness (B, D, F, H) represents number of 
organisms in a given sample. Dark horizontal lines represent the median, with the box representing the first (Q1) and third (Q3) quartiles, 
the outer fences representing 1.5 x interquartile range, and the black circles representing outliers.

Figure 3: Box and whisker plots of relative abundance of the 6 bacterial phyla and one fungal phylum found 
significantly different between oral tongue tumor samples and their matched normal tissue samples. (A) Box and 
whisker plots representing relative abundances of bacterial phyla Tenericutes, Spirochaetes, Fusobacteria, Actinobacteria, Bacteroidetes 
and Firmicutes by sample type non-tumor tissues (orange) and oral tongue tumors (green). (B) Box and whisker plots representing relative 
abundance of fungal phylum Glomeromycota in non-tumor tissues (orange) and oral tongue tumors (green). Dark horizontal lines represent 
the median, with the box representing the first (Q1) and third (Q3) quartiles, the outer fences representing 1.5 x interquartile range, and the 
black circles representing outliers. P <.05 for all comparisons between non-tumor and tumor groups.
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correlate with any clinical features. We found that patients 
with high T-stage disease had lower mean differences 
between tumor and non-tumor samples compared with 
patients with low T-stage disease (mean difference 0.07 vs. 
0.21, P=0.04). No other clinical features from Table 1 were 
significantly correlated with vote fraction differences.

Next, we conducted inter-and intra-kingdom 
correlation analyses with bacterial and fungal taxa in the 
microbiota of tumor and non-tumor samples. We found 
that the bacterial phylum Bacteroidetes exhibited robust 
positive intra-kingdom correlations with Fusobacteria 
and Spirochaetes in tumor samples (Figure 8A, 8B). At 
the fungal phylum level, negative correlation between 
Zygomycota and Ascomycota were increased while that 
between Glomeromycota and Ascomycota decreased 
in tumor samples (Figure 8C, 8D). Zygomycota also 
exhibited positive inter-kingdom correlation with two 
bacterial phyla (Fusobacteria and Bacteroidetes) and 
negative correlation with Actinobacteria (Figure 8E, 8F). 
At the genus levels, Lichtheimia correlated positively with 
Campylobacter, Porphyromonas and Fusobacterium, and 
negatively with Actinomyces (Figure 8G, 8H). Fungal 
species Lichtheimia corymbifera correlated positively 
with 11 bacterial species and negatively with 39 bacterial 
species (including Lactobacillus spp. Supplementary 
Table 3). These results show that specific inter- and intra-
kingdom correlations exist within the bacterial and fungal 
microbiota in the setting of oral tongue cancer.

DISCUSSION

Squamous cell carcinomas of the head and neck 
region are increasing in incidence globally. This trend 
is particularly exaggerated for mobile tongue cancers. 
Despite multidisciplinary research and advances in 
diagnosis and treatment, mortality rates have not 

significantly decreased over the last quarter century. 
While HPV has been identified as an etiologic agent in 
certain sites, it is rare in mobile tongue cancers, which 
still require exploration of etiology. Here, we show for 
the first time, bacteriome and mycobiome differences 
between mobile tongue cancers and their matched normal 
oral epithelium. Among the carcinomas, there also were 
differences in microbiome based on T stage. While our 
study and resulting data are novel, we acknowledge that 
our sample size is small, though counter-balanced by the 
relative homogeneity of the tumor site and HPV status 
(mainly negative).

The number of bacterial sequencing reads in 
our study were similar to other studies conducted with 
oral samples [17]. We found that the number of fungal 
sequence reads were lower than that of bacterial sequence 
reads, which also agrees with published studies showing 
that the number of fungal sequences are usually lower 
than that of bacterial sequences, with only ~0.1% of 
detectable sequences in the total gut microbiota attributed 
to fungi and 99% to bacteria [18, 19]. Detection of lower 
number of fungal reads in a sample has been attributed 
to the fact that fungal signatures are more sensitive to 
DNA isolation method than bacterial signature [20] and 
limitations of the fungal sequencing databases used for 
identity assignments [21, 22]. However, in spite of these 
limitations, our analysis provides valuable insight into the 
potential clinical relevance of the bacteriome/mycobiome 
in oral tongue cancer.

The sample-wise variation in the tumor and non-
tumor samples were similar, as revealed by PCO analysis. 
These distribution profiles are similar to those reported for 
bacteriome analyses of cancer samples [19, 23]. We also 
found that bacterial diversity and richness decreased in 
tumor samples, which is in agreement with the concept that 
reduction in microbial diversity is linked with disease in 

Table 2: Abundance of bacterial species in non-tumor and oral tongue tumor tissues

Species
Non-Tumor Tumor

P
Mean SD Mean SD

Rothia mucilaginosa 13.43% 10.25% 27.78% 17.55% <0.001

Prevotella nigrescens 8.66% 12.68% 4.93% 9.20% 0.027

Porphyromonas endodontalis 3.75% 9.07% 0.53% 0.43% 0.011

Peptostreptococcus anaerobius 3.09% 9.24% 1.14% 4.47% 0.006

Capnocytophaga ochracea 1.86% 5.43% 1.70% 7.14% 0.005

Aggregatibacter segnis 1.16% 3.06% 0.28% 0.28% 0.003

Rothia dentocariosa 0.72% 1.27% 1.48% 1.83% 0.003

Prevotella copri 0.45% 0.36% 0.56% 1.51% 0.039

Sphingobacterium multivorum 0.16% 0.73% 0.01% 0.02% 0.010

Haemophilus influenzae 0.13% 0.33% 0.05% 0.19% 0.001
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cancer [19, 24, 25]. Although microbiomes (bacteriomes) 
of specific body sites vary among individuals [26], the 
concept of a “core microbiome,” or shared bacteriome 
among individuals of the same body site, still exists [27]. 
Perturbations from the core bacteriome, or dysbiosis, 
have been seen in non-physiologic states, such as 
obesity. Although diversity index of mycobiome did not 
change between tumor and non-tumor samples, richness 

of the mycobiome was significantly reduced in tumor 
samples. Thus, our study suggests there is a change in the 
local environment with oral tongue cancer, manifested 
as distinct microbial dysbiosis, at both the bacterial 
and fungal levels. Dysbiosis could lead to an altered 
representation of bacterial genes and their metabolic 
pathways. This increased variation of microflora also 
could lead to changes in the abundance of certain species 

Figure 4: Random Forest model of genus-level bacteriome and mycobiome of oral tongue tumors compared to matched 
non-tumor tissues. (A) ROC curve for model, with a bootstrapped estimated out-of-bag error rate of 0.30. (B) Multidimensional scaling 
plot of proximity matrix with non-tumor samples (blue “N”) clustering at the top left and tumor samples (orange “T”) clustering at 
the bottom right. (C) Screen plot of variable importances (black circle) for this model as compared to 20 models generated on random 
groupings (individual random models = blue lines, average of random models = red line). (D) Histograms of vote distributions for non-
tumor (blue, left), and tumor (orange, right) samples. Vote fractions above 0.5 indicate samples predicted as tumor, while vote fractions 
below 0.5 indicate samples predicted as non-tumor.
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that promote tumorigenesis, the so-called “oncogenic 
bacteria” [28, 29].

To address our hypothesis that there is interplay 
between oropharyngeal bacteriome and mycobiome, 
we focused our RF modeling of both combined. As 
such, no one bacterial or fungal genus predominated in 
distinguishing the cancers from their normal tissues. 
Indeed, our RF model identified 10 bacterial genera 
(Rothia, Eikenella, Streptococcus, Porphyromonas, 
Aggregatibacter, Fusobacterium, Prevotella, Actinomyces, 

Campylobacter, Capnocytophaga), and only one 
fungal genus (Emericella) among the model’s top 30 
variables. This is not surprising given the complexity of 
carcinogenesis. As examples, there are many genomic 
and epigenomic loci altered in head and neck carcinomas 
representing the multi-hit model of cancer. Here we show 
a multi-hit model of bacteria and fungi. We also show that 
the variable importance was not very stable which means 
that there is no obvious single genus driving the divide 
between tumor and not-tumor. It is important to note that 

Figure 5: Variable importance measured by mean decrease in accuracy of top 30 predictor genera in the Random 
Forest (RF) model. Numbers to the right of the plot indicate the proportion of bootstrapped samples (out of 1000) that the variable 
featured in after backwards variable selection using varSelRF. The red asterixes indicate the 8 variables contributing to the model with the 
optimum out-of-bag error rate (12%).
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this observation has no implication on how good our RF 
model is. The latter (goodness of the model) is measured 
by the out of bag error rate, which is, in fact, very stable, 
30-33% with 1000 bootstraps. There are a few hypotheses 
that bear on biological significance in the context of lack of 
variable stability. One potential interpretation could be co-
linearity of variables. It is unlikely that Rothia or Eikenella 
(as examples) alone drives tumorigenicity. Instead, if, 
e.g., Rothia and Eikenella trend together, and if Rothia 
is randomly selected as part of a model, then Eikenella 
may not be selected because it would not provide any 
additional discriminatory power. Thus, we may see Rothia 
included in half of the models and Eikenella the other half, 
just by chance. An alternate interpretation, which is more 
biologically attractive, would be based on the thesis that 
there are multiple community structures (bacterial/fungal 
“hits”) that contribute to the same “phenotype” (outcome), 
i.e., tumor versus not-tumor. As an example, Rothia-high 
and Fusobacterium-low predicts for tumor but Eikenella-
high and Fusobacterium-high also is associated with 
tumor, but perhaps via a different mechanism.

Our correlation analyses revealed interesting 
associations between microbes and tumor status, which 
could be detected at phylum as well as genus level 

analyses. In this regard, phylum level correlations 
indicated a positive association between Zygomycota 
(which includes the genus Lichtheimia) and Bacteroidetes 
(which includes Porphyromonas) and Fusobacteria 
(includes Fusobacterium). Similarly, the negative 
correlation between Lichtheimia and Actinomyces was 
predicted by the association between their respective 
phyla (Zygomycota vs. Actinobacteria). These analyses 
also hinted at interesting inter-kingdom interplay. For 
example, the Gram-negative bacteria Campylobacter, 
Fusobacterium and Porphyromonas were negatively 
associated with Emericella, but positively with 
Lichtheimia. The fact that tumor samples exhibited 
decrease in abundance of Emericella could suggest 
that the corresponding increase in Campylobacter, 
Fusobacterium and Porphyromonas may be happening 
concomitantly as the levels of Lichtheimia (the fungus 
Mucor) are increasing. Lichtheimia is associated with 
infections in immunocompromised (including cancer) 
patients [30-33], while the bacterial genera Fusobacterium 
and Porphyromonas (known periodontal pathogens) and 
Campylobacter (common in GI infections) are major 
constituents of the “mobile microbiome” originating in the 
oral cavity but also associated with extra-oral infections 

Figure 6: Performance of random forest (RF) model on 1000 bootstrap samples. (A) Plot of each sample and its average out-
of-bag (OOB) vote fraction. Non-tumor samples (red) above the dashed line and tumor samples (blue) below the dashed line were predicted 
incorrectly (9 non-tumor, 11 tumor), leading to an estimated error rate of 0.33 using the 0.632+ bootstrap method. (B) Plot of OOB error 
rates by number of variables used in the model in 1000 bootstrapped iterations of backwards variable selection using varSelRF. Both the 
bootstrap samples (black dashed lines) and original sample (red line) show OOB error rates dip at around 8 variables.
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and inflammation [34]. The correlations observed in 
the current study with oral tongue cancer patients may 
indicate that microbial dysbiosis reflects changes in the 
immune status due to the underlying disease. For example, 
increasing Lichtheimia levels may be linked to attenuated 
immunity, while increasing levels of oral pathogens 
like Fusobacterium and Porphyromonas may be due to 
changes in the mucosal surface. The link between these 
microbiota level changes and host response may indeed 
be induced by therapy, and/or may be predictive for the 
disease. The cause-versus-effect relationships between 
these organisms should be investigated.

Another corollary to the changes in microbiota 
is the potential effect of metabolites secreted by these 

organisms on cancer. Such a concept has been investigated 
by other investigators also, who previously identified 
several “oncogenic bacteria”. In this regard, acetaldehyde 
(derived from alcohol metabolism) has been proposed 
as the oral carcinogen linked to oral cancers due to 
alcohol consumption. In the presence of alcohol exposure 
and increased abundances of microbes that produce 
acetaldehyde, such as Rothia, Streptococus and Prevotella 
[35], we could postulate that increased oral acetaldehyde 
could promote oral carcinogenesis. The fact that fungal 
abundance is also significantly altered between the tumor 
and non-tumor groups, and since fungi (e.g. Candida 
albicans [36, 37] are known to mediate production of 
salivary acetaldehyde in patients with ethanol-associated 

Figure 7: Vote fraction between matched tumor and non-tumor samples. Lines connect the vote fractions of tumor (right) 
and non-tumor (left) samples. Samples connected by a solid blue line were predicted correctly by the Random Forest (RF) model; samples 
connected by a solid green or dashed orange line were predicted incorrectly by the RF model. Among incorrectly predicted samples, line 
color and type indicates directionality of the vote fraction difference (solid green line for decreased in non-tumor relative to tumor, dashed 
orange line for increased in non-tumor relative to tumor). Of the 14 with one incorrectly predicted sample, 8 had vote fraction differences 
that trended in the correct direction.
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oral cancer, these fungi may represent “oncogenic fungi.” 
Further studies are warranted to investigate the oncogenic 
potential of the fungal species Lichtheimia corymbifera.

Correlation analyses also showed that Lichtheimia 
corymbifera was negatively correlated with Lactobacillus 
spp., which could be related to changes in the local gut 
environment that favors increased abundance of specific 
taxa. Lactobacillus are generally regarded as beneficial 
bacteria that regulate the growth of bacteria and fungi [38, 
39, 40]. Reduction in levels of Lactobacillus spp. may 
induce changes in the microbial ecosystem of oral tongue 

cancer patients, which in turn can influence the conditions 
(e.g. pH, micronutrients) for microbial dysbiosis.

It is notable that Emericella is decreased in 
abundance in cancer tissues compared to their normal 
tissue. In vitro studies show Emericella exposure resulted 
in increased p53 tumor suppressor expression, at least in 
colon cancer cells [41]. Thus, the observed decrease in 
abundance of this genus in tumor samples may have led 
to a decrease in expression of the p53 tumor suppressor, 
thus contributing to the oral tongue cancer phenotype. 
A potential, although provocative, outcome of such 

Figure 8: Intra- and Inter-Kingdom correlations at phylum and genus levels. Intra-kingdom correlations are shown among 
bacterial phyla in (A) non-tumor or (B) tumor samples, and among fungal phyla in (C) non-tumor or (D) tumor samples. Inter-kingdom 
correlations observed between bacterial and fungal phyla in (E) non-tumor and (F) tumor samples, and at genus level in (G) non-tumor 
and (H) tumor samples. Blue – positive correlation, red – negative correlation. Circle size and color shading indicate value of correlation 
coefficient, with bigger circles with darker coloring representing higher coefficient values (maximum = 1) and smaller circles with lighter 
coloring representing lower coefficient values (minimum = 0).
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association could be that Emericella may have utility as a 
probiotic in managing oral tongue cancer.

Of all the clinico-pathologic features, we only 
found an association of T stage with bacteriome-
mycobiome profile differences. Those with high T-stage 
had lower mean differences between their tumors and 
adjacent normal tissue. In contrast, patients with low 
T-stage had a larger mean difference between their 
tumors and matched normal tissue. Interestingly, 
Spirochaetes was already relatively abundant in the 
non-tumor normal oral tissue in those with high T stage 
compared to the normal oral tissue from those with low 
T stage in the context that Tenericutes, Spirochaetes, and 
Bacteroidetes are over-represented in the tumors of those 
with high T stage. These observations could suggest that 
there already exist bacteriomic/mycobiomic dysbioses in 
the normal (appearing) tissue in high T-stage tumors. It 
has long been believed that a field cancerization effect is 
important in the pathogenesis of head and neck squamous 
cell carcinomas. Typically, this field effect is shown 
by similar somatic genetic and epigenetic/transcript 
expression differences between the oral carcinomas and 
their matched non-tumor oral tissue [42]. Interestingly, 
over-expression of Ki67 (a marker of rapidly dividing 
cells) in normal oral epithelium distant from oral cancers 
has been shown to have a poor prognosis [43]. Here, 
our observations are consistent with a bacteriome/
mycobiome field effect where the presence of dysbiosis 
in the normal tissues associates with larger tumors. Based 
on our observations, some may cautiously speculate 
that elimination of bacterial and fungal dysbioses may 
prevent or slow disease progression. Our pilot data 
should be confirmed in larger series and the speculation 
of rebalancing bacterial/fungal dysbioses should be 
directly addressed, perhaps in non-human animal models.

MATERIALS AND METHODS

Patient sample collection and demographics

This study was approved by the Cleveland 
Clinic Institutional Review Board for Human Subjects 
Protection. Written informed consent was obtained from 
all cases. Fifty-three unrelated patients with mobile 
tongue cancer undergoing resection were prospectively 
enrolled (2003-2014). Of these 53, 40 had adequate 
fresh-frozen specimens (30-50mg) of matched tumor and 
adjacent normal tissues and were collected into a tissue 
biorepository under a protocol specifically designed to 
maintain sterility for biomic analyses. Matched normal 
tissues were resected approximately 2cm from the tumor 
margin, were aseptically collected in the operating 
room, flash frozen, and stored at -80°C. Relevant 
clinicopathologic features at the time of diagnosis were 
collected, with summary demographics shown in Table 1. 
Of the 40-matched normal-tumor sets, 39 had sufficient 

tissue for both bacteriome and mycobiome analyses. Two 
of the 39 tumor samples failed at amplification step and 
did not yield any sequencing data for bacteriome analysis 
and were removed from analyses.

DNA extraction

Total DNA was extracted using a previously 
described protocol [9] with modifications as follows. 
Unlike extraction of DNA from bacterial cells, extracting 
DNA from fungal cells is more challenging and requires 
optimization. It is well established that methods for 
genomic DNA extraction from fungal cells require hours 
to days to complete and often incorporate toxic chemicals. 
Additionally, the release of DNA is often poor due to cell 
walls or capsules that are not readily susceptible to lysis. 
To optimize DNA extraction from clinical samples, we 
conducted preliminary experiments using Aspergillus 
fumigatus as a representative fungus known to pose a 
challenge to lysing and identified the optimal setting (6 
m/s, 3 runs of 60s) for DNA extraction of fungal DNA. 
This setting was also optimal for DNA extraction form 
bacterial cells. Microbial (fungal and bacterial) genomic 
DNA was isolated and purified with the QiaAmp DNA 
Stool mini Kit (Qiagen) following the manufacturer’s 
instructions with minor modifications. Briefly, 3 additional 
bead-beating steps (Sigma-Aldrich beads, diameter = 
500 μm) with the MP Fastprep-24 (speed setting of 6, 
3 runs of 60s), after the stool lysis step (in ASL buffer) 
were performed. The quality and purity of the isolated 
genomic DNA was confirmed spectrophotometrically 
using NanoDrop 2000 device (Fisher Scientific SAS, 
Illkirch, France). DNA concentration was quantified using 
the Qubit 2.0 instrument applying the Qubit dsDNA HS 
Assay (Life Technologies, USA). Extracted DNA samples 
were stored at -20°C.

Microbiome analyses

Analysis of the mycobiome profile in the extracted 
DNA samples was conducted as described previously 
by our group [44, 45]. A brief summary of the method is 
provided below.
Amplicon library preparation

The Internal Transcribed Spacer 1 (ITS1) 
and 16S rDNA regions for fungi and bacteria, 
respectively, were amplified as described previously 
[45]. Briefly, ITS1 region was amplified using ITS1F 
(CTTGGTCATTTAGAGGAAGTAA) and ITS 2 
(GCTGCGTTCTTCATCGATGC) primers. The reactions 
were carried out on 100 ng template DNA, in 50 μl (final 
volume) reaction mixture consisting of Dream Taq Green 
PCR Master Mix (Thermo Scientific), 0.1g/L bovine 
serum albumin, 1% of dimethylsulfoxide (DMSO), 6 mM 
MgCl2, and a final primer concentration of 400nM. Initial 
denaturation at 94°C for 3 min was followed by 35 cycles 
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of denaturation for 30s each at 94°C, annealing at 50°C for 
30 s, and extension at 72°C for 1 min. Following the 35 
cycles there was a final extension time of 5 min at 72°C.

The V4 region of the 16S rRNA gene was amplified 
using16S-515F: GTGCCAGCMGCCGCGGTAA and 
16s-806R: GGACTACHVGGGTWTCTAAT primers. The 
reactions were carried out on 100 ng template DNA, in 50 
μl (final volume) reaction mixture consisting of Dream 
Taq Green PCR Master Mix (Thermoscientific), 0.1g/L 
bovine serum albumin, 1% of dimethylsulfoxide (DMSO), 
6 mM MgCl2, and a final primer concentration of 400nM. 
Initial denaturation at 94°C for 3 min was followed by 30 
cycles of denaturation for 30 s each at 94°C, annealing at 
50°C for 30 s, and extension at 72°C for 1 min. Following 
the 30 cycles there was a final extension time of 5 min 
at 72°C. The size and quality of amplicons was screened 
by 1.5% Tris Acetate EDTA agarose gel electrophoresis, 
using 100v and electrophoresed for 45 min and stained 
with ethidium bromide.

The PCR products were sheared for 20 min, using 
Ion Shear Plus Fragment Library Kit (LifeTechnologies, 
NY, USA). The Amplicon library was generated 
with sheared PCR products using Ion plus Fragment 
Library kits (<350 bp) according to the manufacturer’s 
instructions. The library was barcoded with Ion Xpress™ 
Barcode Adapter, and ligated with the A and P1 adaptors.

Sequencing, classification and analysis

The adapted barcoded libraries were equalized using 
the Ion Library Equalizer kit to a final concentration of 
100 pM. Once equalized, the samples were pooled and 
diluted to 26 pM, and attached to the surface of Ion 
Sphere particles (ISPs) using an Ion PGM Template OT2 
200bp kit v2 (LifeTechnologies, USA) according to the 
manufacturer’s instructions, via emulsion PCR. Quality 
of ISPs templates was checked using Ion Sphere™ 
Quality Control Kit (Part no. 4468656) with the Qubit 
2.0 device. Sequencing of the pooled libraries was carried 
out on the Ion Torrent Personal Genome Machine (PGM) 
system using the Ion Sequencing 400 bp kit (all from 
LifeTechnologies) for 150 cycles (600 flows), with a 
318 chip following the manufacturer’s instructions. De-
multiplexing and classification was performed using 
the Qiime 1.6 platform. The resulting sequence data 
were trimmed to remove adapters, barcodes and primers 
during the de-multiplexing process. In addition, the 
bioinformatics process filters were applied to the sequence 
data for the removal of low-quality reads below Q25 
Phred score and denoised to exclude sequences with read 
length below 100 bp [46]. De novo operational taxonomic 
units (OTUs) were clustered using Uclust algorithm and 
defined by 97% sequence similarity [47]. Classification 
at the species level was referenced using the UNITE 5.8s 
database and taxa assigned using the nBlast method with a 
90% confidence cut-off [48, 49]. Chimeras where removed 

during noise removal post assigning taxonomy due to the 
low representation (below 0.01%).

Bioinformatics and statistical analyses

The statistical programming language R (version 
3.3.1) [50] and related packages [51] were used for 
diversity and correlation analyses, and Kruskal-Wallis 
(non-parametric) analysis of variance using abundance 
data. Euclidean distance were calculated using the dist 
function (base R) and vegan::vegdist [52-55]. hist function 
was used to create a histogram to visualize distribution 
of distance dissimilarities. UniFrac Distances were 
calculated using the vegan and GUniFrac packages. The 
hclust function (base R) was used to conduct hierachical 
clustering in dendograms to visualize distance between 
groups. Principle coordinate analysis (PCoA was 
conducted using the cmdscale function (base R).

Diversity was analyzed in an unbiased manner 
using Shannon diversity index (characterizes species 
diversity) and richness (number of organisms in a sample) 
at all taxonomical levels using the R package ‘vegan’ 
[52]. Abundance data are presented as proportions 
(relative abundance) within each analyzed sample 
group. Correlation analyses were performed using the 
R package ‘corrplot’ [56]. All group-wise comparisons 
were conducted with base statistics functions using the 
Pairwise Multiple Comparison of Mean Ranks (PMCMR) 
package in R [57], employing Kruskal & Wallis test 
followed by Bonferroni-Dunn post-hoc adjustment. P <.05 
was considered statistically significant for all tests (after 
correcting for multiple comparisons).

Random forest (RF), an ensemble learning method 
based on classification trees, was implemented using the 
R package ‘randomForest’, with the relative abundances 
of 112 bacterial and fungal genera used as variables to 
predict tumor or non-tumor status [58, 59]. RF grows a 
specified number (ntree=2001) of classification trees 
on a specified number (mtry=10) of randomly selected 
input variables at each node. Each tree is constructed 
on a bootstrapped sample from the original data set that 
constitutes approximately two thirds of the samples. The 
one third of samples not used to construct the tree is then 
used to evaluate the accuracy of the tree, thus making 
RF models relatively robust against overfitting [58]. The 
aggregate error rate from the entire forest is reported as the 
out-of-bag (OOB) error rate, and variables can be ranked 
by importance based on the number of times they are used 
as splitters. RF has been shown to outperform discriminant 
analysis and support vector machines in microarray 
analysis and microbiome analyses [60, 61]. Backwards 
iterative variable selection and evaluation of the stability 
of the model (OOB error rate and variable importances) 
was performed using 1000 bootstrapped samples through 
R package ‘varSelRF’ with default settings except c.sd set 
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to 0 [62]. Nine tumor/non-tumor pairs were excluded from 
the analysis due to insufficient bacterial sequence counts 
(<50 reads). Analysis across groups on vote fraction 
differences between matched tumor and non-tumor pairs 
was done using MANOVA with repeated measures using 
JMP Pro 12 (SAS Institute Inc., Cary, NC).
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