
RESEARCH ARTICLE

An empirical evaluation of sampling methods

for the classification of imbalanced data

Misuk Kim, Kyu-Baek HwangID*

Department of Computer Science and Engineering, Graduate School, Soongsil University, Seoul, Korea

* kbhwang@ssu.ac.kr

Abstract

In numerous classification problems, class distribution is not balanced. For example, posi-

tive examples are rare in the fields of disease diagnosis and credit card fraud detection.

General machine learning methods are known to be suboptimal for such imbalanced classi-

fication. One popular solution is to balance training data by oversampling the underrepre-

sented (or undersampling the overrepresented) classes before applying machine learning

algorithms. However, despite its popularity, the effectiveness of sampling has not been rig-

orously and comprehensively evaluated. This study assessed combinations of seven sam-

pling methods and eight machine learning classifiers (56 varieties in total) using 31 datasets

with varying degrees of imbalance. We used the areas under the precision-recall curve

(AUPRC) and receiver operating characteristics curve (AUROC) as the performance mea-

sures. The AUPRC is known to be more informative for imbalanced classification than the

AUROC. We observed that sampling significantly changed the performance of the classifier

(paired t-tests P < 0.05) only for few cases (12.2% in AUPRC and 10.0% in AUROC). Sur-

prisingly, sampling was more likely to reduce rather than improve the classification perfor-

mance. Moreover, the adverse effects of sampling were more pronounced in AUPRC than

in AUROC. Among the sampling methods, undersampling performed worse than others.

Also, sampling was more effective for improving linear classifiers. Most importantly, we did

not need sampling to obtain the optimal classifier for most of the 31 datasets. In addition, we

found two interesting examples in which sampling significantly reduced AUPRC while signif-

icantly improving AUROC (paired t-tests P < 0.05). In conclusion, the applicability of sam-

pling is limited because it could be ineffective or even harmful. Furthermore, the choice of

the performance measure is crucial for decision making. Our results provide valuable

insights into the effect and characteristics of sampling for imbalanced classification.

Introduction

In classification problems, an imbalanced dataset is a dataset in which the number of data

examples of some classes is much smaller than that of other classes. Imbalanced datasets are

common in many fields such as chemical and biomedical engineering, financial management,

and information technology [1]. Typical imbalanced classification problems include fraud

detection [2], fault diagnosis [3, 4], anomaly detection [5, 6], disease diagnosis [7], e-mail
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foldering [8], face recognition [9], and oil spill detection [10]. Most machine learning methods

assume equal misclassification costs between the majority and minority class examples. There-

fore, they are based on the assumption that the class distribution is balanced. Thus, general

machine learning algorithms show suboptimal performance on imbalanced datasets, resulting

in a classifier that is biased toward the majority class [10–14].

There are two categories of imbalanced data: intrinsic and extrinsic [15]. Intrinsic imbal-

anced data are generated because of the nature of problem domains. Examples of such

domains include credit card fraud detection [2] and disease diagnosis [14]. In contrast, an

extrinsic imbalance is caused by other factors such as biased sampling processes. For example,

even if data are obtained from a balanced continuous stream, data transfer could be inter-

rupted for a specific period, resulting in an imbalanced dataset [15]. We focused on the classifi-

cation of intrinsic imbalanced data where the true class distribution is imbalanced.

Three main approaches can be employed to tackle the imbalanced classification problem.

The first is the algorithm level approach, which modifies or creates machine learning algo-

rithms for imbalanced classification [16–22]. It requires an in-depth knowledge of both algo-

rithms and application domains [14, 23]. Second, the data level approach balances the

imbalanced class distribution by sampling before applying machine learning algorithms.

Examples of data level approaches include oversampling to increase data in the minority clas-

ses and undersampling to reduce data in the majority classes [13, 24, 25]. Finally, the cost-sen-

sitive learning-based approach addresses the imbalanced classification problem by assigning

different misclassification costs to each class [26, 27]. In this approach, the most important

and challenging process is defining the misclassification costs of different classes whose true

values are unknown [28].

This work focused on the data level approach, which is the easiest and most popular of the

three. This approach is easy to use because machine learning algorithms need not be created

or modified [23]. Furthermore, it can be used with any machine learning algorithm. Because

of its simplicity and applicability, data sampling has been more widely employed than the

other two approaches [1, 14, 23]. Despite its popularity however, its effectiveness has not been

rigorously validated. Rigorous validations are required because sampling inevitably distorts

the class distribution of training data, increasing the discrepancy between the training data bal-

anced by sampling and inherently imbalanced test data. This increased discrepancy could

reduce the test performance of a learned classifier. In addition, undersampling could increase

the variance of a learned model due to the reduced training data, resulting in reduced test per-

formance. Therefore, a tradeoff exists between these adverse effects of sampling and their posi-

tive effect in reducing bias toward the majority class.

Numerous studies have suggested that data balancing by sampling helps improve the classi-

fiers’ performance [12, 24, 25, 29–38]. More than half of these studies [24, 25, 29–33] mainly

used decision tree classifiers such as C4.5 and C5.0. Some studies used the naïve Bayes classifier

[25] and the k nearest neighbor method [25, 33]. Other studies evaluated the sampling method

using linear discriminant analysis (LDA) [35, 36], random forests (RFs) [37], and convolu-

tional neural networks [34]. Only a few studies have compared several classifiers [12, 38]. Jap-

kowicz and Stephen compared C5.0, multilayer perceptrons (MLPs), and support vector

machines (SVMs), showing that MLPs and SVMs were less affected by sampling than C5.0

[12]. Khushi et al. compared SVMs, logistic regression, and RFs to analyze the effect of sam-

pling for imbalanced classification [38]. They recommended oversampling combined with RFs

for the prediction of lung cancer incidence.

One limitation of previous studies is that they did not comprehensively analyze the effect of

sampling using a wide range of popular classifiers including regularized logistic regression and

boosting. Another limitation is that most previous studies used two famous performance
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measures for classification: accuracy and area under the receiver operating characteristics

curve (AUROC) [1, 12, 24, 25, 29–31, 34–38]. However, several studies [39–41] suggested that

the area under the precision-recall curve (AUPRC) is more informative for evaluating the

results of imbalanced classification. To the best of our knowledge, no study has validated the

effectiveness of sampling using AUPRC.

Unlike previous studies, our work comprehensively analyzed the effect of seven widely-

used sampling methods combined with eight machine learning methods—56 combinations in

total—on imbalanced classification using AUPRC and AUROC as the performance indicators.

We empirically analyzed the impact of sampling using 31 real-world imbalanced datasets. In

this work, we sought to answer the following questions. First, to what extent is the sampling

method effective? More precisely, what is the chance of a sampling method to improve the per-

formance of a classifier? Second, which sampling method is more effective than others? Third,

which machine learning classifier is likely to be enhanced by sampling? Fourth, do we need

sampling to obtain the optimal classifier for imbalanced classification? Finally, what is the

effect of performance measures on evaluation of the sampling method? We present our empir-

ical findings related to the questions above and other aspects of imbalanced classification, pro-

viding insights on using sampling to tackle the imbalanced classification problem.

Materials and methods

Imbalanced datasets

We used 31 binary classification datasets whose imbalance ratios, i.e., the majority class size

divided by the minority class size, ranged from 1.14 to 577.88 [42–44] (see S1 Table for more

details). Among the 31 datasets, 29 were obtained from the UC Irvine Machine Learning

Repository (https://archive.ics.uci.edu). Among these 29 binary classification datasets, seven

were originally binary and the other 22 were obtained from 14 multiclass datasets from the UC

Irvine Machine Learning Repository. To develop a binary classification dataset, we grouped a

set of classes of a multiclass dataset and designated them as the minority class. The remaining

classes of the multiclass dataset were grouped and set as the majority class. According to the

grouping procedure, more than one binary classification dataset was prepared from a multi-

class dataset (see S2 Table for more details). This approach of converting multiclass datasets to

imbalanced binary classification datasets has been widely employed in previous studies to

increase the number of datasets used in the experiment [23–25, 32, 35]. The 30th (Creditcard

in S1 Table) and 31st (Fraud_Detection in S1 Table) datasets were credit card fraud detection

datasets from Kaggle (https://www.kaggle.com), which were originally binary. We downloaded

all datasets on September 13, 2020, except for the Fraud_Detection dataset, which was down-

loaded on March 11, 2022. The access URLs for the 31 datasets are shown in S3 Table. Among

the 31 datasets, nine were originally binary, and the remaining 22 were made from multiclass

datasets (see S2 Table).

The Fraud_Detection dataset had 395 features. Among them, we removed two features, for

which more than 90% of the examples contained missing values. Missing values of the remain-

ing features were imputed by the median if the feature was numerical. Missing values of a cate-

gorical feature was denoted by a new category called “missing.” Then, categorical features of

the Fraud_Detection dataset were encoded by one-hot encoding if the number of categories

was less than five, or by weight of evidence encoding otherwise. For one-hot encoding, we

used OneHotEncoder of the scikit-learn package of Python (version 1.1.1). For weight of evi-

dence encoding, we used WOEEncoder of the category_encoders Python package (version

0.1.4). Through the encoding process, the number of features of the Fraud_Detection dataset

increased to 410 (see S1 Table). The 410 features were normalized by removing the mean and
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scaling to unit variance using StandardScaler of the scikit-learn package of Python (version

1.1.1). We calculated each feature’s mean and variance values using the training dataset. The

detailed experimental procedure including the division of the dataset into training and test sets

is described in the Performance evaluation and comparison section. All datasets, except for

Fraud_Detection, were processed as follows. Categorical features were represented using

dummy variables. We used RobustScaler of the scikit-learn package of Python (version 0.24.1)

to normalize the features. All features, including dummy variables, were normalized by sub-

tracting the median and dividing by the interquartile range (IQR). We calculated each feature’s

median and IQR values using the training dataset.

Sampling methods for imbalanced classification

We evaluated three oversampling methods: random oversampling, synthetic minority over-

sampling technique (SMOTE) [25], and borderline SMOTE [32]. Three undersampling meth-

ods, i.e., random undersampling, condensed nearest neighbors undersampling [45],

NearMiss2 [33], were also examined. In addition, we tested SMOTETomek [24], which is a

hybrid method that combines oversampling and undersampling techniques.

In random oversampling, a set of randomly selected examples of the minority class are

duplicated to increase the size of the minority class. SMOTE [25] synthesizes a new instance of

the minority class using a randomly selected example of the minority class and its k nearest

neighbors of the same class. Borderline SMOTE [32] is a variant of SMOTE that increases the

number of examples of the minority class along the borderline in the feature space to focus on

the “difficult-to-classify” region. Random undersampling randomly removes examples of the

majority class. Condensed nearest neighbors undersampling [45] excludes the majority class

example from training if its nearest neighbor is from the same class. NearMiss2 [25, 33] selects

examples of the majority class with the shortest average distance from the three farthest exam-

ples of the minority class. SMOTETomek [24] is a hybrid method in which SMOTE is applied

first and then, an undersampling method (the Tomek links method) is performed. The Tomek

links method removes a pair of the majority and minority class examples if they are the nearest

neighbors of each other. A detailed description of the seven sampling methods is provided in

S1 File.

All sampling methods, except for condensed nearest neighbors undersampling, were used

to balance the class distribution, making the majority to minority classes ratio one to one. The

resulting class distribution by condensed nearest neighbors undersampling varies depending

on the composition of a given dataset. We show the class distribution of the 31 datasets bal-

anced by condensed nearest neighbors undersampling in S4 Table.

For conciseness and clarity, we denote random oversampling by O_Random, SMOTE by

O_SMOTE, borderline SMOTE by O_Border, random undersampling by U_Random, con-

densed nearest neighbors undersampling by U_Condensed, and NearMiss2 by U_NearMiss.

We used the implementation of the seven sampling methods from version 0.7.0 of the imbal-

anced-learn package of Python (https://imbalanced-learn.org) [46].

Machine learning methods

We evaluated the seven sampling methods using eight machine learning methods, which

included four non-linear methods—adaptive boosting (AdaBoost), extreme gradient boosting

(XGBoost), RFs, and SVMs—and four linear methods—the LDA and three regularized logistic

regression methods, i.e., ridge, lasso, and elastic net. For XGBoost, we used the XGBoost

Python package (version 1.4.2) (https://xgboost.readthedocs.io). For the other machine learn-

ing methods, we used scikit-learn package of Python version 0.24.1 (https://scikit-learn.org)
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[47]. We adopted the radial basis function kernel for SVMs. The hyperparameters of each

machine learning method were optimized using cross-validation (CV) on the training dataset.

We used the whole training dataset to optimize the hyperparameters except when optimizing

the hyperparameters of SVMs for the largest dataset, i.e., Fraud_Detection (590,540 examples

x 410 features) (see S1 Table). This dataset was more than seven times larger than the second

largest dataset, i.e., Covtype4 (581,012 examples x 54 features). The training time for SVMs is

affected more by the size of the training dataset than the other machine learning methods.

Therefore, 10% of the training dataset of Fraud_Detection was randomly selected and used for

hyperparameter optimization of SVMs. The hyperparameter optimization process is detailed

in the next subsection.

Performance evaluation and comparison

We used both AUPRC [48] and AUROC [49] to evaluate the classification performance. These

performance measures were calculated using version 0.24.1 of the scikit-learn package of

Python (https://scikit-learn.org) [47]. To compare the performances of the two classifiers on

an imbalanced classification dataset, we performed the 5x2 CV paired t-test, as described in

[50], in which a stratified two-fold CV is repeated five times. The 5x2 CV procedure for evalu-

ating the effectiveness of the sampling methods is as follows, and a schematic diagram is

shown in Fig 1.

First, an imbalanced classification dataset was randomly divided into two folds: fold 1

and fold 2. The class ratio in each fold was similar to that of the original imbalanced data-

set. Fold 1 was used as the training dataset. A sampling method was applied to fold 1,

thereby balancing the class ratio. Then, a machine learning classifier was learned from the

balanced training dataset, i.e., balanced fold 1. When training the classifier, we optimized

its hyperparameters using 3-fold CV on balanced fold 1. A grid search over a range of

hyperparameter values was performed using sklearn.model_selection.GridSearchCV

from the scikit-learn package of Python (version 1.1.1). A list of the optimized hyperpara-

meters of each machine learning method and their search ranges are described in S5

Table. The same performance measure was used for evaluating the classifier—AUPRC or

AUROC—when optimizing the hyperparameters. The classifier learned with sampling

was evaluated using fold 2 as the test dataset. We denote the test performance with sam-

pling by P1
(1)

sampling. For comparison, a classifier without sampling was learned using the

original fold 1 as the training dataset. The hyperparameters of the classifier were opti-

mized on fold 1. The learned classifier without sampling was evaluated using fold 2. We

denote the test performance without sampling by P1
(1)

nosampling. Then, the first perfor-

mance difference value due to sampling was calculated as P1
(1) = P1

(1)
nosampling−P1

(1)
sam-

pling. The above procedure was repeated using fold 2 as the training dataset and fold 1 as

the test dataset, resulting in the second performance difference value due to sampling:

P1
(2) = P1

(2)
nosampling−P1

(2)
sampling. The procedure for obtaining two performance differ-

ence values was iterated five times, with repeated random division of the imbalanced data-

set, producing five pairs of performance difference values: (P1
(1), P1

(2)), (P2
(1), P2

(2)),

(P3
(1), P3

(2)), (P4
(1), P4

(2)), and (P5
(1), P5

(2)). Then, the t-statistic for the test was calculated

as follows [50]:

t ¼
Pð1Þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

5

P5

i¼1
s2
i

q : ð1Þ
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In Eq (1), si2 denotes the estimated variance of the ith iteration (i = 1, 2, 3, 4, 5), calculated

as follows.

s2

i ¼ ðP
ð1Þ

i � �PiÞ
2
þ ðPð2Þi � �PiÞ

2
; ð2Þ

where �Pi ¼ ðP
ð1Þ

i þ Pð2Þi Þ=2. To evaluate the effectiveness of sampling for imbalanced classifica-

tion, we performed a two-tailed test using the t-statistic.

Fig 1. Schematic diagram of the workflow for evaluating the effectiveness of sampling for imbalanced

classification. The process is repeated five times (i = 1, 2, 3, 4, 5) with repeated random division of an imbalanced

classification dataset.

https://doi.org/10.1371/journal.pone.0271260.g001
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Results

Effectiveness of sampling methods

To investigate the effectiveness of the sampling methods for imbalanced classification, we

checked whether sampling changed the classification performance of a machine learning algo-

rithm. The hyperparameters of each machine learning algorithm (see S5 Table) were opti-

mized as described in the Materials and Methods section, and the optimized hyperparameter

values are provided as S1 and S2 Datasets. The comparison results for each combination of

machine learning and sampling methods on the 31 datasets are shown in Figs 2 (for AUPRC)

and 3 (for AUROC).

Figs 2 and 3 show that there are few cases of statistically significant performance changes

due to sampling. Among the 1736 (combinations of seven sampling and eight machine learn-

ing methods, applied to 31 datasets) cases, only 211 (12.2%) and 173 (10.0%) showed statisti-

cally significant differences (paired t-tests P< 0.05) in the AUPRC and AUROC, respectively.

Surprisingly, we observed more cases of performance degradation than improvement, indicat-

ing that sampling could be more harmful than beneficial for imbalanced classification. Among

the cases of performance changes, the proportion of cases with decreased AUPRC and

AUROC was 78.7% (166 of 211) and 61.3% (106 of 173), respectively. These observations also

suggest that sampling is more effective when measuring the performance using AUROC than

when using AUPRC. While more cases with decreased AUPRC (166 cases) were observed

than those with decreased AUROC (106 cases), the number of cases with increased AUROC

(67 cases) was greater than that with increased AUPRC (45 cases).

We divided the 31 imbalanced datasets used in the experiment into two categories: nine

originally binary datasets and 22 binary datasets made from multiclass datasets by merging

two or more classes (see Materials and Methods and S2 Table). The numbers of cases in the

nine originally binary datasets and the other 22 datasets were 504 (combinations of seven sam-

pling and eight machine learning methods, applied to nine datasets) and 1232 (combinations

of seven sampling and eight machine learning methods, applied to 22 datasets), respectively.

Interestingly, sampling effectiveness differed by the category of datasets. The proportion of

cases showing statistically significant performance changes due to sampling was much higher

for the originally binary datasets [17.3% (87 of 504) in AUPRC and 15.3% (77 of 504) in

AUROC] than for the other datasets [10.1% (124 of 1232) in AUPRC and 7.8% (96 of 1232) in

AUROC]. However, both dataset categories showed a similar pattern, i.e., sampling was more

likely to reduce than improve the classification performance. In AUPRC, 73.6% (64 of 87) of

the cases for the originally binary datasets and 82.3% (102 of 124) of the cases for the other

datasets exhibited performance degradation. The AUROC was reduced in 54.5% (42 of 77) of

the cases for the originally binary datasets and 66.7% (64 of 96) of the cases for the other data-

sets. Furthermore, the effect of performance measures was the same for both categories of

datasets. The number of cases with increased AUROC (35 cases for the originally binary data-

sets and 32 cases for the other datasets) was greater than that with increased AUPRC (23 cases

for the originally binary datasets and 22 cases for the other datasets), whereas more cases with

decreased AUPRC (64 cases for the originally binary datasets and 102 cases for the other data-

sets) were observed than those with decreased AUROC (42 cases for the originally binary data-

sets and 64 cases for the other datasets).

We examined the relationship between the effectiveness of the sampling methods and the

degree of imbalance of the data. S1 Fig shows the scatterplots of the number of cases of perfor-

mance reduction or improvement against the ratio (in a logarithmic scale) of the majority to

minority classes for the 31 datasets. To each dataset, 56 combinations of sampling and machine

learning methods were applied (see Materials and Methods). We observed small but
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Fig 2. Heatmap of the difference in the area under the precision-recall curve between classification with and

without sampling on the 31 imbalanced datasets. Combinations of the seven sampling methods [i.e., random

oversampling (O_Random), synthetic minority oversampling technique (O_SMOTE), borderline synthetic minority

oversampling technique (O_Border), random undersampling (U_Random), condensed nearest neighbors

undersampling (U_Condensed), NearMiss2 (U_NearMiss), and SMOTETomek] and eight machine learning methods
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statistically significant positive correlations between the logarithmic imbalance ratio and the

number of cases of performance improvement or degradation due to sampling (the Pearson

correlation coefficient tests P< 0.05). The R2 value was 0.13 for an increase in AUPRC, 0.14

for a decrease in AUPRC, 0.11 for an increase in AUROC, and 0.11 for a decrease in AUROC.

The positive correlation is attributed to the fact that the amount of training data modification

caused by sampling is proportional to the imbalance ratio.

Effectiveness comparison of sampling methods

We evaluated and compared the effectiveness of seven sampling methods using the number of

cases in which each sampling method enhanced or reduced the classification performance.

The total number of cases for each sampling method was 248 (eight machine learning methods

and 31 datasets). The results of the comparison are shown in Fig 4.

The best method to improve the AUPRC and AUROC was O_Random. O_SMOTE was

also the best for increasing the AUPRC. U_NearMiss and U_Condensed were the least effec-

tive in improving the classification performance in terms of AUPRC and AUROC, respec-

tively. Notably, U_NearMiss decreased both AUPRC and AUROC in much larger numbers of

cases compared with the others. U_NearMiss was also observed to perform poorly in a previ-

ous study [38]. On average, undersampling reduced the classification performance in more

cases than oversampling and hybrid methods. One explanation for the relatively stronger neg-

ative effect of undersampling is that some characteristics of the data that are helpful for dis-

criminating the majority class are removed during the process of eliminating examples of the

majority class [16]. Moreover, the application of undersampling could increase the model vari-

ance by reducing the training dataset size. Furthermore, we found that AUPRC was more

likely to be reduced by sampling than AUROC regardless of the sampling methods applied.

Comparison of machine learning methods by the effectiveness of sampling

Next, we investigated whether machine learning model selection made a difference in the

effectiveness of sampling. We compared the number of cases in which sampling improved or

reduced the performance of each machine learning classifier. A total of 217 cases were studied

for each classifier (seven sampling methods and 31 datasets). Fig 5 shows the comparison

results.

We found that sampling was much more effective in improving the linear machine learning

methods (i.e., the LDA, lasso, ridge, and elastic net) than the non-linear methods (i.e., Ada-

Boost, XGBoost, RFs, and SVMs). The elastic net and LDA classifiers showed the largest num-

ber of AUPRC and AUROC enhancement cases, respectively. In contrast, sampling did not

enhance the AUPRC (AUROC) of XGBoost and SVMs (AdaBoost). The effectiveness of sam-

pling in improving the AUROC of the LDA agreed with the findings of a previous study [36].

Regarding the performance reduction by sampling, regularized logistic regression was less

affected than the others. In terms of AUPRC, we found that lasso, ridge, and elastic net were

more resistant to performance degradation due to sampling than the others, on average. The

reduction in AUROC was less pronounced for the linear classifiers, i.e., the LDA and regular-

ized logistic regression methods, compared with the non-linear ones. SVMs were by far the

most negatively affected by sampling in AUROC. Indeed, SVMs have been reported to under-

perform when coupled with undersampling [12].

[i.e., adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), random forests (RFs), support vector

machines (SVMs), the linear discriminant analysis (LDA), lasso, ridge, and elastic net] were compared using the 31

datasets.

https://doi.org/10.1371/journal.pone.0271260.g002
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Fig 3. Heatmap of the difference in the area under the receiver operating characteristics curve between

classification with and without sampling on the 31 imbalanced datasets. Combinations of the seven sampling

methods [i.e., random oversampling (O_Random), synthetic minority oversampling technique (O_SMOTE),

borderline synthetic minority oversampling technique (O_Border), random undersampling (U_Random), condensed

nearest neighbors undersampling (U_Condensed), NearMiss2 (U_NearMiss), and SMOTETomek] and eight machine
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Performance comparison of combinations of machine learning and

sampling methods

In the previous subsections, we focused on whether sampling improved or reduced the classifi-

cation performance of a particular machine learning algorithm. Although sampling enhances

learning methods [i.e., adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), random forests (RFs),

support vector machines (SVMs), the linear discriminant analysis (LDA), lasso, ridge, and elastic net] were compared

using the 31 datasets.

https://doi.org/10.1371/journal.pone.0271260.g003

Fig 4. Comparison of the effectiveness of the seven sampling methods. The number of cases in which a sampling method enhanced

(blue) or reduced (red) the performance in (A) the area under the precision-recall curve (AUPRC) and (B) the area under the receiver

operating characteristics curve (AUROC) is shown. Seven sampling methods—random oversampling (O_Random), synthetic

minority oversampling technique (O_SMOTE), borderline synthetic minority oversampling technique (O_Border), random

undersampling (U_Random), condensed nearest neighbors undersampling (U_Condensed), NearMiss2 (U_NearMiss), and

SMOTETomek—were compared.

https://doi.org/10.1371/journal.pone.0271260.g004
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the performance of machine learning methods, the method could perform worse than other

machine learning methods without sampling. To investigate whether sampling was helpful for

achieving the best performance for imbalanced classification, we compared the classification

performance of each combination of machine learning and sampling methods, including

machine learning without sampling. Tables 1 and 2 summarize the comparison results by

showing the number of datasets on which a combination achieved the best classification per-

formance in terms of the AUPRC and AUROC, respectively. Note that more than one combi-

nation could perform best on a dataset. Furthermore, a combination was regarded to be the

best if its performance was not significantly different from that of the best one by the two-

tailed 5x2 CV paired t-test (P� 0.05).

Fig 5. Comparison of machine learning methods by the effectiveness of sampling. The number of cases in which (A) the area

under the precision-recall curve (AUPRC) and (B) the area under the receiver operating characteristics curve (AUROC) of a machine

learning method were improved (blue) or reduced (red) by sampling. Eight machine learning methods—adaptive boosting

(AdaBoost), extreme gradient boosting (XGBoost), random forests (RFs), support vector machines (SVMs), the linear discriminant

analysis (LDA), lasso, ridge, and elastic net—were compared.

https://doi.org/10.1371/journal.pone.0271260.g005
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For most datasets, sampling was not essential for attaining the best classification perfor-

mance in terms of the AUPRC (29 of 31 datasets) and AUROC (30 of 31 datasets). The appro-

priate choice of machine learning algorithms without sampling was enough to obtain the

optimal result for those datasets. Moreover, no sampling method showed the best performance

on more datasets than “without sampling.” O_Random and O_SMOTE achieved the highest

AUPRC values on the same number (29) of datasets as “without sampling.” In terms of

AUROC, only O_SMOTE performed best on the same number (30) of datasets as “without

sampling.” Other sampling methods achieved the best performance on fewer datasets, suggest-

ing that many sampling methods could be more harmful than beneficial for imbalanced classi-

fication. For building the optimal classifier, undersampling was worse than oversampling and

hybrid methods, as shown in Tables 1 and 2. Regarding these results, we did not observe a

Table 1. Number of datasets on which a combination of machine learning and sampling methods performed the best in terms of the area under the precision-recall

curve.

Ada Boost XG Boost RF SVM LDA Lasso Ridge Elastic net All

Without sampling 14 21 23 17 13 10 10 11 29

O_Random 11 22 23 9 13 11 11 11 29

O_SMOTE 13 20 23 13 15 11 13 11 29

O_Border 10 16 22 11 12 9 11 9 28

U_Random 9 11 16 10 11 11 10 10 23

U_Condensed 9 14 19 12 10 8 9 9 22

U_NearMiss 5 11 9 8 5 6 6 6 13

SMOTETomek 14 20 22 13 15 11 13 11 28

All 18 25 26 19 16 13 15 14

Seven sampling methods were compared: random oversampling (O_Random), synthetic minority oversampling technique (O_SMOTE), borderline synthetic minority

oversampling technique (O_Border), random undersampling (U_Random), condensed nearest neighbors undersampling (U_Condensed), NearMiss2 (U_NearMiss),

and SMOTETomek. Eight machine learning methods were compared: adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), random forests (RFs),

support vector machines (SVMs), linear discriminant analysis (LDA), lasso, ridge, and elastic net. ‘All’ means the number considering all sampling methods (including

without sampling) or machine learning methods.

https://doi.org/10.1371/journal.pone.0271260.t001

Table 2. Number of datasets on which a combination of machine learning and sampling methods performed the best in terms of the area under the receiver operat-

ing characteristics curve.

Ada Boost XG Boost RF SVM LDA Lasso Ridge Elastic net All

Without sampling 14 19 24 17 13 14 16 14 30

O_Random 13 19 21 8 13 17 18 17 29

O_SMOTE 15 18 25 11 13 17 18 17 30

O_Border 11 15 21 9 13 13 15 14 28

U_Random 10 16 20 11 14 16 15 16 27

U_Condensed 7 13 17 12 10 13 13 12 23

U_NearMiss 7 9 8 7 7 7 7 7 14

SMOTETomek 16 18 25 12 13 17 18 17 29

All 19 26 28 23 18 17 18 17

Seven sampling methods were compared: random oversampling (O_Random), synthetic minority oversampling technique (O_SMOTE), borderline synthetic minority

oversampling technique (O_Border), random undersampling (U_Random), condensed nearest neighbors undersampling (U_Condensed), NearMiss2 (U_NearMiss),

and SMOTETomek. Eight machine learning methods were compared: adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), random forests (RFs),

support vector machines (SVMs), linear discriminant analysis (LDA), lasso, ridge, and elastic net. ‘All’ means the number considering all sampling methods (including

without sampling) or machine learning methods.

https://doi.org/10.1371/journal.pone.0271260.t002
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considerable difference between the categories of datasets (see Materials and Methods). Sam-

pling was not required for achieving the best performance on most originally binary and mul-

ticlass datasets (see S6–S9 Tables).

Two examples showing contradictory evaluation results depending on the

performance measure

In the previous subsections, we found that the evaluation results of the effectiveness of sam-

pling differed according to the performance measures. More precisely, the positive (negative)

effect of sampling for imbalanced classification was more (less) pronounced when we mea-

sured the performance in terms of AUROC than in terms of AUPRC (see Figs 2 and 3).

Because a classifier with the optimal AUROC is not guaranteed to attain the optimal AUPRC

[48], using the inappropriate performance measure could mislead the decision-making

process.

In this regard, we show two remarkable examples in which the direction of performance

changed, i.e., improvement or reduction was reversed depending on the performance measure.

The AUROC of the LDA on the Letter_a and the Fraud_Detection datasets (see S1 Table) was

significantly improved (paired t-tests P< 0.05) due to four sampling methods, i.e., O_Ran-

dom, O_SMOTE, U_Random, and SMOTETomek. In comparison, the AUPRC of the same

classification method on the same dataset was significantly reduced (paired t-tests P< 0.05) by

the same four sampling methods. Tables 3 and 4 respectively show the performance of the

Table 3. Performance of linear discriminant analysis (LDA) on the Letter_a dataset with and without the four sampling methods.

Sampling methods AUPRC AUROC

Mean±standard deviation P values Mean±standard deviation P values

Without sampling 0.8917±0.0097 N/A 0.9765±0.0041 N/A

O_Random 0.8457±0.0217 (D) 0.0169 0.9851±0.0038 (I) 0.0017

O_SMOTE 0.8412±0.0209 (D) 0.0123 0.9848±0.0038 (I) 0.0016

U_Random 0.8506±0.0217 (D) 0.0050 0.9851±0.0037 (I) 0.0012

SMOTETomek 0.8412±0.0209 (D) 0.0123 0.9848±0.0038 (I) 0.0016

Four sampling methods were compared: random oversampling (O_Random), synthetic minority oversampling technique (O_SMOTE), random undersampling

(U_Random), and SMOTETomek. Performances were evaluated by the areas under the precision-recall curve (AUPRC) and the receiver operating characteristics curve

(AUROC). The means and standard deviations of 5x2 cross-validation (CV) are shown. P values were calculated by the one-tailed 5x2 CV paired t-test. (D) and (I) in

front of the P values represent “decreased” and “increased” compared to the performance of the LDA without sampling, respectively.

https://doi.org/10.1371/journal.pone.0271260.t003

Table 4. Performance of linear discriminant analysis (LDA) on the Fraud_Detection dataset with and without the four sampling methods.

Sampling methods AUPRC AUROC

Mean±standard deviation P values Mean±standard deviation P values

Without sampling 0.4474±0.0038 N/A 0.8697±0.0014 N/A

O_Random 0.3978±0.0056 (D) 0.0029 0.8813±0.0010 (I) 0.0015

O_SMOTE 0.4005±0.0043 (D) 0.0056 0.8802±0.0013 (I) 0.0031

U_Random 0.3547±0.0086 (D) 0.0003 0.8796±0.0010 (I) 0.0031

SMOTETomek 0.4005±0.0043 (D) 0.0056 0.8802±0.0013 (I) 0.0031

Four sampling methods are compared: random oversampling (O_Random), synthetic minority oversampling technique (O_SMOTE), random undersampling

(U_Random), and SMOTETomek. Performances were evaluated by the areas under the precision-recall curve (AUPRC) and the receiver operating characteristics curve

(AUROC). The means and standard deviations of 5x2 cross-validation (CV) are shown. P values were calculated by the one-tailed 5x2 CV paired t-test. (D) and (I) in

front of the P values represent “decreased” and “increased” compared to the performance of the LDA without sampling, respectively.

https://doi.org/10.1371/journal.pone.0271260.t004
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LDA with and without the four sampling methods on the Letter_a and the Fraud_Detection

datasets.

The LDA without sampling achieved a higher AUPRC value (0.8917±0.0097) than the best

sampling method, i.e., U_Random (0.8506±0.0217), on the Letter_a dataset, which is a binary

dataset obtained from a multiclass dataset (see Materials and Methods and S2 Table). In con-

trast, the AUROC value without sampling (0.9765±0.0041) was lower than those obtained

using O_SMOTE and SMOTETomek (0.9848±0.0038), which was the lowest of the four sam-

pling methods on the same dataset. We observed the same results on the Fraud_Detection

dataset, which was originally binary (see S2 Table). The LDA without sampling achieved a

higher AUPRC value (0.4474±0.0038) than O_SMOTE and SMOTETomek, which performed

the best on the Fraud_Detection dataset in terms of AUPRC (0.4005±0.043). On the same

dataset, the AUROC value without sampling (0.8697±0.0014) was lower than U_Random

(0.8796±0.0010), which was the lowest among those for the four sampling methods. To under-

stand this difference intuitively, we compared the precision-recall (PR) and receiver operating

characteristics (ROC) curves on the test dataset of the first fold of the first iteration of the 5x2

CV run (see Materials and Methods and Fig 1) on the two datasets. We show the two curves

respectively in Figs 6 and 7.

Figs 6 and 7 show that the sampling dramatically decreases the precision, especially when

the recall is close to zero, leading to decreased AUPRC values. In comparison, the AUROC is

improved by sampling because the false positive rate decreases more slowly by sampling as the

true positive rate (i.e., recall) approaches one. We observed similar trends from the other folds

and iterations of the 5x2 CV run (see S2 and S3 Figs).

Conclusions and discussion

Imbalanced classification is a critical issue in machine learning that is observed in numerous

application areas. Sampling methods are among the most popular approaches to solve imbal-

anced classification problems owing to their ease of use and broad applicability. Although data

balancing by sampling could help to build a classifier that is not biased toward the majority

class, it distorts the distribution of training data, potentially reducing the test performance.

However, their effectiveness has not been comprehensively tested using a wide array of

machine learning algorithms.

In this study, we evaluated seven sampling methods for imbalanced classification combined

with eight machine learning methods on 31 real-world imbalanced datasets. We observed that

sampling affected only a small number of cases. Notably, sampling was more likely to deterio-

rate than improve the performance of a classifier. This result seems to disagree with those of

previous studies [12, 24, 25, 29–38] which suggested that sampling is a remedy for the imbal-

anced classification problem. Our results were largely in accordance with the results of these

studies. Many of the previous studies [24, 25, 29–33] used decision trees which were not cov-

ered in our study. Thus, sampling could be a good option when using decision trees for imbal-

anced classification. Some previous studies used the machine learning methods covered in our

study such as LDA [35, 36], RFs [37, 38], and SVMs with the radial basis function kernel [12].

The previous results on LDA [14, 35, 36] partly agree with ours as we also observed the rela-

tively positive effect of sampling on LDA, especially when the classification performance was

measured by AUROC (see Fig 5B). The results of the other previous studies were not consis-

tent with ours possibly due to the small number of datasets used in the experiments [12, 38] or

some uncharacterized differences in the experimental setting [37].

Among the sampling methods, O_Random and O_SMOTE performed better than the oth-

ers to improve classification performance. Undersampling reduced the performance more
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Fig 6. (A) Precision-recall (PR) and (B) receiver operating characteristics (ROC) curves of linear discriminant analysis

with and without the four sampling methods on the Letter_a dataset. The PR and ROC curves on the test dataset of the first

fold of the first iteration of the 5x2 cross-validation run are shown. Four sampling methods were compared: random

oversampling (O_Random), synthetic minority oversampling technique (O_SMOTE), random undersampling

(U_Random), and SMOTETomek. AUC indicates the area under the PR or ROC curve.

https://doi.org/10.1371/journal.pone.0271260.g006
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Fig 7. (A) Precision-recall (PR) and (B) receiver operating characteristics (ROC) curves of linear discriminant analysis

with and without the four sampling methods on the Fraud_Detection dataset. The PR and ROC curves on the test dataset

of the first fold of the first iteration of the 5x2 cross-validation run are shown. Four sampling methods were compared:

random oversampling (O_Random), synthetic minority oversampling technique (O_SMOTE), random undersampling

(U_Random), and SMOTETomek. AUC means the area under the PR or ROC curve.

https://doi.org/10.1371/journal.pone.0271260.g007
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often than others. Thus, we conclude that oversampling is generally better than undersampling

in terms of the classification performance. Another important aspect to consider when adopt-

ing a sampling method is its efficiency. The analysis of time complexity of each of the seven

sampling methods is detailed in S1 File. Among the sampling methods, the most efficient one

was U_Random, the every-case time complexity of which is T(nminor), where nminor denotes

the number of minority class examples, which is usually much smaller than the training dataset

size. U_Condensed and SMOTETomek are the least efficient. The every-case time complexity

of U_Condensed is T((nmajor− 1)((n– 1)d + (n– 1))), where nmajor denotes the number of

majority class examples, n = nmajor + nminor, and d is the number of features. U_Condensed

would be especially inefficient when applied to a severely imbalanced dataset, where nmajor is

similar to n. The every-case time complexity of SMOTETomek is T((nmajor−nminor)((nminor− 1)

d + k(nminor− 1))d + 2nmajor((2nmajor− 1)d + (2nmajor− 1))), where k denotes the number of

nearest neighbors used for synthesizing a new example (see S1 File). Among the two best per-

forming sampling methods, i.e., O_Random and O_SMOTE, O_Random performed better in

terms of time complexity: T((nmajor−nminor)d) vs T((nmajor−nminor)((nminor− 1)d + k(nminor− 1))

d). Thus, we propose using O_Random if a sampling method is required.

Compared with non-linear classifiers, the linear ones were more likely to be enhanced by

sampling. The choice of performance measure had a crucial impact on the evaluation of the

sampling methods. The adverse effect of sampling was more pronounced when the perfor-

mance was measured using the AUPRC than AUROC. In this regard, we found two interesting

examples in which the validation results were reversed depending on the performance measure

used. This finding is important because AUPRC is known to be preferable to AUROC when

measuring the performance of classifiers on imbalanced datasets [39–41]. It has not been

observed from the previous studies. To the best of our knowledge, we are the first to compre-

hensively evaluate sampling methods using the AUPRC.

Our study provides useful insights on the effectiveness of data balancing by sampling for

imbalanced classification. We found that sampling could be ineffective or harmful and is not

essential to achieve the optimal classifier from an experiment on a large number of imbalanced

classification datasets. These findings have not been identified from the previous studies

because of differences in the machine learning method evaluated and the limited number of

datasets. Based on our findings, we propose to validate the effectiveness of the sampling meth-

ods using multiple machine learning algorithms and an appropriate performance measure

before using it. Instead of sampling, one could also use the algorithm level and cost-sensitive

learning-based approaches to alleviate the problems caused by imbalanced class ratio, although

developing these techniques is challenging. Several such approaches [19–22] have been pro-

posed that are applicable to various imbalanced classification problems.

Directions for future work include evaluating the effectiveness of sampling on multiclass

imbalanced datasets and comparing the sampling methods with other approaches such as the

algorithm level and the cost-sensitive learning-based approaches. Multiclass imbalanced prob-

lems are known to be more difficult than their binary counterparts [51] because more factors,

e.g., the configurations with classes of intermediate sizes, have a considerable impact on the

classification result. A set of sampling approaches to multiclass imbalanced classification have

been proposed [52, 53]. It would be helpful to comprehensively evaluate these approaches

using a large number of multiclass imbalanced datasets. Recently, a set of algorithm level

approaches, e.g., density-weighted support vector machines [19], the intuitionistic fuzzy kernel

ridge regression classifier [20], and kernel-target alignment based fuzzy Lagrangian twin

bounded support vector machines [22], and a cost-sensitive learning-based approach, i.e., the

robust twin bounded support vector machine [21], were proposed for imbalanced
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classification problems. Because these methods were shown to perform well on many imbal-

anced datasets, it would be interesting to compare them with sampling approaches.
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