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Abstract

Objective: Proper development of retinal blood vessels is essential to ensure sufficient oxygen and nutrient supplies to the
retina. It was shown that polyunsaturated fatty acids (PUFAs) could modulate factors involved in tissue vascularization. A
congenital deficiency in ether-phospholipids, also termed ‘‘plasmalogens’’, was shown to lead to abnormal ocular
vascularization. Because plasmalogens are considered to be reservoirs of PUFAs, we wished to improve our understanding
of the mechanisms by which plasmalogens regulate retinal vascular development and whether the release of PUFAs by
calcium-independent phospholipase A2 (iPLA2) could be involved.

Methods and Results: By characterizing the cellular and molecular steps of retinal vascular development in a mouse model
of plasmalogen deficiency, we demonstrated that plasmalogens modulate angiogenic processes during the early phases of
retinal vascularization. They influence glial activity and primary astrocyte template formation, endothelial cell proliferation
and retinal vessel outgrowth, and impact the expression of the genes involved in angiogenesis in the retina. These early
defects led to a disorganized and dysfunctional retinal vascular network at adult age. By comparing these data to those
obtained on a mouse model of retinal iPLA2 inhibition, we suggest that these processes may be mediated by PUFAs
released from plasmalogens and further signalling through the angiopoietin/tie pathways.

Conclusions: These data suggest that plasmalogens play a crucial role in retinal vascularization processes.
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Introduction

Vascular growth occurs through two complementary mecha-

nisms: vasculogenesis and angiogenesis [1]. Vasculogenesis corre-

sponds to the initial vascular tree formation by differentiation of

vascular endothelial lineage precursor cells, whereas fine endo-

thelial cell extensions arise by sprouting from pre-existing vessels

during angiogenesis. In primates, the retina vascularizes as laminar

networks that sequentially radiate peripherally from the optic

nerve head [2]. Whereas all vascular laminae emerge post-natally

in several mammal species, the innermost plexus arises at

gestational age in humans, while the deeper vascular laminae

are formed at around 24 weeks of gestation and continue

developing after birth [2]. During retinal vascular development,

nutrients are supplied to the anterior eye by hyaloid vessels

extending from the optic disc. In the growing eye, the

development of the retinal vasculature coincides with hyaloid

vasculature regression [3]. The hyaloid vascular system fully

regresses before birth in humans and during the first post-natal

weeks in mice.

While developing, the retinal vasculature associates several cell

types. The first stage of retinal vascular development is the

formation of the astrocytic bed [4]. The migration of astrocytes

from the optic nerve to the retinal periphery is closely followed by

the formation of the primary vascular network by endothelial cells

[5]. Distinct microglial populations also migrate across the retina

prior to or concomitantly with the vessels [6]. Finally, the

stabilization of immature vessels by pericytes appears either

simultaneously with blood flow or soon thereafter [7].

Dysregulation of retinal vascularization is a common feature of

several blinding diseases including retinopathy of prematurity

(ROP), diabetic retinopathy (DR) and age-related macular

degeneration (AMD) [8–10]. In DR and ROP, neovascular events

occur at the level of retinal vessels and result in complications such

as vitreous haemorrhages, torsional retinal detachment and

subsequent blindness [9,10], whereas choroidal neovascularization

is responsible for vision loss in patients with neovascular AMD [8].

Since vascular development is tightly regulated by complex

molecular interactions stimulating or inhibiting vasculogenesis

and angiogenesis, the pathophysiological mechanisms involved in
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these diseases may include an imbalance between pro- and anti-

angiogenic compounds.

Within the different factors influencing vascular growth,

polyunsaturated fatty acids (PUFAs) are drawing interest. In the

retina, the major PUFAs are found primarily in neuronal and

vascular cell membrane phospholipids from which they are

released by phospholipases A2 (PLA2) [11]. Recent discoveries

include in vitro data showing that PUFAs or their metabolites

control the expression of pro-angiogenic growth factors in vascular

cells [12–14], in vivo animal studies where dietary omega-3 PUFAs

reduced pathological angiogenesis [15], and a large-scale human

studies associating a higher dietary intake in omega-3 PUFAs with

a slower progression of neovascular AMD [16–18].

Not only PUFAs but also their phospholipid origin may be

important in the control of vascular growth. Indeed, phospholipids

in cell membranes can have different sub-types: conventional

phospholipids on which fatty acids are connected through ester

linkages or specific phospholipids termed ‘‘plasmalogens’’ where a

vinyl–ether bond replaces an ester linkage (Figure 1). We have

shown that plasmalogens accounts for 13% of retinal phospholip-

ids and about 30% of retinal ethanolamine phospholipids [19].

Given that plasmalogens are also considered to be reservoirs of

PUFAs in membranes, they are suspected of having signalling

functions by releasing these PUFAs through a specific calcium-

independent PLA2 (iPLA2) [20]. This hypothesis is reinforced by

studies showing higher iPLA2 activities in various pathologic

conditions involving plasmalogen metabolism [21,22]. The

importance of plasmalogens in retinal vascular development was

previously suggested in a mouse model of plasmalogen deficiency

(DAPAT2/2 mice). DAPAT2/2 mice are characterized by a

targeted disruption of the gene encoding for dihydroxyacetone-

phosphate acyltransferase, the first enzyme of plasmalogen

biosynthesis. The main phenotypic characteristics of DAPAT2/2

mice consisted of reduced levels of docosahexaenoic acid (DHA) in

neural tissue and complex and severe developmental defects of the

central nervous system, the testis and the eye. The ophthalmologic

examination of DAPAT2/2 mice elicited abnormalities including

persistent hyaloid vessels [23]. This feature is likely to be associated

with other defects in retinal vasculature that have not been

adequately investigated so far.

We therefore characterized blood vessel development in the eye

of DAPAT2/2 mice and compared the morphologic defects to

those of a mouse model of retinal iPLA2 inhibition we developed

previously [24]. By correlating these observations with the gene

expression of important angiogenic factors, we collected data

elucidating the processes by which plasmalogens, and subsequently

iPLA2, influence retinal vascular growth. These data demonstrat-

ed a temporary delay in retinal vessel outgrowth associated with

glial activation, then a secondary sub-numerous and defective

development of retinal capillaries, and subsequent scarring

processes involving glial and inflammatory cells.

Materials and Methods

Animals
Experiments were conducted in accordance with the Associa-

tion for Research in Vision and Ophthalmology statements and

with French legislation (authorization number 21CAE086 for N.A.

and animal quarters agreement number A21231010 EA), after

approval by the local ethics committees (#105 Comité d’Ethique de

l’Expérimentation Animale Grand Campus Dijon). C57BL/6 mice (12

weeks old, 20–25 g) were obtained from Elevage Janvier (Le-

Genest-Saint-Isle, France). DAPAT heterozygous (DAPAT+/2)

mutants were kindly provided by Prof. W.W. Just (Heidelberg,

Germany). The animals were housed in animal quarters under

controlled temperature (2261uC) and light conditions (12-h light,

12-h dark cycle). Animals were fed ad libitum with standard

laboratory chow and water.

DAPAT+/2 mice were backcrossed with C57Bl/6 mice to

provide DAPAT wild-type (DAPAT+/+), and DAPAT+/2 animals.

DAPAT+/2 couples were further crossed to generate DAPAT+/+,

DAPAT+/2 and DAPAT knock-out (DAPAT2/2) mice. The

genotype of heterozygous, DAPAT+/+ and DAPAT2/2 mice

was determined according to Rodemer et al. (2003) with slight

modifications [23]. The genotype was determined using nested

PCR of genomic tail DNA using the primers neomycin-forward

(CGCATCGCCTTCTATCGCCTTCTTG, Eurofins MWG

Operon, Ebersberg, Germany), exon7-forward (CGATACC-

TACTTTGTCCCAATTAGC, Eurofins) and exon7-reverse

(GCTGGTCTCAAACAGCTACGTAGCTGA, Eurofins). DNA

extraction was performed using the Archive Pure DNA Cell/

Tissue kit (5 Prime GmbH, Catalog no 2300820; Gaithersburg,

MD). Pure genomic DNA was dosed on the nanodrop spectro-

photometer (ND 1000, Labtec; Palaiseau, France). For the

amplification step, 2 ng of genomic DNA, 100 pmol of each

primer in reaction buffer and 2.5 U of Taq polymerase (BiotaqTM

DNA Polymerase, BIO-21040, Bioline, Paris, France) were used in

a total volume of 25 ml. After 2 min of denaturation at 95uC, PCR

was performed on a C1000TM Thermel Cycler (Biorad Labora-

tories, Hercules, CA) through 35 cycles at 94uC for 30 s and 57uC
for 1 min, followed by a final extension step at 72uC for 1 min.

This resulted in a 650-bp product for the wild-type gene and an

860-bp product for the neomycin-recombinant DAPAT gene.

Figure 1. Structure of conventional phospholipids and plasmalogens. Conventional phospholipids such as phosphatidyl-ethanolamine
contain ester bonds to link R1 and R2 acyl-moieties at the sn-1 and sn-2 positions of glycerol, respectively. Ethanolamine-plasmalogens (also termed
plasmenyl-ethanolamine) are characterized by the presence of a vinyl-ether bond at the sn-1 position of the glycerol backbone to link alkenyl-
moieties and an ester bond at the sn-2 position to link acyl-residues.
doi:10.1371/journal.pone.0101076.g001
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PCR products were analysed using agarose gel electrophoresis and

gels were visualized on Gel doc 2000 (Biorad).

Inhibition of retinal iPLA2 in DAPAT+/+ mice
Retinal iPLA2 was inhibited in vivo according to previously

described procedures [24]. Briefly, retinal iPLA2 was inhibited by

45–55% in DAPAT+/+ pups from birth to post-natal days 7 (PN7),

14 (PN14) or 21 (PN21), by repeated intraperitoneal administra-

tion of a bromoenol lactone solution (BEL, B1552, Sigma-Aldrich,

Saint-Quentin-Fallavier, France) at a concentration of 6 mg/g of

body weight in DMSO/saline (1:10, v:v). Controls were injected

with vehicle (DMSO/saline (1:10, v:v)) only.

Immunostainings on flat-mounted whole retinas
The pups were euthanized by CO2 exposure, the eyeballs were

isolated and fixed in 4% paraformaldehyde. The corneas were

incised, the lenses taken out, and four radial cuts were made on the

eyecups. Vitreous bodies were removed with forceps, and retinas

were delicately isolated and flattened on microscope slides.

Flat-mounted retinas were stained to visualize endothelial cells,

astrocytes, pericytes and extracellular matrix, as described

elsewhere [25]. Briefly, retinas (n = 7–8) were incubated in a

blocking solution (1% BSA, PBS-Tween (0.5%), pH 6.8), washed

in PBLec solution (PBS, 0.1 mM CaCl2, 0.1 mM MgCl2, pH 6.8)

and then incubated in a biotin conjugated-isolectin-B4 solution

(ILB4, Lectin from Bandeiraea simplicifolia BS-I, L2140, Sigma-

Aldrich) for endothelial cell labelling. ILB4 solution was prepared

at a concentration of 1 mg/ml in 0.9% saline and further diluted in

PBLec solution (1:50, v:v) prior to assay. The retinas were then

washed in PBS and incubated in a 0.01 mg/ml streptavidin-Alexa

568 solution (pH 7.2) (S11226, Invitrogen, Saint Aubin, France)

prepared in the blocking solution which in turn was prediluted to

50% in PBS. For astrocyte labelling, polyclonal rabbit anti-mouse

glial fibrillary acidic protein antibody was used (GFAP, 1:200,

Neomarkers, RB-087-A0,-A1, Illkirch, France). For pericyte and

extracellular matrix labelling, polyclonal rabbit anti-chondroitin

sulfate proteoglycan antibody (NG-2, 1:200 Chemicon, Molsheim,

France) and polyclonal goat anti-fibronectin antibody (1:100,

Santa Cruz Biotechnology, Le Perray-en-Yvelines, France) were

used, respectively. Secondary antibodies were Alexa 488-labelled

goat anti-rabbit (1:200, Invitrogen A11008) and Alexa 488-

labelled donkey anti-goat (1:200, Invitrogen A11055). Following

the labelling steps, the retinas were rinsed in PBS and coverslipped

using a fluorescence-mounting medium. Controls for these

experiments consisted of removing primary antibodies. Fluores-

cence microphotographs were taken using a Nikon microscope

(model Eclipse E600, Nikon, Champigny-sur-Marne, France) and

a Nikon digital camera (model OXm 1200C, Nikon) equipped

with the Nikon Nis-element BR V2.2 software. Confocal

fluorescent micrographs were obtained using a Leica scanning

laser confocal microscope SP2 AOBS (Leica Microsystemes SAS,

Nanterre, France) and processed with Leica LCSlite.

Capillary morphometry on flat-mounted whole retinas
Retinal vascular network outgrowth was evaluated on ILB4-

stained flat-mounted retinas by calculating the ratio of outgrowth

distance to retinal radius. ILB4-positive angiogenic sprouts were

counted manually by two operators on unlabelled pictures of flat-

mounted retinas displayed at the same magnification and taken

from DAPAT+/+, DAPAT2/2 mice, and mice with retinal iPLA2

inhibition (n = 10–12 per group).

To evaluate retinal capillary density, adult DAPAT+/+ and

DAPAT2/2 mice were deeply sedated using a ketamine (70 mg/g

of body weight) and xylazine (14 mg/g of body weight) solution

and then perfused with a FITC-dextran solution (molecular weight

2,000,000, Sigma Aldrich) through the left ventricle. Flat-mounted

retinas were visualized under a Leica confocal laser-scanning

microscope SP2, AOBS (Leica Microsystemes SAS), and pro-

cessed with Leica LCSlite. After drawing a circle centred on the

optic nerve head and covering the entire retina, two additional

concentric circles with a radius equivalent to one and two-thirds of

the first circle were drawn to delimit retinal central, mid-peripheric

and far-peripheric areas. The number of capillaries was deter-

mined by drawing an additional concentric circle in the middle of

each zone and counting the number of capillaries crossing this ring

over 360u. The evaluations were made manually by two operators

on unlabelled pictures displayed at the same magnification.

Microscope characteristics
For the Leica confocal laser-scanning microscope SP2, Acousto

Optical Beam Splitters (AOBS), we used the following objectives:

10 HC PL APO CS 1060.4 dry, 20 HC PL APO CS 2060.7 dry

and 40 HC PL APO CS 4061.25 oil. The light source excitation

for the Alexa 488 and the Alexa 568 fluorochromes was an Argon

laser set at 488 (emission spectrum, 507–547 nm) and a helium/

xenon laser set at 543 (emission spectrum, 574–657 nm, 600–

701 nm or 608–686 nm), respectively. The Nikon microscope

(Eclipse E600, Champigny-sur-Marne, France) was equipped with

a Nikon digital camera (Nikon OXm 1200C equipped with the

Nikon Nis-element BR software V2.2). We used the 460.1 dry,

1060.3 dry and 2060.5 dry objectives. A mercury lamp was used

as a light source, with an excitation spectrum of 450–490 nm with

DM 505 and BA 520 for Alexa 488 fluorochrome and 510–

560 nm with DM 575 and BA 590 for Alexa 568 fluorochrome.

Gene expression analyses in retinas
Extraction of total RNAs. After the animals were deeply

sedated with an intraperitoneal injection of a ketamine (70 mg/g of

body weight) and xylazine (14 mg/g of body weight) solution,

retinas were isolated from the eyeballs and pooled for one animal

(n = 4–6 per group). Total RNAs were isolated using the Ambion

RNAqueous kit (AM1912, Life Technologies) according to the

manufacturer’s instructions. The quantity and the quality of RNAs

were evaluated on a nanodrop spectrophotometer (ND1000,

Thermo Fisher, Illkirch, France).

cDNAs synthesis and quantitative real-time polymerase

chain reaction (PCR). For quantitative real-time PCR, RNAs

were reverse-transcripted to cDNA using the Invitrogen Super-

Script VILOTM Master Mix (No. 11755, Life Technologies). The

expression of genes coding for known pro- and anti-angiogenic

factors [25], inflammatory factors, the glial cell marker and

endogenous control genes (Table 1) was quantified using 5 ng of

total cDNAs in 10 ml of 1X TaqMan Fast Advanced Master Mix

(No. 4444557, Applied Biosystems, Life Technologies). Quantita-

tive real time-PCR was performed on TaqMan Array 96-well

FAST Plates (Applied Biosystems, Life Technologies), using the

StepOnePlus Real-Time PCR System equipped with the StepOne

software V2.2.2 (Applied Biosystems, Life Technologies). Data

were analysed using DataAssist software V3.0 (Applied Biosystems,

Life Technologies). Genes coding for glucuronidase-beta, beta-2-

microglobulin and hypoxanthine guanine phosphoribosyl-trans-

ferease-1 were used as endogenous controls for normalization and

relative quantification (RQ) with the Cycle Threshold (CT)-method.

SLO imaging of hyaloid vasculature
The regression of hyaloid vasculature was followed between

PN21 and PN27 using a Heidelberg Retina Angiograph confocal

scanning laser ophthalmoscope (cSLO, Heidelberg Engineering,
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Dossenheim, Germany) as previously described [25,26]. Prior to

cSLO angiography, animals were anaesthetized with a ketamine

(70 mg/g of body weight) and xylazine (14 mg/g of body weight)

solution. After the pupils were dilated with tropicamide (Mydria-

ticum, Thea Laboratories, Clermont-Ferrand, France), a custom-

made contact lens was placed on the cornea using methylcellulose

solution (Methocel 2%, OmniVision, Puchheim, Germany).

Fluorescein angiography was performed using the Argon laser of

the HRA (488 nm; barrier filter: 500 nm), and after a sub-

cutaneous injection of a fluorescein-Na solution in 0.9% NaCl at a

dose of 75 mg/kg of body weight.

Electroretinography
The electroretinography equipment consisted of a Ganzfeld

bowl, a DC amplifier and a computer-based control and recording

unit (RETI port/scan 21, Stasche & Finger GmbH, Roland

Consult, Brandenburg, Germany). The electroretinograms (ERGs)

(n = 6 per group) were obtained according to previously published

procedures [27].

Statistical analysis
The results are expressed as the mean 6 standard deviation

(SD) or standard error of the mean (SEM). Statistical analyses were

performed using the Statistical Analysis System (SAS Institute,

Cary, NC). The non-parametric Kruskal-Wallis test was used

between the different groups. Statistical significance was accepted

at P,0.05. For the statistical analysise of gene expression, the

DataAssist software V3.0 (Applied Biosystems, Life Technologies)

was used to compare groups two by two through a two-tailed

Students t-test on the DeltaCT values.

Table 1. Symbol, name, assay ID, and GenBank reference of assayed genes.

Gene
Symbol

Gene name;
celera annotation Assay ID

GenBank
reference

angpt1 angiopoietin 1; mCG113640 Mm00456503_m1 NM_009640.3

angpt2 angiopoietin 2; mCG1200 Mm00545822_m1 NM_007426.3

efnb2 ephrin B2; mCG17314 Mm01215897_m1 NM_010111.5

ephb4 Eph receptor B4; mCG6855 Mm01201157_m1 NM_001159571.1;
NM_010144.6

fgf2 fibroblast growth factor 2;
mCG12672

Mm00433287_m1 NM_008006.2

flt1/vegfr1 FMS-like tyrosine kinase 1;
mCG121647

Mm00438980_m1 NM_010228.3

fn1 fibronectin 1; mCG121782 Mm01256744_m1 NM_010233.1

fzd4 frizzled homolog 4 (Drosophila);
mCG15148

Mm00433382_m1 NM_008055.4

gfap glial fibrillary acidic protein;
mCG7451

Mm01253033_m1 NM_001131020.1;
NM_010277.3

itgaV integrin alpha V; mCG7872 Mm00434486_m1 NM_008402.2

itgb3 integrin beta 3; mCG11220 Mm00443980_m1 NM_016780.2

kdr/vegfr2 kinase insert domain protein receptor;
smCG7209

Mm01222421_m1 NM_010612.2

pdgfb platelet-derived growth factor;
B polypeptide; mCG11519

Mm00440677_m1 NM_011057.3

pdgfrb platelet-derived growth factor
receptor; beta polypeptide;
mCG6019

Mm00435546_m1 NM_001146268.1;
NM_008809.2

pla2g6 phospholipase A2; group VI;
mCG128876

Mm00479527_m1 NM_001199024.1;
NM_001199025.1; NM_016915.4

tek/tie1 endothelial-specific receptor
tyrosine kinase; mCG122568

Mm00443243_m1 NM_013690.2

thbs1 thrombospondin 1; mCG14570 Mm00449032_g1 NM_011580.3

tie1 tyrosine kinase with
immunoglobulin-like
and EGF-like domains 1; mCG120003

Mm00441786_m1 NM_011587.2

vegfa vascular endothelial growth factor A;
mCG2676

Mm01281449_m1 NM_001110267.1; NM_009505.4;
NM_001110266.1; NM_001025250.3

Control genes

b2m beta 2 microglobulin Mm00437762_m1 NM_009735.3

gusB glucuronidase beta Mm00446953_m1 NM_010368

hprt hypoxanthine guanine
phosphoribosyl transferase 1

Mm01545399_m1 NM_013556

doi:10.1371/journal.pone.0101076.t001
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Results

Temporary delayed retinal vascular outgrowth associated
with modifications in the expression of genes involved in
angiogenesis

Morphometric evaluation of ILB4-stained retinal vasculature

revealed a significantly reduced outgrowth of retinal capillaries at

PN7 in mice with plasmalogen deficiency (69% of radius) and

iPLA2 inhibition (76% of radius) when compared to control mice

(84% of radius) (Figures 2A and 2B). These observations were

correlated to a significant up-regulation of the anti-angiogenic

gene thrombosporin-1 (thbs1) in both plasmalogen-deficient mice and

retinal iPLA2-inhibited mice. The delay in vascular outgrowth was

also associated with down-regulation of endothelial transcripts

coding for the angiopoietin1/2 receptor tie2/tek, and the orphan

receptor tie1 in both plasmalogen-deficient and iPLA2-inhibited

mice. Among the pro-angiogenic genes, only angiopoietin-1 (angpt1)

and ephrin-B2 (efnb2) genes were significantly over-expressed in

both mice models (Figure 2C). Angpt1 protein is a critical actor

involved in vessel maturation since it mediates migration, adhesion

and survival of endothelial cells, whereas Efnb2 protein is involved

in angio-proliferative retinopathy [28,29]. We also observed a

significant over-expression of the angiopoietin-2 (angpt2) gene in

plasmalogen-deficient mice. Angpt2 protein is known to disrupt

the connections between the endothelium and perivascular cells,

thus promoting cell death and vascular regression [28].

The dysregulation in the expression of these pro- and anti-

angiogenic genes was completely abolished in plasmalogen-

deficient mice at PN14 (Figure 2D). Only beta-3 integrin (itgb3)

and fibroblast growth factor 2 (fgf2) genes 2 which are known to

promote angiogenesis and wound healing 2 were up-regulated in

plasmalogen deficiency conditions. These modifications in gene

expression at PN14 were associated to complete centrifuge

development of retinal vessels in both mice models (Figure 2B).

To check whether the recovery of retinal vascular outgrowth was

due to greater angiogenic activity, we further quantified the ILB4-

stained angiogenic sprouts at PN14 (Figures 2E and 2F). The

number of angiogenic sprouts was significantly higher in retinas of

plasmalogen-deficient mice (350 AU621.72) and mice with retinal

iPLA2 inhibition (290 AU612.2) compared to controls

(247 AU614.47), suggesting ongoing active angiogenesis process-

es. This suggests the existence of a secondary increase of pro-

angiogenic activity in these animal models that was consistent with

the up-regulation of the itgb3 and fgf2 genes in retinas of

plasmalogen-deficient mice.

Defects in fully grown retinal vessels at adult age
To check whether these early metabolic and cellular abnor-

malities affect the final organization of retinal vessels, we further

investigated the retinal vascular phenotype of adult plasmalogen-

deficient mice. We quantified retinal capillaries on FITC-stained

flat-mounted retinas in adult plasmalogen-deficient mice (aged of

more than 6 months) to check whether the increased sprouting

activity and the expression of the itgb3 and fgf2 genes at post-natal

ages would have consequences on capillary density at adulthood.

The number of capillaries was strongly increased in plasmalogen-

deficient mice over the entire retinal surface (+49% in the central

retina, +40% in the mid-periphery and +68% in the far periphery)

(Figures 3A and 3B). Moreover, microphotographs of ILB4-

stained retinal blood vessels taken from adult plasmalogen-

deficient mice showed significant vascular defects compared to

controls (Figure 3C). These included dilated arteries and veins

(stars on Figure 3C), tortuous large vessels (arrows on Figure 3C)

and localized punctuated vascular lesions (circle on Figure 3C).

Based on previous observations [30,31], these lesions might result

from the down-regulation of tie1, tie2 and kdr genes that was

observed at an earlier age.

The functional analysis of the retina of plasmalogen-deficient

mice using electroretinography revealed a specific alteration of the

ERG b-wave, thus resulting in a negative ERG waveform

(Figure 3D). Except for the oscillatory potentials, the ERG traces

of plasmalogen-deficient mice closely resembled those obtained

from retinas displaying retinal hypoxia [25,32], thus suggesting

that the increased diameter of large vessels may be a secondary

consequence of reduced retinal oxygenation, as previously

described [33].

Contribution of extracellular matrix and astrocytes to
endothelial cell proliferation during early steps of
vascular development

Fibronectin is an extra-cellular matrix protein known to

promote endothelial cell proliferation and migration during

vascular development [34]. In physiologic conditions, fibronectin

is expressed in the zone of vasculogenesis immediately prior to

vessel formation, and it was shown to be over-expressed in

pathological retinal microvessels [35]. In the animal models used

herein, the delayed vascular outgrowth observed at PN7 was

associated with up-regulation of fibronectin gene expression

(Figure 4A). At the protein level, fibronectin immuno-reactivity

was more intense in the retina of animals with plasmalogen

deficiency and iPLA2 inhibition. The protein was particularly

expressed around vessels situated at the front of outgrowth,

suggesting more active angiogenesis processes in this area

(Figure 4B). Fibronectin up-regulation was correlated to an

increased expression of the gfap gene coding for the glial fibrillary

acidic protein (GFAP) in the retina (Figure 4A). This is consistent

with previous studies reporting fibronectin-induced endothelial cell

proliferation by gfap over-expressing activated astrocytes [34,36].

These data suggest that astrocytes may be at the origin of the

mechanisms promoting angiogenesis in mice with plasmalogen

deficiency and iPLA2 inhibition at PN7.

Influence of astrocyte template on vessel architecture of
adult mice

As previously reported, a proper astrocyte template is required for

retinal vascular development and remodelling [34,37]. To check

whether the vascular tortuosity observed in adult plasmalogen-

deficient mice is related to irregularities in astrocyte template

formation, we observed ILB4-stained endothelial cells and GFAP-

stained astrocytes on retinal flat-mounts from adult DAPAT2/2 mice

(Figure 5A). The co-localization of ILB4- and GFAP-positive cells

suggests that endothelial cells have passively followed the defective

astrocytic template (arrows on Figure 5A). Then, the abnormal

spatial positioning of endothelial cells might be the secondary

consequence of a defective arrangement of the astrocytic bed.

To better understand the origin of the localized vascular lesions,

we further investigated astrocyte template formation and retinal

vasculature at PN14 and PN21. In addition to the well-shaped

astrocyte bed, we observed several localized, sharply outlined and

strongly GFAP-immuno-reactive astrocyte accumulation areas in

plasmalogen-deficient mice and in iPLA2-inhibited mice at PN14.

The co-localization of ILB4- and GFAP-positive cells showed that

these areas corresponded to the sites of vascular lesion develop-

ment. At PN21, astrocytes appeared to be less accumulated and/

or less immuno-reactive than at PN14, to be less sharpened and to

have a more fibrous aspect (Figure 5B). The areas where

astrocytes accumulated were not present at PN7 and seemed to
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Figure 2. Temporarily delayed outgrowth and increased retinal angiogenic activity in Pls-deficient and iPLA2-inhibited animals.
A. Representative fluorescence microscopy pictures of isolectin-B4-labelled (ILB4) endothelial cells on retinal whole mounts of control, Pls-deficient
and iPLA2-treated mice at PN7. Dashed and solid arrows indicate the outgrowth distance and the retinal radius, respectively. B. Quantitative analysis
of retinal outgrowth represented by the ratio (%) of outgrowth distance (l) to retinal radius length (L) from the optic nerve to the retinal periphery
(R = l/L6100). A delay in retinal vascular outgrowth was observed in Pls-deficient mice and iPLA2-inhibited mice at PN7 (n = 6–18 per group) but not
at PN14 (n = 6–10 per group). *: statistically significant difference when compared to control group (Kruskal-Wallis test, P,0.05); **: statistically
significant difference when compared to control group (Kruskal-Wallis test, P,0.01). C. and D. Transcriptional analysis of angiogenic factors in
retinas of control, Pls-deficient and iPLA2-inhibited mice (n = 6–8 per group) at PN7 (C.) and PN14 (D.). The relative expression of angiogenic genes
was normalized to gusb, hprt and b2m genes and compared to control levels (set as 1). Pls-deficient and iPLA2-treated mice displayed fluctuations in
the expression of genes encoding for pro- and anti-angiogenic proteins that were related to vascular phenotype. *: Statistically significant difference
when compared to control group (Student’s t-test, P,0.05); **: statistically significant difference when compared to control group (Student’s t-test,
P,0.01); ***: statistically significant difference when compared to control group (Student’s t-test, P,0.001). E. Representative pictures of ILB4-
labelled retinal wholemounts showing angiogenic sprouts (arrowheads) in control, Pls-deficient and iPLA2-inhibited mice at PN14. F. Quantitative
evaluation of angiogenic sprouts in retinas of control, Pls-deficient, and iPLA2-inhibited mice at PN14 (n = 10–12 per group). The number of
angiogenic sprouts was significantly increased in mice deficient in Pls and in animals displaying a chemical inhibition of iPLA2 when compared to
control mice (set as 100), suggesting greater sprouting activity. ***: Statistically significant difference when compared to control group (Kruskal-Wallis
test, P,0.001).
doi:10.1371/journal.pone.0101076.g002
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Figure 3. Defects in fully developed retinal vasculature of Pls-deficient mice. A. Quantification of retinal capillaries on confocal microscopy
pictures of whole-mounted and FITC-dextran-perfused retinas from control and Pls-deficient mice. Three concentric circles (yellow dashed circles)
centred on the optic nerve head were drawn to delimit central, mid-peripheric and far peripheric areas. The number of capillaries crossing a ring
situated in the middle of each area (red dashed circles) was counted over 360u. B. Quantitative evaluation of retinal capillaries in adult control and Pls-
deficient mice. The capillary density was significantly increased in central, mid-peripheric and far-peripheric areas of the retina of Pls-deficient mice
(n = 6/group). C. Representative fluorescence microscopy pictures of isolectin-B4-labelled (ILB4) endothelial cells on retinal wholemounts of control
and Pls-deficient mice. Retinal vasculature of adult Pls-deficient mice was characterized by tortuous large vessels (arrows), dilated arteries and veins
(stars) and vascular lesions (circle). D. Representative electroretinographic response of Pls-deficient and control mice. The ERG traces of Pls-deficient
mice (red trace) exhibited a specific alteration of the positive b-wave (arrow) that is typical of retinal hypoxia. Scale bar = 75 mm.
doi:10.1371/journal.pone.0101076.g003
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result from secondary scarring mechanisms. Gene expression

analysis confirmed up-regulation of retinal GFAP mRNAs at

PN14 and a return to control levels at PN21 (Figure 5C).

No impact of plasmalogen deficiency and iPLA2
inhibition on pericyte recruitment

We speculated that a defective vessel maturation through

pericyte recruitment would be involved in vessel dilation and

Figure 4. Greater retinal astroglial activity in Pls-deficient and iPLA2-inhibited animals at PN7. A. Relative expression of genes encoding
for two markers of astroglial activity in control animals (n = 4–5), Pls-deficient mice (n = 5) and iPLA2-treated mice (n = 6) examined by RT-qPCR. The
relative expression of gfap and fn1 genes encoding for GFAP and fibronectin, respectively, was normalized to gusb, hprt and b2m genes and
compared to the control level (set at 1). The expression of gfap and fn1 genes was significantly increased in Pls-deficient and iPLA2-treated mice at
PN7, suggesting increased astroglial activity. *: Statistically significant difference when compared to control group (Student’s t-test, P,0.05);
**: statistically significant difference when compared to control group (Student’s t-test, P,0.01). B. Confocal microscopy of anti-fibronectin (green)
and ILB4 (red) labelled retinal whole mounts of control, Pls-deficient and iPLA2-inhibited mice at PN7 (n = 3–6 per group). The secretion of fibronectin
protein by retinal astrocytes at the front of vascular outgrowth was more pronounced in Pls-deficient and iPLA2-inhibited animals when compared to
controls, confirming greater astroglial activity. Scale bar = 150 mm.
doi:10.1371/journal.pone.0101076.g004
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tortuosity, and in the formation of vascular lesions. Because

platelet-derived growth factor-beta (PDGF-b) signalling is required

for pericyte recruitment and migration [38], we wanted to know

whether the expression of pdgfb and pdgfrb genes is modified in the

retinas of our mice model. Slight but significant down-regulation

of pdgfb and pdgfrb genes was observed at PN21 (Figures 6A).

However, immuno-stainings of retinal pericytes with anti-NG2

antibody did not reveal any impact of plasmalogen deficiency or

iPLA2 inhibition on pericyte recruitment and positioning next to

vessels, at any stage of development (Figure 6B).

Figure 5. Influence of astrocyte template on vessel architecture of adult mice. A. Fluorescence microscopy pictures of anti-GFAP- (green)
and isolectin-B4- (ILB4, red) labelled retinal whole mounts of control and Pls-deficient mice and mice at adult age. ILB4-positive cells (endothelial cells)
and GFAP-positive cells (astrocytes) were co-localized, suggesting that vessel tortuosity is a secondary consequence of an abnormal arrangement of
the astrocytic bed. B. Confocal microscopy pictures of anti-GFAP- (green, labelling astrocytes) and isolectin-B4- (ILB4, red, labelling endothelial cells)
labelled retinal whole mounts of control, Pls-deficient and iPLA2-inhibited mice at PN14 and PN21. The retinal vasculatures of Pls-deficient and iPLA2-
inhibited mice were characterized by vascular lesions that co-localized with activated astrocytes. These activated-astrocyte areas were sharply
outlined at PN14, whereas they were less immuno-reactive to GFAP and had a fibrous aspect at PN21. C. Relative expression of GFAP, a marker of
astroglial activity in control animals, Pls-deficient mice and iPLA2-treated mice examined by RT-qPCR (n = 4–6 per group) at PN14 and PN21. The
relative expression of the gfap gene was normalized to gusb, hprt and b2m genes and compared to the control level (set at 1). The expression of the
gfap gene was significantly increased in Pls-deficient and iPLA2-treated mice at PN14, suggesting increased astroglial activity at this age.
*: Statistically significant difference when compared to control group (Student’s t-test, P,0.05). Scale bar = 75 mm.
doi:10.1371/journal.pone.0101076.g005
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Delayed regression of hyaloid arteries in mice with retinal
iPLA2 inhibition

A persistent hyaloid vasculature was previously reported in

plasmalogen-deficient mice [23]. As evidence of the implication of

plasmalogens and iPLA2 in retinal vascular development, the

regression of hyaloid vasculature in animals with iPLA2 inhibition

was observed (Figure 7). We performed fluorescein angiography

on iPLA2-inhibited mice at PN21 and PN27 to visualize and

quantify the functional hyaloid vessels, namely hyaloid arteries

(HAs) arising from the optic nerve and entering the vitreous and

vasa hyaloidea propria (VHP), which are small vessels branched to

HAs and radiating in the vitreous (Figure 7A) [39]. With the

confocal module of the angiograph, we identified and quantified

individual VHPs at the level of the lens and HAs in the posterior

eye. As expected, HAs were present in greater quantities in iPLA2-

inhibited mice at PN21 (mean 6 SEM, 4.0760.19 and 3.3660.24

in treated and control animals, respectively; Figure 7B) and were

persistent in iPLA2-inhibited mice, while they regressed in controls

(25% (non-significant) and 231% (P,0.05) between PN21 and

PN27 in treated and control animals, respectively). The effect of

iPLA2 inhibition was even more striking for VHPs, whose number

was greater in iPLA2-inhibited animals (mean 6 SEM, 2.1560.16

and 0.4560.15 in treated and control animals, respectively) at

Figure 6. Pericyte recruitment and vessel stabilization in retinas of control, Pls-deficient and iPLA2-inhibited mice. A. Relative
expression of PDGF and PDGFR in control animals, Pls-deficient mice and iPLA2-treated mice examined by RT-qPCR (n = 4–6 per group) at PN7, PN14
and PN21. The relative expression of the genes was normalized to gusb, hprt and b2m genes and compared to the control level (set at 1). The
expression of pdgfb and pdgfrb genes was significantly reduced in mice with iPLA2 inhibition at PN7 and in Pls-deficient and iPLA2-inhibited mice at
PN21. *: Statistically significant difference when compared to control group (Student’s t-test, P,0.05); **: statistically significant difference when
compared to control group (Student’s t-test, P,0.01); ***: statistically significant difference when compared to control group (Student’s t-test,
P,0.001). B., C. and D. Confocal microscopy pictures of anti-NG2- (green, labelling pericytes) and isolectin-B4- (ILB4, red, labelling endothelial cells)
labelled retinal whole mounts of control and Pls-deficient mice and mice at PN7 (B.), PN14 (C.) and PN21 (D.). No abnormality was observed in retinas
of Pls-deficient and iPLA2-inhibited mice, suggesting normal vessel stabilization by pericytes. Scale bar = 75 mm.
doi:10.1371/journal.pone.0101076.g006
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PN21 and still persistent at PN27, whereas they were fully

regressed in control animals. This evidence could also explain the

delay in retinal vessel outgrowth at earlier stages, as was previously

hypothesized [25].

Discussion

Based on a preliminary description of the ocular phenotype of a

mouse model of plasmalogen deficiency [23] and to the well-

known implication of PUFAs in angiogenesis [15,40,41], we

hypothesized that plasmalogens may participate in the control of

Figure 7. Defects in hyaloid vasculature regression in mice with iPLA2 inhibition. A. Quantification of hyaloid arteries (HA) and vasa
hyaloidea propria (VHP) vessels on depth-scan images from confocal cSLO angiography. VHP vessels (stars) were visualized and quantified at the level
of the posterior lens, whereas HAs (arrowheads) were counted in the posterior eye in control and iPLA2-inhibited animals (n = 11 per group).
B. Quantitative evaluation of hyaloid arteries (HA) and vasa hyaloidea propria (VHP) vessels in control and iPLA2-inhibited mice at PN21 and PN27.
The numbers of HAs and VHPs were significantly higher in iPLA2-inhibited mice at PN21 and PN27 when compared to controls, thus confirming that
the control of hyaloid vessel regression by Pls involves the iPLA2 enzyme. *: Statistically significant difference when compared to control group
(Kruskal-Wallis test, P,0.05); **: statistically significant difference when compared to control group (Kruskal-Wallis test, P,0.01); ***: statistically
significant difference when compared to control group (Kruskal-Wallis test, P,0.001).
doi:10.1371/journal.pone.0101076.g007
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retinal vascular development through PUFA release by a

phospholipase belonging to iPLA2 family. To test this hypothesis,

we characterized the steps of retinal vascular development in

plasmalogen-deficient mice and in a previously developed mouse

model of retinal iPLA2 inhibition [24].

We found that plasmalogens were involved in the control of the

early steps of retinal vascular development. During these phases,

endothelial cell proliferation results in the formation of the

primary vascular bed on an astrocyte template. As shown by the

present data, plasmalogen deficiency results in delayed vascular

outgrowth and in an imbalance in the retinal expression of pro-

and anti-angiogenic genes. These anti-angiogenic conditions were

associated with high macroglial activity and the resulting over-

production of fibronectin. Astrocytes seem to be the principal

actor, since fibronectin production was reported to be linked to

astrocyte activity. Fibronectin is known to promote endothelial cell

proliferation and vessel formation in the retina [34,42] and was

found to be over-expressed in retinal capillaries of patients with

proliferative DR, a disease displaying an abnormal proliferation of

retinal vessels [35]. Nevertheless, further studies are needed to

decipher any involvement of Müller cells, which are also known to

promote endothelial cell proliferation and to be immuno-reactive

to anti-GFAP antibodies. Although the production of fibronectin

was enhanced, it was not sufficient, at least at PN7, to balance the

lack of development of retinal vessels observed at this age. One

hypothesis would be that this greater astroglial activity is a

secondary reaction of the retina to delayed vascular development.

This process might have been mediated by transient hypoxia, since

some data demonstrated an increased secretion of fibronectin in

hypoxic astrocytes in the brain [43] and the retina [36].

Whereas the expression of VEGF was not affected by

plasmalogen deficiency or iPLA2 inhibition, the only up-regulated

pro-angiogenic factors at PN7 belong to the angiopoietin family.

Angiopoietins are involved in vessel formation through the control

of endothelial cell migration, adhesion and survival. Angiopoietins

have been found to be ligands of tie receptors [28]. The present

results indicate that the retinal expression of endothelial

transcripts, such as tie2 and tie1 [44], does not follow that of

angiopoietins at PN7. On the contrary, the mRNAs of tie

receptors decreased, whereas those of angiopoietins increased.

These findings may indicate either a lower relative number of

endothelial cells in the retina or an altered activity of the

angiopoietin/tie pathway, which may contribute to the delayed

formation of the endothelial network. Since angiopoietin produc-

tion was previously shown to be negatively regulated by omega-3

PUFAs [13], one may assume that the over-expression of

angiopoietins is a consequence of the lack of plasmalogens and

the subsequent PUFA signalization. Further analyses of the kinases

involved in these pathways would be helpful to confirm this

hypothesis and to elucidate the molecular mechanisms involved.

Furthermore, and as suggested by Hoffman et al., the over-

expression of the angpt1 gene may also have influenced retinal

vessel maturation through mechanisms not involving pericytes

[45]. Although pericytes are known to participate in vessel

stabilization and maturation, these cells may not be involved in

the formation of mature vessels in animal models of ROP. These

data are concordant with our results, as plasmalogen-deficient

mice exhibit features resembling to those observed in ROP,

namely vascular growth retardation, proliferation of retinal

capillaries, and dilated and tortuous arteries and veins.

Several genetic and phenotypic changes occurred between PN7

and PN14. The retinal vascular outgrowth was boosted in

plasmalogen-deficient and iPLA2-inhibited animals, as confirmed

by the increased sprouting activity at PN14 and the higher number

of retinal capillaries at adulthood. This higher angiogenic activity

was confirmed at the molecular level by the return to control levels

of pro-angiogenic gene expression, whereas these were down-

regulated at PN7. Only the itgb3 and fgf2 genes remained up-

regulated in plasmalogen-deficient mice at PN14. The itgb3 gene

encodes for beta3-integrin protein, which is considered as a

marker of angiogenesis [46]. Although the pro-angiogenic

properties of beta-3-integin are still under debate in cancer

research [47], studies have shown that its activation enhances

tumour angiogenesis and metastatic growth in the brain [48].

Another particularity of integrins is their ability to interact with a

number of pro-angiogenic factors such as EGF, PDGF-beta and

IGF [47]. Such interactions may be important for the activation of

integrins as well as for the regulation of kinase activity of these

growth factors [49]. Even if this type of interaction has not yet

been demonstrated with FGF-2, several reports suggest that beta-3

integrin and FGF-2 are involved in common metabolic pathways

in vascular or ocular cells [50–52]. Whereas FGF-2 itself is known

to be an important actor in wound healing [53], it was

demonstrated that beta-3 integrin is also required for wound

angiogenesis [54]. Taken together, these data suggest that FGF-2

and beta-3 integrin may have promoted the scarring processes

observed in plasmalogen-deficient and iPLA2-inhibited mice at

PN14. These wound areas were characterized by strongly

activated astrocytes on which angiogenic processes take place.

These scarring processes were very transitory and incomplete at

PN21, thus leading to punctuated vascular lesions at later ages.

One of the vascular abnormalities observed in fully developed

retinas of plasmalogen-deficient and iPLA2-inhibited mice con-

sisted of defects in large vessels. We observed an up-regulation of

genes encoding for angpt1, angpt2 and Efnb2 proteins, which are

known to be over-expressed in the retinas of animal models of

oxygen-induced retinopathy and in the vitreous of patients with

ROP. Oxygen exposure is also known to promote vessel regression

and up-regulate Efnb2 gene expression [29,45,55]. The angpt2 gene

was shown to be over-expressed in patients with highly vascular-

active ROP [55] and was only up-regulated in plasmalogen-

deficient mice, suggesting a more severe phenotype in mice with

plasmalogen deficiency than in those with retinal iPLA2 inhibition.

The tortuosity of large vessels can result from either poor

positioning of astrocytes when forming the astroglial template or

a secondary modification of the extracellular matrix that

subsequently modified the vessel shape. Given that omega-3

PUFAs were shown to influence the tissue expression of several

proteins of the extracellular matrix [56,57], this second hypothesis

would be attractive.

As final evidence of the involvement of an iPLA2-dependent

control of vascular development by plasmalogens, we have shown

another phenotypic similarity between our mouse models, namely

the persistence of hyaloid vasculature. Based on previous

observations, one might assume that the defective regression of

hyaloid vasculature may also be related to alterations in astrocyte

metabolism, and particularly their ability to produce bA3/A1-

crystallin protein, further work being needed to document this

hypothesis [37].

There are a several limitations to acknowledge in this work.

First, and to better characterize the influence of plasmalogens on

the early steps of retinal vascular development, it would have been

useful to increase the number of time points for a complete time

course of retinal development. Second, and since this study is

mainly based on data obtained from mRNA analyses, the tissue

levels of the different proteins could have been evaluated by

western blotting or ELISA. Third, the inhibition rate of iPLA2

activity in our animal model is only 45%, meaning that about half
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of the retinal iPLA2 activity is still persistent [24]. Moreover,

bromoenol lactone was shown to inhibit plasmalogen-specific

isoforms of iPLA2 as well as others that are not specifically related

to these phospholipids. Other approaches such as suppression of

plasmalogen-specific iPLA2 gene activity by siRNA or by

homologous recombination would have been more effective.

However, to the best of our knowledge, the nucleotide sequence of

the retinal isoform of this plasmalogen-specific enzyme is not

known, making these approaches impossible to use.

In summary, plasmalogen deficiency resulted in primary

vascular defects that led to a secondary tissue reaction that is

insufficient to ensure physiological vascular development. In

addition to confirming the need for plasmalogens for normal

retinal vascular development, this study provides evidence that

helps elucidate the cellular and molecular events involved.

Regulation of angiogenesis by plasmalogens can be mediated by

the action of iPLA2 and involves the angiopoietin/tie pathway.
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