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Abstract
Despite their suitability for studying evolution, many conifer species have large and 
repetitive giga-genomes (16–31  Gbp) that create hurdles to producing high cover-
age SNP data sets that capture diversity from across the entirety of the genome. 
Due in part to multiple ancient whole genome duplication events, gene family expan-
sion and subsequent evolution within Pinaceae, false diversity from the misalignment 
of paralog copies creates further challenges in accurately and reproducibly inferring 
evolutionary history from sequence data. Here, we leverage the cost-saving benefits 
of pool-seq and exome-capture to discover SNPs in two conifer species, Douglas-fir 
(Pseudotsuga menziesii var. menziesii (Mirb.) Franco, Pinaceae) and jack pine (Pinus bank-
siana Lamb., Pinaceae). We show, using minimal baseline filtering, that allele frequen-
cies estimated from pooled individuals show a strong, positive correlation with those 
estimated by sequencing the same population as individuals (r >  .948), on par with 
such comparisons made in model organisms. Further, we highlight the utility of hap-
loid megagametophyte tissue for identifying sites that are probably due to misaligned 
paralogs. Together with additional minor filtering, we show that it is possible to re-
move many of the loci with large frequency estimate discrepancies between individ-
ual and pooled sequencing approaches, improving the correlation further (r > .973). 
Our work addresses bioinformatic challenges in non-model organisms with large and 
complex genomes, highlights the use of megagametophyte tissue for the identifica-
tion of paralogous artefacts, and suggests the combination of pool-seq and exome 
capture to be robust for further evolutionary hypothesis testing in these systems.
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1  |  INTRODUC TION

Quantifying the spatial structure of neutral and adaptive genetic 
variation within ecologically and economically important tree spe-
cies and their close relatives is fundamental to forecasting and man-
aging their response to changing selection pressures from pests, 
pathogens, and climate (Aitken et al., 2008; Alberto et al., 2013; 
Holliday et al., 2017; Janes & Hamilton, 2017; Sniezko & Winn, 
2017). Prerequisite to this information is the ability to produce high 
quality and cost-effective data from which to generate reliable infer-
ence. While the life history of many tree species offers some ideal 
circumstances for studying adaptive evolution at the genetic level 
(Neale & Kremer, 2011; Neale & Savolainen, 2004), two ancient 
whole-genome duplication events in the progenitors of the Pinaceae 
lineages (Li et al., 2015), transposable element dynamics (Morse 
et al., 2009; Voronova et al., 2017), tandemly arrayed genes (Pavy 
et al., 2017), subsequent gene duplication (Casola & Koralewski, 
2018; Krutovsky et al., 2004) and gene family expansion (e.g., Liu 
et al., 2016) have led to giga-genomes (>16 Gb in size) recalcitrant 
to chromosome-level genome assembly under current sequencing 
and computational constraints (Neale, Martínez-García, et al., 2017; 
but see Scott et al., 2020). For example, analysis of Pinus taeda L. 
(Pinaceae) has yielded estimates that upwards of 82% of its 22 Gb 
genome is repetitive, and 75% of the repetitive sequence is due to 
retrotransposons (Nystedt et al., 2013; Wegrzyn et al., 2014). It is 
also thought to be rich in pseudogenes (Kovach et al., 2010).

Such large genome sizes have hampered production of dense SNP 
data sets across a large number of individuals (Lind et al., 2018). Most 
recent sequencing efforts in conifers have either used some form of 
reduced representation sequencing such as restriction-site associ-
ated DNA sequencing (i.e., RADseq; reviewed in Andrews et al., 2016 
and Parchman et al., 2018), which relies upon relatively few genomic 
resources, or targeted capture (e.g., Lu et al., 2016; Suren et al., 2016), 
which requires significant genomic and budgetary resources includ-
ing the design of capture arrays (but see Puritz & Lotterhos, 2018). 
To capture population-level polymorphism information while mini-
mizing cost, sequencing pooled individuals (i.e., pool-seq approaches) 
has emerged as a cost-effective alternative to sequencing individuals 
(Gautier et al., 2013; Schlötterer et al., 2014). Further, pool-seq can 

be combined with targeted capture approaches to both reduce cost 
and sample specific areas of the genome that are a priori considered 
functionally relevant (e.g., Rellstab et al., 2019).

The pooling of biological samples has been commonplace for 
decades (Dorfman, 1943), owing to the cost-efficiency of analysing 
multiple samples together. Such methods have expanded to other 
purposes, such as the estimation of allele frequencies of nucleotide 
polymorphisms in next-generation sequence data (i.e., pool-seq). Pool-
seq approaches use read counts across pooled individuals to estimate 
allele frequencies, generally for a single population, with individuals 
pooled with equimolar contributions. A number of studies have empir-
ically evaluated the congruence between individual and pool-seq allele 
frequency estimates across various taxa (e.g., Fracassetti et al., 2015; 
Futschik & Schlötterer, 2010; Rellstab et al., 2013, 2019). Such studies 
have led to broad agreement on the accuracy of pool-seq when follow-
ing best practices for the organism and study design. Of exceptional 
significance for the estimation of allele frequency from read count data 
is the proper alignment of reads to the reference. Misalignments, which 
may be particularly important for exome capture data from members 
of Pinaceae, can be due to reads from paralog gene copies in the data 
mapping to the incorrect copy in the reference, or from paralog copies 
being collapsed into a single sequence in the reference assembly where 
copies in the data map to this single sequence. Such misalignments can 
be exacerbated by assembly errors in the reference, particularly for or-
ganisms with repetitive genomes. These misalignments will skew allele 
ratios and bias allele frequency estimates downstream. In particular for 
non-model species with histories of whole genome duplication or gene 
family expansion, steps must be taken to categorize misalignments so 
that there are not substantial allele frequency biases in downstream 
data sets. Indeed, methods by which to detect such loci have received 
considerable attention (see Table 1 in McKinney et al., 2017). Among 
these, one such method uses haploid samples and the presence of 
heterozygote genotype calls to identify potential paralogous artefacts 
(Limborg et al., 2016), since haploid samples can only be monoallelic. 
Another uses read ratio depths among heterozygote individuals from 
individual sequence data to identify deviations expected from dupli-
cated loci (McKinney et al., 2016). While multicellular haploid tissue 
is not present in vertebrates, such tissue is readily accessible from ga-
metophytic life stages in many plant species, and in particular from the 

Data set
Ploidy per sample 
(number of samples)

SNP 
Caller Purpose

indSeq 2 (20) GATK4 Validate poolSeq allele frequency 
estimates; calculate read ratio 
statistics to validate candidate paralog 
misalignments

poolSeq 2 (20) VarScan Compare with indSeq SNP set to 
determine filtering strategy

megaSeq 1 (1) VarScan Identify heterozygous sites as candidates 
for false SNPs due to misalignment of 
diverged/duplicated paralogs

Note: aNote that we use camelCase to denote our data sets, and reserve hyphens (e.g., pool-seq) to 
denote methodologies.

TA B L E  1  Description of datasets 
used to call SNPs for both Douglas-fir 
and jack pine. indSeqa and poolSeq data 
sets for a given species share the same 
individuals from a single population. The 
megaSeq data set consists of haploid 
megagametophyte tissue from a single 
individual not included in the indSeq or 
poolSeq data sets
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maternally-derived megagametophyte tissue that can be excised from 
the seeds of conifer species.

Here we harness the multicellular haploid megagametophyte of 
conifers to aid in mapping and analysing pool-seq data from diploid 
individuals. We use this pooled exome capture approach for two co-
nifers: coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) 
Franco, Pinaceae) and jack pine (Pinus banksiana Lamb., Pinaceae), to 
evaluate the utility of pool-seq approaches in these systems. We use 
sequence data from haploid samples to identify misalignments from 
paralogous sites, and use individual sequence data to validate both 
the allele frequency estimates of the same individuals in pools and 
the candidate regions affected by paralog misalignments detected 
with haploid data (Table 1). We then use this information to quan-
tify their effects on the congruence between individual and pool-
seq allele frequency estimates. Together, these data sets provide a 
path forward for filtering pool-seq data of this kind, particularly for 
studies of non-model organisms using a diverged, and potentially 
fragmented, reference genome. Our methods further highlight a 
cost-effective means to empirically isolate potentially misaligned 
paralogs in species with accessible haploid tissue, which to date has 
not been widely used for such purposes in conifers.

2  |  MATERIAL S AND METHODS

2.1  |  Focal species and population sampling

Coastal Douglas-fir (Pseudotsuga menziesii var. menziesii) is a temper-
ate species occupying primarily coastal habitat along the west coast 
of North America from California to British Columbia as well as inland 
habitat in the Cascade and Klamath ranges of Washington, Oregon, and 
California. It is important to the ecology and economical value of many 
of these forests. Jack pine (Pinus banksiana) has a vast distribution across 
the Canadian boreal forest, stretching from Atlantic Canada into west-
ern Alberta and Northwest Territories, and is important to the ecology 
of many of these systems and to the forest industry in some regions.

For both Douglas-fir and jack pine, we sampled 20 individuals for 
use in individual and pooled sequencing sets from operational refor-
estation seedlots created from open-pollinated seeds from tens or 
hundreds of seed parents from a single provenance (see Appendix S1: 
Section 1.1). We used a single jack pine seed to extract megagame-
tophyte haploid tissue. For Douglas-fir haploid data, we downloaded 
paired-end fastq files from a previously sequenced Douglas-fir me-
gagametophyte taken from a single individual (NCBI SRA accession 
SAMN0333061, Neale, McGuire, et al., 2017) to match our sequenc-
ing effort for jack pine haploid tissue (Appendix S1: Section 1.2).

2.2  |  Exome capture probe design

The capture probes were designed based on the genes identified 
using RNA sequencing (RNA-seq) data for Douglas-fir and jack pine. 
De novo transcriptome assembly was performed for each species 

using RNA-seq reads. For jack pine, RNA-seq reads were sequenced 
from a frozen sample of young needles taken from a recently flushed 
bud of a single tree grown in a growth chamber with a simulated cli-
mate corresponding to a mean annual temperature of 6℃ (Appendix 
S1: Section 1.3). For Douglas-fir, RNA-seq reads were obtained from 
two sources: one source was the read sets deposited in NCBI SRA, 
including SRX1851630 (Little et al., 2016), SRX1286745 (Hess et al., 
2016), SRX1341335 (Cronn et al., 2017a), and SRX136240 (Cronn 
et al., 2017b). The other source was the reads sequenced from two 
needle samples infected by the fungal pathogen Phaeocryptopus 
gaeumannii, which causes Swiss needle cast disease in Douglas-fir 
(Appendix S1: Section 1.3).

The raw reads were processed by the software fastx toolkit 
(v0.0.13, http://hanno​nlab.cshl.edu/fastx_toolkit), including clipping 
the adaptors (-l 25), filtering the artefacts, and keeping the reads 
with a minimum quality score of 20. The filtered reads were used to 
perform de novo transcriptome assembly using the software trinity 
v2.4.0 (--bowtie2, Grabherr et al., 2011). Among the assembled 
transcripts, only the longest isoforms with a length of at least 300 bp 
for each gene were retained, which were then used as reference to 
align the reads using the software rsem (v1.3.0 Li & Dewey, 2011). 
From the expression quantification of transcripts, transcripts with 
aligned reads and transcript per million (TPM) ≥1 were retained. 
The completeness of the filtered transcripts was examined using 
the 1375 orthologues in the Benchmarking Universal Single Copy 
Orthologues (busco: v3.0), set of embryophyta_odb10 (--evalue 
1e-10, Simão et al., 2015).

To avoid probes spanning exon-intron boundaries, exons were 
targeted to design probes. Using the software gmap (v2017-06-20, 
Wu & Watanabe, 2005), the filtered transcripts from Douglas-fir 
were aligned to the convarietal reference (P. menziesii var. menziesii 
(coastal Douglas-fir; v1.0, Neale, McGuire,  et al., 2017). The jack 
pine transcripts were aligned to the congeneric loblolly pine (Pinus 
taeda) reference genome (v.1.01, Wegrzyn et al., 2014) as there is no 
available jack pine reference genome, and both loblolly and jack pine 
belong to Pinus subgenus Pinus, the hard pines. Exon sequences with 
a length of at least 100 bp were submitted to Roche NimbleGen for 
Custom SeqCap EZ probe design.

To evaluate the capture efficiency of the probes, the captured 
sequences were aligned to reference genomes and numbers of reads 
on-target, near-target (≤500 bp from target regions), and off-target 
regions were counted using “intersect” function in the software bed-
tools v2.28.0 (-f 0.75, Quinlan & Hall, 2010). The depth of captured 
sequences was counted using “depth” function in the software sam-
tools v1.3 (-q 30 -Q 20, Li et al., 2009). The cumulative depth was 
calculated and plotted using r (R Core Team, 2018).

2.3  |  DNA extraction, library 
preparation, and sequencing

In total, three data sets were created for each of the two species 
(Table 1)—note that we use camelCase (e.g., poolSeq) to denote our 

http://hannonlab.cshl.edu/fastx_toolkit
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data sets, and reserve hyphens (e.g., pool-seq) to denote methodolo-
gies. These data sets included individual sequencing of 20 diploid 
individuals from a single population (hereafter indSeq), the same 
individuals pooled together with equimolar contributions prior to 
sequencing (hereafter poolSeq), and haploid megagametophyte tis-
sue sequenced from a single individual (hereafter megaSeq). We use 
the indSeq data set to validate allele frequency estimates from our 
poolSeq data, and the megaSeq data to probe our data for apparent 
heterozygote SNPs (i.e., potential false-positive SNPs) caused by the 
misalignment of diverged paralogs that could affect our allele fre-
quency estimates (Table 1; see also Section 2.6).

For each data set we extracted DNA from either diploid nee-
dle tissue or haploid megagametophyte tissue (see Appendix S1: 
Section 1.3). From these extractions, approximately 100 ng of DNA 
from each individual or pooled DNA sample was used for a barcoded 
(Kapa, Dual-Indexed Adapter Kit) library with an approximately 
350-bp mean insert size. SeqCap library preparation was performed 
using custom NimbleGen SeqCap probes (described above in 2.1) 
according to the NimbleGen SeqCap EZ HyperCap Workflow User's 
Guide Ver 2 (Roche Sequencing Solutions, Inc.). Following capture, 
each library was sequenced in a 150  bp paired-end format on an 
Illumina HiSeq4000 instrument at the Centre d'expertise et de ser-
vices Génome Québec, Montreal, Canada.

2.4  |  Bioinformatic SNP calling pipelines

Raw paired-end sequence reads from all data sets were trimmed 
with fastp (v0.19.5, Chen et al., 2018) by trimming reads that did not 
pass quality filters of <20 Ns, a minimum mean Phred quality score 
of 30 for sliding windows of five base pairs (bp), and a final length 
of 75 bp with no more than 20 bp called as N (-n 20 -M 30 -W 5 
-l 75 -g -3). Trimmed reads were mapped with bwa mem (v0.7.17, 
Li & Durbin, 2009) to reference assemblies; we mapped jack pine 
to the loblolly reference (v2.01, Wegrzyn et al., 2014) and Douglas-
fir to the convarietal reference (v1.0, Neale, McGuire, at al., 2017). 
The resulting .sam files were converted to binary with samtools v1.9 
(view, sort, index; Li et al., 2009) and subsequently filtered for 
proper pairs and a mapping quality score of 20 or greater (view -q 
20 -f 0x0002 -F 0x0004). Using picardtools v2.18.9 (http://pic-
ard.sourc​eforge.net), read groups were added and duplicates subse-
quently removed from filtered bam files.

We then called SNPs using the Genome Analysis Toolkit (gatk 
v4.1.0.0; McKenna et al., 2010) for indSeq data, and VarScan (v2.4.3; 
Koboldt et al., 2012) for both poolSeq and megaSeq data sets (Table 1) 
for comparisons since data sets that stem from a larger project are 
all poolSeq (and we will therefore only be using VarScan). For SNPs 
called with GATK4, we used HaplotypeCaller (--genotyping-mode 
DISCOVERY -ERC GVCF) and GenotypeGVCFs. We then filtered 
data with SelectVariants (--select-type-to-include SNP), 
VariantFiltration (--filter-expression “QD <2.0 || FS >60.0 
|| MQ <40 || MQRankSum < -12.5”), and finally with vcftools 
v0.1.14 (--maf 0.00 –minGQ 20 –max-missing 0.75; Danecek 

et al., 2011). BQSR was not carried out in our analysis due to the lack 
of a high-quality reference set of SNPs for our species. Note that 
no further filtering (e.g., for depth) was done for this initial baseline 
filtering strategy (further filtering is described in 3.4).

Before calling SNPs with VarScan, we first realigned indels 
with gatk 3.8 (McKenna et al., 2010)—RealignerTargetCreator 
then IndelRealigner—and then passed a samtools mpileup ob-
ject directly to VarScan::mpileup2cns with a minimum coverage 
set to 8, p-value < .05, minimum variant frequency of 0.00, ignor-
ing variants with >90% support on one strand, a minimum average 
genotype quality of 20, and a minimum allele frequency of 0.80 to 
call a site homozygous (--min-coverage 8 --p-value .05 

--min-var-freq 0.00 --strand-filter 1 --min-avg-qual 

20 --min-freq-for-hom 0.80). Output was then filtered with a 
custom python (v3.7, www.python.org) script to filter out indels, 
keep only biallelic loci, and to ensure a genotype quality score >20. 
From the megaSeq data, we then isolated heterozygous SNP calls 
(hereafter megaSNPs) that represent errors in genotype calling 
given the haploid nature of the tissue sequenced—to keep only het-
erozygous calls, we ignored any biallelic cases where only the non-
reference allele was called. Such apparent SNPs are probably false 
due to misalignments. We have published our complete SNP calling 
pipelines in publicly available repositories (Lind, 2021a; Lind, 2021b).

2.5  |  Validation of megaSNPs as indicators of 
paralogy artefacts

To check whether heterozygous sites (megaSNPs) called from 
VarScan megaSeq are following expectations of patterns from 
paralogs, we investigated read ratio deviations from a binomial 
expectation for these VarScan megaSNP sites at the same sites 
in our GATK indSeq data using heterozygous diploid individuals 
(sensu McKinney et al., 2017; see also Rellstab et al., 2019). For 
true positive SNPs, heterozygous diploid individuals should have, 
on average, an even ratio of reference (REF) and alternative (ALT) 
read counts. If the SNP is due to a bioinformatic error arising from 
the misalignment of paralogs (i.e., a false positive SNP), the read 
ratio will differ significantly from this expectation when there is a 
SNP at a given position in only one paralog copy (McKinney et al., 
2017). Similarly, if there is a fixed difference at a given position be-
tween two copies, then all individuals in a population will present 
as heterozygotes with balanced read counts for REF and ALT at that 
site. If we are sequencing (and then post-hoc correctly identifying) 
paralogs in our poolSeq data using megaSNP sites, misalignment 
of either duplicated or diverged paralogs will cause read ratio de-
viations in these loci (and affect allele frequency estimates from 
poolSeq, and downstream analyses), which we should be able to 
detect in our indSeq data. As described by McKinney et al. (2017), 
subsequent to whole-genome duplication during the rediploidiza-
tion phase as homeologous chromosomes diverge, tetrasomically 
inherited sets of paralogs (duplicates) organize into distinct disomic 
loci (diverged duplicates).

http://picard.sourceforge.net
http://picard.sourceforge.net
http://www.python.org
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We calculated these read ratio statistics for sites within the in-
tersection of (1) megaSNPs, indSeq, and poolSeq SNPs, and (2) pool-
Seq and indSeq SNPs alone; hereafter intersections I1 and I2. The 
purpose of (1) is to see how paralogs could affect our poolSeq data 
(leveraging information in our indSeq data to do so), and of (2) is to 
visualize the potential influence of paralogs in our data independent 
of sites identified as megaSNP sites, as well as to compare poolSeq 
allele frequency estimates with those estimated from the indSeq 
data set. For these sites, we queried the indSeq data to record the 
frequency of heterozygous individuals (H), the allele depth ratio 
(

D =
REF depth

total depth of coverage

)

, and the deviation of allele depth from ex-

pectation 
(

REF depth − 0.5 ∗ total depth
)

 standardized by properties 
of a binomial distribution with n = depth of coverage, and p = .5 (i.e., 
the z-score for the allele ratio deviation) following McKinney et al. 
(2016) and McKinney et al. (2017) with modifications to correctly 
account for missing data when calculating the proportion of hetero-
zygotes at a particular locus. We compare our results with simula-
tions carried out by McKinney et al. (2017). We used custom python 
code to replicate the methods of McKinney et al. (2016) with modi-
fications, which is available on GitHub (003_testdata_validate_me-
gaSNPs.ipynb, Lind, 2021c).

2.6  |  Comparison of sequencing approaches

To study the utility of our pooled exome capture approach, we 
compared estimates of allele frequency from our indSeq data with 
estimates from our poolSeq data. To do so, we took the baseline-
filtered SNPs from poolSeq and indSeq (see Section 2.4) and identi-
fied common SNPs (i.e., intersection I2). To quantify and visualize 
congruence between allele frequencies estimated with these meth-
ods, we report Pearson's correlation coefficient, plot histograms to 
visualize the congruence across the minor allele frequency (MAF) 
spectrum, and further plot 2D histograms to visualize congruence 
of allele frequency estimates. To visualize how filtering poolSeq 
SNPs affects the congruence between indSeq and poolSeq allele 
frequency estimates, we plot the allele frequency differences be-
tween methods (hereafter AFdiff, calculated as the difference in al-
lele frequency methods of poolSeq and indSeq: poolSeqAF − indSeqAF) 
against poolSeq MAF, poolSeq depth of coverage, H, and the z-score 
of read ratio deviation (where H and z were calculated using indSeq 
data). The code for this section can be found on GitHub (002_test-
data_compare_AFs.ipynb, Lind, 2021c).

3  |  RESULTS

3.1  |  Sequencing, mapping, and probe efficiency

Sequencing of the prepared libraries resulted in high quality data 
sets, with the average base quality above 30 before trimming hav-
ing a mean of 86.99% across data sets and species, and a mean of 
89.43% after trimming (Table S1). The number of sequenced reads 

varied across data sets but was similar within data sets (on average 
405 million reads for indSeq, 130 million reads for poolSeq, 202 mil-
lion reads for megaSeq). Mapping rates generally reflected the phy-
logenetic relationship between the sequenced individuals and the 
reference used, where rates were high for all coastal Douglas-fir 
data sets mapping to the convarietal reference (mean 85.11%) with 
lower rates for jack pine data sets mapping to the congeneric Pinus 
taeda reference (mean 35.36%; Table S1).

After filtering, the jack pine transcriptome has a size of 53 Mbp 
and contains 31,282 transcripts ranging from 300 to 16,688  bp 
with a mean length of 1695 bp; the Douglas-fir transcriptome has 
a size of 51 Mbp and contains 39,616 transcripts ranging from 300 
to 15,302 bp with a mean length of 1310 bp. The BUSCO analy-
sis to assess completeness of transcripts used in exome-capture 
probe design resulted in recovery of 87% of the 1375 BUSCOs in 
Douglas-fir transcripts, including 70% complete and single-copy 
BUSCOs, 2% complete and duplicated BUSCOs, and 15% frag-
mented BUSCOs. For jack pine transcripts, 93% of the BUSCOs 
were recovered, including 85% complete and single-copy BUSCOs, 
2% complete and duplicated BUSCOs, and 6% fragmented BUSCOs. 
We aligned the transcripts to reference genomes to select exons 
and design probes. The final capture probe size are 41 Mbp for jack 
pine (design name: 180215_jackpine_v1_EZ_HX1) and 39 Mbp for 
Douglas-fir (design name: 80215_DOUGFIR_V1_EZ), correspond-
ing to 32,208 genes in jack pine and 37,787 genes in Douglas-fir.

We counted the number of captured reads on-target, near-target 
(≤500 bp from target), and off-target regions for indSeq and poolSeq 
samples. As the DNA of each sample was sheared to approximately 
350 bp, the 500 bp up- or downstream of target regions (near-target) 
can be directly captured by probes, whereas reads arise from out-
side the 500 bp margin are most often the unintended regions of the 
genome (off-target). The poolSeq samples had more reads than the 
indSeq samples and off-target regions had the most aligned reads 
(Figure 1). Reliable SNP calling is dependent on sequencing depth, so 
we calculated the cumulative numbers of bases on different regions. 
For Douglas-fir poolSeq, we obtained over 40 million bases in on-
target regions with at least 20× sequencing depth (Figure 2a). For 
jack pine poolSeq, we obtained over 30 million bases in on-target 
regions with at least 20× sequencing depth (Figure 2b). Sequencing 
depths in near- and off-target regions were dramatically diminished 
compared to the on-target regions.

3.2  |  SNP calling

The total number of SNPs after baseline filtering varied across data 
sets and species (Table 2). Douglas-fir generally had a higher number 
of SNPs called than jack pine, except for poolSeq data. However, 
there were more jack pine megaSNPs intersecting with poolSeq 
(25,500 SNPs) and indSeq (7408 SNPs) than for Douglas-fir data 
sets (825 SNPs and 293 SNPs, respectively). Given that megaSNPs 
are cases where a heterozygote call was made from a haploid sam-
ple and are therefore indicators of bioinformatic-paralogy errors, 
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this suggests that this error rate is much higher in jack pine. In total, 
several hundred thousand SNPs were found in the intersection of 
poolSeq and indSeq for Douglas-fir (636,279 SNPs) and jack pine 
(255,706 SNPs; Table 2).

3.3  |  Validation of megaSNPs as indicators of 
paralogy artefacts

Upon inspection of our intersecting sets, patterns expected for 
duplicated but not diverged duplicate paralogs (McKinney et al., 

2017) were apparent in both intersection I1 (megaSNPs, indSeq and 
poolSeq SNPs) and intersection I2 (indSeq and poolSeq SNPs), and 
megaSNPs did not generally typify patterns expected from nondu-
plicated (singleton) genes. For instance, SNPs in duplicated genes 
should be most distinct from SNPs in singletons when the derived 
allele is at intermediate frequency, and diverged duplicates are most 
distinct from singletons when the derived allele is fixed (Figure 3a). 
Sites consistent with expectations for singletons and duplicates 
(but not diverged duplicates) were apparent from intersection of 
poolSeq and indSeq sites (i.e., intersection I2; Figure 3d,e), while the 
indSeq sites intersecting with candidate paralog sites (megaSNPs, 

F I G U R E  1  Numbers of captured reads from Douglas-fir (a) and jack pine (b) that mapped on target, near-target (≤500 bp from target) 
and off-target regions. On the x-axis, from left to right, the first 20 bars represent indSeq samples, and the last bars represents the poolSeq 
samples
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i.e., intersection I1) displayed elevated levels of heterozygosity 
as expected from paralogs (Figure 3b,c). Indeed, patterns of de-
viated allele ratios were also seen in our data (Figures S1d,e and 
S2d,e), where the vast majority of megaSNP sites were consider-
ably different than the 1:1 read ratio expected of heterozygous 
diploids (Figures S1b,c and S2b,c) as would otherwise be expected 
for singletons (Figures S1a and S2a). Lastly, when considering the 
standardized allele ratio deviation (z-score) we recover the same 
patterns of point clouds classified by McKinney et al. (2017). We 
observe a dense set of SNPs around the z-score of 0.0 for H val-
ues of 0.0–0.6 (Figure 4d,e) expected from singleton sites (blue in 
Figure 4a), another set of SNPs with elevated H and/or absolute 
z-score (Figure 4b,c) that is expected from duplicate loci (red in 
Figure 4a), and a third set of SNPs with H > 0.9 (Figure 4b,c) that is 
expected for diverged duplicates (green in Figure 4a; compare to 
Figures 5 and 8 in McKinney et al., 2017).

3.4  |  Comparisons of sequencing approaches

Loci within the intersection of baseline-filtered indSeq and poolSeq 
data sets (i.e., intersection I2) showed a strong positive association 
between allele frequencies estimated from indSeq and poolSeq 
(Pearson's r =  .9760, p =  .0000 for jack pine; Pearson's r =  .9483, 
p  =  .0000 for Douglas-fir; Figure 5a,b). Comparison of the MAF 
spectrum from these estimates also revealed good agreement by 
frequency bins (Figure S3). After exploring various filtering strate-
gies (see Appendix S1: Section 1.4, Figures S4–S7), we applied filters 
that (1) showed a positive effect on congruence between allele fre-
quency estimates in our data (removing megaSNP sites and indSeq 
sites with H > 0.6), (2) that resulted in removing sites with extreme 
values of AFdiff (removing indSeq sites with z-score > 10; filtering 
H > 0.6 alone also had this effect), and (3) that gave us the best es-
timate of indSeq allele frequency—our standard of comparison—and 
thus the best impression of the performance of our poolSeq ap-
proach (removing indSeq sites with >20% missing data). The correla-
tion of allele frequencies estimated from indSeq and poolSeq data 
increased after this filtering (Pearson's r = .9876, p = .0000 for jack 
pine; Pearson's r = .9703, p = .0000 for Douglas-fir) with relatively 

fewer sites with extreme differences in the estimates from each 
method (see top-left and bottom-right corners of 2D histograms, 
Figure 5a–d). While some differences remain in the estimates of the 
minor allele frequency spectrum (Figure 5e,f), these two methods 
largely agree, suggesting a robust poolSeq data set for further bio-
logical hypothesis testing.

4  |  DISCUSSION

The pooling of individuals to obtain next-generation sequence data 
is often motivated by cost savings at the expense of losing (phased) 
haplotype information, direct estimates of linkage disequilibrium, 
and rare alleles. The validation of pool-seq approaches, however, 
commonly involves model organisms with complete or near-
complete chromosome-scale reference genomes (e.g., see Table 1 
in Rellstab et al., 2013). Indeed, there are few studies that explore 
this congruence in non-model organisms such as conifers with large 
and highly fragmented reference genomes, and histories of whole 
genome duplications, repetitive elements, and gene family evolu-
tion (which could exacerbate misalignments through assembly er-
rors in the reference). Here we show that combining exome capture 
and pool-seq can be an efficient method for quantifying genetic 
polymorphisms in two such species, and that heterozygous SNPs 
from haploid data (megaSNPs) consistently uncover sites with pat-
terns expected from the misalignment of paralogs (Figures 3 and 
4, S1 and S2). Further, we appear to uncover more false-positive 
variation in jack pine than in Douglas-fir (Table 2), likely due to the 
relative divergence between the species sequenced and reference 
genome used. Yet, concordance of allele frequency estimates from 
baseline-filtered indSeq and poolSeq data sets (i.e., intersection I2) 
was strong in both species (r  > .948). Despite this high correlation, 
there were many loci that had extreme differences in the estimated 
minor allele frequency. The correlation improved further after 
these sites were removed with increased filtering, including the fil-
tering of potential false-positive sites (r  > .970, Figure 5), highlight-
ing the utility of this method across taxa with differing demographic 
histories and genomic resources. These values are well within the 
range expected from previous pool-seq studies (Table 1 in Rellstab 

Data set Species
Baseline-filtered 
SNPs

Baseline Intersecting SNPs

poolSeq megaSeqa 

indSeq DF 1,526,554 636,279 293

JP 377,080 255,706 7408

poolSeq DF 1,601,285 — —

JP 3,686,528

megaSeqa  DF 398,774 825 —

JP 32,751 25,500

Note: The intersection across all three baseline-filtered data sets were 7006 SNPs for jack pine (JP) 
and 248 SNPs for Douglas-fir (DF).
aThese numbers reflect only heterozygous SNPs (i.e., megaSNPs).

TA B L E  2  Output of SNPs from the 
conifer data sets
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et al., 2013), and in some cases perform better than these model 
organisms.

Despite their role in adaptation and speciation (Allendorf 
et al., 2015; Lynch & Conery, 2000), the exclusion of potentially 

paralogous sites from next generation sequencing data sets is 
commonplace due to the difficulty in differentiating genetic poly-
morphisms from differences present among copies from single or 
diverged gene families (Dou et al., 2012; Dufresne et al., 2014; 

F I G U R E  3  The proportion of heterozygotes, H, and the alternative (ALT) allele frequency calculated from indSeq data distinguish paralog 
misalignments according to expectations (a, Figure 1 from McKinney et al., 2017—q is the frequency of the ALT allele), and empirically for 
Douglas-fir (b, d) and jack pine (c, e). (b, c) Empirical distribution of megaSNP sites (candidate paralog sites identified as heterozygote calls 
from haploid tissue) calculated using indSeq data for those sites that were also called in poolSeq data (i.e., intersection I1). (d, e) Empirical 
distribution of intersection I2 (indSeq and poolSeq intersection) calculated using indSeq data. Note colour scale changes for each figure to 
accentuate patterns in the data. Frequency of ALT was binned for visualization purposes. Code to create these figures is available on GitHub 
(003_testdata_validate_megaSNPs.ipynb, Lind 2021c)
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Hohenlohe et al., 2012). There are several methods by which to 
detect such problematic sites, such as filtering by coverage (Dou 
et al., 2012), disomic models such as Hardy-Weinberg proportions 
(Catchen et al., 2013; Chen et al., 2014; Hohenlohe et al., 2011), 
or gene annotation, though there are several shortcomings (see 
descriptions of these shortcomings in Table 1 of McKinney et al., 

2017). When individual sequencing data is available for the same 
individuals or populations, such information can be used to isolate 
potentially paralogous sites from pool-seq exome capture studies 
(e.g., Rellstab et al., 2019; Shu & Moran, 2020). However, a po-
tentially cost-saving alternative would be to sequence the hap-
loid tissue of a single individual (if available). Even so, there may 

F I G U R E  4  Standard deviation of read ratio (z-score) and the percentage of heterozygotes (H) calculated from indSeq data distinguish 
paralog misalignments according to expectations (a, figure from McKinney et al., 2017), and empirically for Douglas-fir (b, d) and jack pine (c, 
e). (b, c) Empirical distribution of megaSNP sites (candidate paralog  sites identified as heterozygote calls from haploid tissue) calculated using 
indSeq data for those sites that were also called in poolSeq data (i.e., intersection I1). (d, e) Empirical distribution of intersection I2 (indSeq 
and poolSeq intersection) calculated using indSeq data. Some of the distribution found in the grey box in 4a will be found in the upper white 
panel because we used the reference allele instead of randomly choosing the allele for each locus. Note colour scale changes for each figure 
to accentuate patterns in the data. Code to create these figures is available on GitHub (003_testdata_validate_megaSNPs.ipynb, Lind 2021c)
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F I G U R E  5  Congruence between indSeq and poolSeq (x- and y-axes, respectively a–d) minor allele frequency (MAF) estimates from 
Douglas-fir (a, c, e) and jack pine (b, d, f). (a, b) Two-dimensional (2D) histogram of baseline-filtered intersection between indSeq and poolSeq 
(i.e., intersection I2). (c, d) 2D histogram for SNPs after filtering intersection I2 for megaSNP sites,H > 0.6, abs(z-score) > 10, and indSeq 
sites with >20% missing data. (e, f) Congruence of minor allele frequency spectra from SNPs in (c, d). Colour scale is standardized to visualize 
differences in density between filtering steps. Minor allele frequency was binned for visualization purposes. Code to create these figures is 
available on GitHub (002_testdata_compare_AFs.ipynb, Lind 2021c)
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be reduced power to detect recently diverged paralogs (i.e., when 
derived alleles are at low frequency and therefore not readily de-
tected in a single individual), and an exploration varying the num-
ber and source population of haploid tissue for future studies could 
be used to more precisely quantify the effect and consistency of 
such data across sample sizes. As such, heterozygous SNPs called 
from our haploid data (megaSNPs) allowed us to identify variation 
from putative paralogous misalignments that infrequently dis-
played patterns expected of singleton gene copies. Indeed, high 
quality heterozygous calls from haploid sequencing are a reliable 
method for identifying misalignments due the known monoallelic 
state of the sequenced site (Limborg et al., 2016). While metrics 
from sequences of individuals are reliable (McKinney et al., 2017), 
they can falsely flag potentially paralogous sites as SNPs due to the 
stochastic nature of the sequencing process and may result in the 
exclusion of biologically meaningful information.

The accurate estimation of allele frequencies from pool-seq 
data will often depend on adequate depth of coverage and individ-
uals, as well as thoughtful consideration of wetlab procedures and 
aspects of genomic resources and organismal biology. As pointed 
out by Rellstab et al. (2019), use of exome capture in many Pinaceae 
species will require particular care to exclude potentially paralo-
gous sites from downstream analysis to avoid biased results. This 
is particularly true for pool-seq data sets relying on read counts 
for allele frequency estimation or population genetic inferences 
such as genotype-environment associations. While individually se-
quenced data sets may be one path forward to identifying such 
problematic sites (as in Rellstab et al., 2019; Shu & Moran, 2020), 
the sequencing of sufficient quantities of DNA from haploid ga-
metophyte tissue available for some plants, including conifers, 
seedless vascular plants, and bryophytes, offers an alternate path 
forward to balance sequencing cost and data reliability, particu-
larly for organism using diverged and or highly fragmented refer-
ence genomes.
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