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Abstract

The selection of optimal enzyme concentration in multienzyme cascade reactions for the

highest product yield in practice is very expensive and time-consuming process. The model-

ling of biological pathways is a difficult process because of the complexity of the system.

The mathematical modelling of the system using an analytical approach depends on the

many parameters of enzymes which rely on tedious and expensive experiments. The artifi-

cial neural network (ANN) method has been successively applied in different fields of sci-

ence to perform complex functions. In this study, ANN models were trained to predict the

flux for the upper part of glycolysis as inferred by NADH consumption, using four enzyme

concentrations i.e., phosphoglucoisomerase, phosphofructokinase, fructose-bisphosphate-

aldolase, triose-phosphate-isomerase. Out of three ANN algorithms, the neuralnet package

with two activation functions, “logistic” and “tanh” were implemented. The prediction of the

flux was very efficient: RMSE and R2 were 0.847, 0.93 and 0.804, 0.94 respectively for logis-

tic and tanh functions using a cross validation procedure. This study showed that a systemic

approach such as ANN could be used for accurate prediction of the flux through the meta-

bolic pathway. This could help to save a lot of time and costs, particularly from an industrial

perspective. The R-code is available at: https://github.com/DSIMB/ANN-Glycolysis-Flux-

Prediction.

Introduction

The emergence of genomics, transcriptomics and proteomics, along with improvements in

information technology, helped us to integrate the information, build the mathematical in sil-
ico model of a biological system and observe its behaviour [1–5]. The integration of different

“-omics” data helped us to understand the genetic difference between the phenotypes, to iden-

tify the molecular signature [6,7] and use metabolic engineering [8,9] etc. There have been

many attempts to model biological systems, like Saccharomyces cerevisiae [4,10–12], Escheri-
chia coli [13–15], other organisms [3] and many plant metabolic networks for observing and

predicting the behaviour of a system using different methods [2,16].
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Many different kinds of mathematical models exist to study biological systems [17,18]. Sev-

eral approaches have been developed to determine or estimate the flux through the metabolic

pathway [19–21]. Based on the data and constraints used, the mathematical modelling can be

classified into two broad categories [2,16] i.e., kinetic modelling or mechanistic modelling

[22–24], and constraint-based or stoichiometric modelling [12,25,26]. The kinetic model

defines the reaction mechanism in the system using kinetic parameters to evaluate rate laws.

These rate laws are defined from the experiment, assuming that the experimental conditions

are similar to in-vivo conditions [27]. To build a kinetic model, the system has been made as

simple as possible, while retaining system behaviour. The modelling of enzymes like phospho-

fructokinase could be problematic and might need more parameters than other enzymes [28].

Determining the kinetic parameter is expensive and time consuming; some parameters could

be more difficult to measure. Although many enzymatic assays are described in the literature,

sometimes it is necessary to modify the assay for new enzymes or to find a new one. In some

cases, for example, following enzyme reaction through spectrophotometers or spectrofluorim-

eters, this is difficult due to no absorption or emission signals [29] linked to the reactants.

Most of the available kinetic data are obtained from in-vitro studies using purified enzymes

which might not represent the exact properties of in-vivo enzymes [23]. For example: The

Vmax value measured in vitro may not represent the value of an in vivo system because of the

destruction of enzyme complexes, cellular organisation and the absence of an unknown inhibi-

tor or activator [30,31]. A constraint-based model uses physiochemical constraints like mass

balance, thermodynamic constraints, etc., in the modelling, to observe and study the behaviour

of the system [25]. There are different methods, like flux balance analysis [32] and metabolic

flux analysis [33]. Flux balance analysis is an approach to studying biochemical networks on a

genomic scale, which includes all the known metabolite reactions, and the genes that encode

for a particular enzyme. The data from genome annotation or existing knowledge is used to

construct the network [5,34] and the physicochemical constraints are used to predict the flux

distribution, considering that the total product formed must be equal to the total substrate

consumed in steady state conditions [32]. This method is used to predict the growth rate

[5,32,34,35] or the production of a particular metabolite [36]. Metabolic flux analysis, an

experimental based method, allows the quantification of metabolite in the central metabolism

using the Carbon-labelled substrate [33,37,38]. The labelled substrate is allowed to distribute

over the metabolic network and is measured using NMR [39] or mass spectrometry [32].

Many of the biomolecules like organic acids [40,41], antibiotics [42–44], bioethanol etc.

[45,46] have been used in the pharmaceutical and food industries and as energy sources. Bio-

molecule production is attracting the attention of biologists and industries due to the decrease

in non-renewable resources and global warming [47,48]. Synthetic biology and systems biol-

ogy help to obtain the highest yield of biomolecules from the source [49–51].

Glycolysis is the centre of the metabolic system in all living organisms. It is an anaerobic

pathway present in almost all living cells and helps in ATP generation. Glycolysis has been

established as the central core for the fermentation. It contributes to the production of differ-

ent metabolites, like citric acid, succinic acid, amino acids, etc., through pyruvate, the end

product of glycolysis [52].

The neural network is an architecture, modelled on the brain, that is organized with neu-

rons and synapses present in a structure of nodes (formal neuron) connected together [53,54].

Each numerical input corresponds to the input layer, and the value to predict (variable to

explain) corresponds to the last level, the output layer. Between those two layers, intermediary

nodes are present, built specifically and in sufficient number to model the problem; they form

the hidden layer. The neural network has been successfully applied in different fields of science

such as physics [55,56], environmental science [57–59] and data mining [60,61] for the
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prediction of different features in the system. The ANN is also core for deep learning [62]. The

artificial neural network could be used to predict the product outcome (i.e. flux through the

pathway) when combined with Flux balance analysis or other modelling approaches.

The ANN has been used earlier in predicting the fluxes from 13C labelling of metabolites in

mammalian gluconeogenesis by M.R. Antoniewicz et al. [21]. Three linear regression model-

ling methods, multiple linear regression (MLR), principal component regression (PCR) and

partial least square regression (PLS) were run on simulated data and compared to the ANN.

The study showed that ANN, that requires the larger sample (>200) performed better than the

other methods for flux prediction using new mass isotopomer data [21].

Due to the challenges in estimating the flux using different methods like constraint-based

and kinetic-based modelling approaches [63–66], we developed a simple method using artifi-

cial neural networks. This method is based purely on the existing experimental data and hence

does not require kinetic parameters as in kinetic modelling and no prior information is

required regarding the stoichiometry of the metabolic pathway. In this study, an artificial neu-

ral network was built to estimate the flux using enzyme concentrations for the upper part of

glycolysis as input. Finding the optimum enzyme concentration—which gives the highest

product—through experiments is very tedious and expensive. The neural network approach

could be helpful for choosing the optimum enzyme concentrations which enhance the final

product concentration without experimental setup, within a short period of time. Experiments

were carried out in order to: i) assess the structure of the ANN using three different

approaches, ii) evaluate different activation functions and iii) compare the prediction of flux of

NAD+ to the fluxes predicted by Fievet & al. (2006).

Materials and methods

Principle of artificial neural networks

The base element of ANN is the perceptron, defined in 1958 by Rosenblatt [67]. A combina-

tion function computes a value based on the input layer and some weights. This is a weighted

sum ∑nipi (observed node) of the ni values in the input layer. To define the output value, a

function called activation function is applied to this value. We note ni for the node i, the weight

pi corresponds to the connection between node i, the observed node and the activation func-

tion f, associated with the observed node (Fig 1).

The structure of an ANN is defined by the number of layers and nodes, by the way they are

linked (activation function) and the method to estimate the weights.

Input for building the ANN model

The flux measurement data from in-vitro reconstructed upper part of glycolysis [20] was used

to build the artificial neural network (Fig 2). The input for the ANN model consists of concen-

trations of enzymes phosphoglucoisomerase (PGI), phosphofructokinase (PFK), fructose

Fig 1. Architecture of artificial neural network.

https://doi.org/10.1371/journal.pone.0216178.g001
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bisphosphate aldolase (FBA) and triose phosphate isomerase (TPI) in mg/L, and the output is

flux J (μM/s) measured as the NADH consumption by glycerol-3-phosphate dehydrogenase

(G3PDH). The flux measured through the upper part of glycolysis is indirect and we assume

that most of the NADH in the system is consumed during the measurement. The data has

been normalised using min-max method before building the neural network.

Experimental details

The upper part of glycolysis was reconstructed in vitro (Fig 2), with constant concentration of

hexokinase andglycerol-3-phosphate dehydrogenase, while the other four enzymes (PGI, PFK,

FBA and TPI) concentrations varied. The total enzyme concentration of the four enzymes

(PGI, PFK, FBA and TPI) was constant at 101.9 mg/L. The NADH consumption using the

glycerol-3-phosphate dehydrogenase is monitored every 2s with Uvikon 850 spectrometer at

390 nm from 60 to 120s. The linear slope of NADH was calculated as the flux through the path-

way. The assays were performed in triplicate by Fiévet et al., 2006, at 25˚C, by adding 1mM

ATP at pH 7.5. Data is given in supplementary information (Table A in S1 File).

Structure of ANN

The artificial neural network built with a single layer of hidden units [68] using statistical tool

R (version 3.4.3) (R Core Team (2013). R: A language and environment for statistical comput-

ing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/)

using three different packages: nnet (version 7.3–12) [69], neuralnet (version 1.33) [70] and

RSNNS (version 0.4–10) [71].

The network consists of three layers: a) Input (I), b) Hidden layer (H) and c) Output. These

layers are connected by edges or neurons. The weighted sum of neuron inputs is submitted to

a function which conditions neuron activation. There is no rule for deciding the number of

neuron units in a single hidden layer; to choose the best algorithm out of three (i.e. nnet, neur-

alnet and RSNNS), we first chose the number of hidden units according to Equation 1 and

compared the RMSE (Equation 2) and coefficient of determination (R2) (Equation 3) values

between the three methods. The algorithm with the lowest RMSE value and highest R2value

during the leave-one-out cross validation was chosen as an algorithm of interest and the

effect of the number of hidden units on RMSE and R2 was analysed between 1 to 25 hidden

units.

Fig 2. The upper part of glycolysis reconstructed in vitro. HK-hexokinase; PGI-phopshoglucoisomerase; PFK-

phosphofructokinase; FBA-fructose bisphosphate aldolase; TPI- triose phosphate isomerase; G3PDH- glycerol-3-phosphate

dehydrogenase, CK- Creatine kinase.

https://doi.org/10.1371/journal.pone.0216178.g002
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Equation 1: Where Nh is number of hidden units; Ns: number of sampling in training data;

Ni: number of input neurons; No: number of output neurons; α: arbitrary scaling factor 2–10.

Nh ¼
Ns

a ðNiþ NoÞ

Equation 2: Where RMSE is root mean square error, Yi is ANN predicted values; yi is

experimental values; n is number of predictions.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðYi � yiÞ

2
n

i¼1

n

v
u
u
u
t

Equation 3: Where R2 is coefficient of determination; Yi ANN is predicted values; yi is

experimental values; n is number of predictions, Y is average of experimental values.

R2 ¼ 1 �

P
iðyi � YiÞ

2

P
iðyi � �yÞ2

where; �y ¼
Pn

i¼1
yi

n

Results and discussion

The three-neural network algorithms: nnet [69], neuralnet [70] and RSNNS [71] are built with

a hidden number of units ranging from 9 to12, as shown in Equation 1. The RMSE and coeffi-

cient of determination were compared between algorithms during leave-one-out cross valida-

tion. Out of three algorithms, the neuralnet performed better than the other two (Table B in S1

File), allowing the option of choosing two different activation functions i.e., logistic (sigmoi-

dal) and tanh (Equation 4 and Equation 5 respectively).

Equation 4: logistic activation function.

Logistic xð Þ ¼
1

1þ e� x

Equation 5: tanh activation function.

tanh xð Þ ¼
2

1þ e� 2x
� 1

Using the neuralnet model, with “logistic” and “tanh” activation functions, the effect of the

number of hidden units on RMSE and R2 was studied (Fig 3) with a leave-one-out-cross-vali-

dation procedure (Table C in S1 File). The logistic function with 13 hidden units gives a RMSE

of 0.847, R2 of 0.93 and tanh function RMSE of 0.804, and R2 of 0.94 with 6 hidden units. The

R-script to build the ANN with leave-one-out cross validation is given in R-Scripts A in S1

File.

Experimental flux was compared with the ANN predicted flux by leave-one-outcross-vali-

dation procedure, using chosen hidden units with logistic and tanh function (Fig 4). The

effects of enzyme concentrations on the predicted flux and experimental flux were compared,

and found to follow a similar trend (Fig 5).

During the cross validation of the neural network model, a negative flux value was pre-

dicted for one combination of enzymes (Table 1: Index-3). This is because, during a leave-one-

out procedure (LOOcv), one combination of the four enzymes is not included in the model

training and has to be predicted. The negative value shows the poor ability of the ANN model

to predict the outliers, i.e. a combination that is not close (in terms of PGI, PFK, FBA and TPI

concentrations) to those included in the training data set.

Flux prediction using artificial neural network (ANN)
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The original study by J. B. Fievet et al. developed a model to predict flux. As the authors

mentioned in their article, their flux predictor overestimates the observed flux by a constant

factor. The predicted flux in their method, has an R2 value of 0.86, whereas an ANN approach

with logistic function showed an R2 value to be 0.93 and in case of tanh activation function,

an R2 of 0.94, obtained with leave-one-out cross validation, which implies that the ANN

approach is more efficient in predicting the flux than the method developed in the Fievet

study. The effect of enzyme concentrations on the predicted flux by both methods follows a

similar trend.

The difference between actual flux and ANN predicted flux was an average of 0.57 μM/s for

logistic and for tanh, with a standard deviation of 0.63 and 0.57 respectively (Table 1), whereas

the Fievet & al. study (2006) showed an average of 3.3 and a standard deviation of 2.2 with

actual predicted values. Fievet et al. stated that their method overestimates the flux values by a

constant factor of 1.38. Hence by dividing the predicted flux values by 1.38, corrected values

were obtained. The new average corrected value is 1.04 and standard deviation is 0.78 with the

experimental values. This indicates that the ANN method performs better than the method

described in the original study. This ANN-based method provides additional degrees of free-

dom over the method proposed in Fievet & al. (2006). Indeed, the number of degrees of free-

dom increases with the number of hidden units. This makes it possible to obtain an important

advantage regarding the error inherent to the learning phase.

Fig 3. Effect of the number of hidden units on RMSE (A) and coefficient of determination (B) in activation function logistic (filled circle, solid line) and tanh

(open circle and dotted lines).

https://doi.org/10.1371/journal.pone.0216178.g003
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Conclusion

Kinetic modelling of metabolic pathways is challenging because of the difficulties in estimating

the kinetic parameters [29,65], and is sometimes expensive because of the high-cost substrates

and technologies involved [72,73], whereas the constraint-based model does not use any

kinetic parameters but is efficient enough to predict the flux of metabolites. Choosing the opti-

mum enzyme concentrations for the highest flux could be a challenge when conducting exper-

iments. Using artificial intelligence with available experimental data can help us find a quicker

and more cost-effective solution for biological problems.

In this study, a neural network model was built successfully with two different activation

functions: i.e., logistic (sigmoidal) and tanh, with RMSE and R2 values of 0.847, 0.93 and 0.804,

0.94 respectively. The difference between actual flux and ANN predicted flux was an average

of 0.57 for both activation functions. The J. B. Fievet et al. method after the correction has a

RMSE of 1.30, with a 1.05 difference between predicted and observed flux, which clearly indi-

cates that the ANN method works better than the other method.

It has not escaped our attention that the artificial neural network model depends on the

diversity of the training data, and hence training the model with a maximum of variability in

the concentration of enzymes plays a crucial role. The model built in this study might not be

enough to extrapolate a model for all other enzyme concentrations. In future, the study will be

Fig 4. Relationship between flux predicted by leave-one-outcross-validation and experimental flux. Filled and open circles represent logistic and tanh activation

functions respectively.

https://doi.org/10.1371/journal.pone.0216178.g004
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extended to predict the wide range of flux and the enzyme concentration for a particular flux.

Experiments in a wet laboratory will be carried out for an upcoming application paper. Even

though further work has to be performed, the artificial neural network approach is a promising

method in metabolic pathway modelling and could find its place in metabolic engineering and

industrial scale biomolecule synthesis.

Fig 5. Relationship between the individual enzyme concentration with experimental and ANN predicted flux. Filled circle and open circle are enzyme

concentration vs predicted flux with logistic and tanh activation functions respectively, open triangles represent the experiment.

https://doi.org/10.1371/journal.pone.0216178.g005
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Table 1. Comparison of flux values (in μM/S) between observed flux (JExp), J.B Fievet (JFievet)and ANN predicted flux with activation functions logistic (J {ANN: logis-

tic}) and tanh (J {ANN: tanh}) and the standard deviation of observed flux (JSD).

Index JExp JSD JFievet J{Fievet:

Corrected}

J{ANN:

logistic}

J {ANN:

tanh}

Difference_[JExp :

JFievet]

Difference_[JExp : J{Fievet:

Corrected}]

Difference_[JExp :

J{ANN:logistic}]

Difference_[JExp :

J{ANN:tanh}]

1 0.74 0.08 1.14 0.83 1.33 2.16 0.4 0.09 0.59 1.42

2 1.1 0.03 1.97 1.43 1.53 1.85 0.87 0.33 0.43 0.75

3 1.22 0.08 2.44 1.77 -1.69 0.13 1.22 0.55 2.91 1.09

4 1.62 0.05 2.79 2.02 1.56 1.64 1.17 0.4 0.06 0.02

5 1.72 0.02 2.78 2.01 1.66 1.62 1.06 0.29 0.06 0.1

6 1.79 0 2.76 2 1.86 1.32 0.97 0.21 0.07 0.47

7 1.87 0.04 2.6 1.88 1 2.79 0.73 0.01 0.87 0.92

8 1.89 0.01 2.8 2.03 1.62 1.85 0.91 0.14 0.27 0.04

9 2.07 0.12 3.86 2.8 2.37 2.16 1.79 0.73 0.3 0.09

10 2.2 0.06 3.08 2.23 2.91 3.22 0.88 0.03 0.71 1.02

11 2.32 0.06 4.63 3.36 2.64 3 2.31 1.04 0.32 0.68

12 2.34 0.1 4.54 3.29 2.62 2.79 2.2 0.95 0.28 0.45

13 2.39 0.21 4.59 3.33 2.86 3.09 2.2 0.94 0.47 0.7

14 2.49 0.07 5.26 3.81 3.1 3.41 2.77 1.32 0.61 0.92

15 3.99 0.13 4.9 3.55 4.76 4.52 0.91 0.44 0.77 0.53

16 4.18 0.22 6.4 4.64 3.73 3.68 2.22 0.46 0.45 0.5

17 4.18 0.15 6.43 4.66 3.78 3.75 2.25 0.48 0.4 0.43

18 4.53 0.65 8.4 6.09 6.6 6.65 3.87 1.56 2.07 2.12

19 4.56 0.06 5.98 4.33 5.2 4.9 1.42 0.23 0.64 0.34

20 4.62 0.06 5.52 4 5 4.99 0.9 0.62 0.38 0.37

21 5.05 0.13 6.77 4.91 5.71 5.68 1.72 0.14 0.66 0.63

22 5.13 0.19 6.27 4.54 5.62 5.74 1.14 0.59 0.49 0.61

23 5.15 0.26 6.98 5.06 3.97 5.7 1.83 0.09 1.18 0.55

24 5.46 0.1 6.09 4.41 5.36 5.55 0.63 1.05 0.1 0.09

25 5.9 0.03 7.75 5.62 5.49 4.9 1.85 0.28 0.41 1

26 6.11 0.15 6.72 4.87 5.84 5.71 0.61 1.24 0.27 0.4

27 6.12 0.12 6.17 4.47 5.53 5.61 0.05 1.65 0.59 0.51

28 6.38 0.29 7.51 5.44 6.42 6.38 1.13 0.94 0.04 0

29 6.47 0.08 7.77 5.63 6.47 6.72 1.3 0.84 0 0.25

30 6.49 0.09 7.09 5.14 6.4 6.29 0.6 1.35 0.09 0.2

31 6.64 0.1 10.19 7.38 6.14 6.67 3.55 0.74 0.5 0.03

32 6.69 0.11 9.95 7.21 5.64 6.59 3.26 0.52 1.05 0.1

33 6.92 0.24 6.2 4.49 5.68 5.84 0.72 2.43 1.24 1.08

34 7.23 0.01 6.3 4.57 11.8 11.29 0.93 2.66 4.57 4.06

35 7.25 0.11 8.36 6.06 6.83 7.09 1.11 1.19 0.42 0.16

36 7.31 0.04 8.92 6.46 7.72 7.44 1.61 0.85 0.41 0.13

37 7.57 0.65 13.45 9.75 8.26 8.59 5.88 2.18 0.69 1.02

38 7.62 0.15 12.05 8.73 8.34 7.83 4.43 1.11 0.72 0.21

39 7.65 0.32 10.72 7.77 7.84 7.98 3.07 0.12 0.19 0.33

40 7.71 0.34 8.27 5.99 7.74 7.74 0.56 1.72 0.03 0.03

41 7.71 0.11 8.86 6.42 7.81 7.67 1.15 1.29 0.1 0.04

42 7.92 0.11 8.59 6.22 7.95 8.21 0.67 1.7 0.03 0.29

43 8.28 0.33 15.02 10.88 9.32 9.28 6.74 2.6 1.04 1

44 8.36 0.15 10.79 7.82 8.48 8.6 2.43 0.54 0.12 0.24

45 8.45 0.23 10.92 7.91 7.76 8.08 2.47 0.54 0.69 0.37

(Continued)
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Table 1. (Continued)

Index JExp JSD JFievet J{Fievet:

Corrected}

J{ANN:

logistic}

J {ANN:

tanh}

Difference_[JExp :

JFievet]

Difference_[JExp : J{Fievet:

Corrected}]

Difference_[JExp :

J{ANN:logistic}]

Difference_[JExp :

J{ANN:tanh}]

46 8.46 0.11 10.49 7.6 8.03 7.43 2.03 0.86 0.43 1.03

47 8.5 0.09 8.97 6.5 8.05 8 0.47 2 0.45 0.5

48 8.9 0.06 10.03 7.27 8.94 9.2 1.13 1.63 0.04 0.3

49 8.96 0.08 10.55 7.64 9.03 8.91 1.59 1.32 0.07 0.05

50 9.08 0.35 10.97 7.95 8.56 8.85 1.89 1.13 0.52 0.23

51 9.24 0.04 8.74 6.33 9.4 9.55 0.5 2.91 0.16 0.31

52 9.31 0.1 15.81 11.46 11.75 11.71 6.5 2.15 2.44 2.4

53 9.35 0.46 12.43 9.01 9.64 9.39 3.08 0.34 0.29 0.04

54 9.39 0.22 12.52 9.07 9.59 9.51 3.13 0.32 0.2 0.12

55 9.5 0.18 14.66 10.62 9.7 9.67 5.16 1.12 0.2 0.17

56 9.68 0.14 15.84 11.48 10.05 9.53 6.16 1.8 0.37 0.15

57 9.7 0.55 13.13 9.51 10.11 9.39 3.43 0.19 0.41 0.31

58 9.72 0.18 13.77 9.98 10.53 10.46 4.05 0.26 0.81 0.74

59 9.73 0.11 13.23 9.59 10.13 10.11 3.5 0.14 0.4 0.38

60 9.74 0.05 13.24 9.59 9.79 9.61 3.5 0.15 0.05 0.13

61 9.76 0.03 11.75 8.51 9.45 9.3 1.99 1.25 0.31 0.46

62 9.77 0.13 13.58 9.84 10.4 10.33 3.81 0.07 0.63 0.56

63 9.8 0.27 16.29 11.8 11.2 11.16 6.49 2 1.4 1.36

64 9.86 0.05 12.94 9.38 10.05 10.38 3.08 0.48 0.19 0.52

65 10.05 0.09 13.89 10.07 10.42 10.43 3.84 0.02 0.37 0.38

66 10.08 0.05 13.11 9.5 10.84 10.83 3.03 0.58 0.76 0.75

67 10.1 0.29 13.13 9.51 10.29 10.29 3.03 0.59 0.19 0.19

68 10.11 0.27 13.34 9.67 10.37 10.15 3.23 0.44 0.26 0.04

69 10.11 0.34 16.89 12.24 10.85 11.17 6.78 2.13 0.74 1.06

70 10.25 0.07 12.73 9.22 10.5 10.92 2.48 1.03 0.25 0.67

71 10.26 0.03 13.82 10.01 10.52 10.36 3.56 0.25 0.26 0.1

72 10.37 0.08 13.68 9.91 10.66 10.62 3.31 0.46 0.29 0.25

73 10.4 0.22 17.96 13.01 10.48 10.47 7.56 2.61 0.08 0.07

74 10.5 0.35 12.1 8.77 10.1 9.89 1.6 1.73 0.4 0.61

75 10.52 0.07 13.05 9.46 10.23 10.2 2.53 1.06 0.29 0.32

76 10.55 0.29 19.26 13.96 10.97 10.93 8.71 3.41 0.42 0.38

77 10.56 0.42 17.95 13.01 11.12 11.19 7.39 2.45 0.56 0.63

78 10.71 0.19 17.85 12.93 11.37 11.37 7.14 2.22 0.66 0.66

79 10.74 0.23 11.69 8.47 10.02 10.23 0.95 2.27 0.72 0.51

80 10.79 0.24 17.82 12.91 11.41 11.41 7.03 2.12 0.62 0.62

81 10.8 n,d, 17.51 12.69 11.86 11.57 6.71 1.89 1.06 0.77

82 10.82 0.19 13.48 9.77 10.91 11.76 2.66 1.05 0.09 0.94

83 10.88 0.3 16.88 12.23 9.96 10.08 6 1.35 0.92 0.8

84 10.9 0.14 15.48 11.22 11.28 11.11 4.58 0.32 0.38 0.21

85 10.95 0.26 18.48 13.39 10.9 11 7.53 2.44 0.05 0.05

86 11.01 0.16 17.59 12.75 11.14 10.84 6.58 1.74 0.13 0.17

87 11.03 0.16 13.48 9.77 11.77 10.22 2.45 1.26 0.74 0.81

88 11.05 0.29 18.2 13.19 11.38 11.41 7.15 2.14 0.33 0.36

89 11.08 0.25 14.92 10.81 11.05 10.79 3.84 0.27 0.03 0.29

90 11.11 0.07 17.06 12.36 11.42 11.33 5.95 1.25 0.31 0.22

(Continued)
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Table 1. (Continued)

Index JExp JSD JFievet J{Fievet:

Corrected}

J{ANN:

logistic}

J {ANN:

tanh}

Difference_[JExp :

JFievet]

Difference_[JExp : J{Fievet:

Corrected}]

Difference_[JExp :

J{ANN:logistic}]

Difference_[JExp :

J{ANN:tanh}]

91 11.19 0.22 14.36 10.41 9.42 9.52 3.17 0.78 1.77 1.67

92 11.22 0.1 13.93 10.09 11.31 11.46 2.71 1.13 0.09 0.24

93 11.33 0.38 16.17 11.72 11.9 11.98 4.84 0.39 0.57 0.65

94 11.39 0.24 13.61 9.86 11.16 11.15 2.22 1.53 0.23 0.24

95 11.45 0.49 16.86 12.22 11.81 11.69 5.41 0.77 0.36 0.24

96 11.45 0.21 17.14 12.42 11.68 11.65 5.69 0.97 0.23 0.2

97 11.49 0.1 15.97 11.57 11.73 11.71 4.48 0.08 0.24 0.22

98 11.52 0.08 13.61 9.86 10.23 10.22 2.09 1.66 1.29 1.3

99 11.54 0.07 14.93 10.82 10.41 10.78 3.39 0.72 1.13 0.76

100 11.55 0.16 15.71 11.38 11.32 11.42 4.16 0.17 0.23 0.13

101 11.56 0.23 17.45 12.64 11.79 11.8 5.89 1.08 0.23 0.24

102 11.57 0.29 16.13 11.69 11.4 11.46 4.56 0.12 0.17 0.11

103 11.58 0.06 16.85 12.21 11.53 11.67 5.27 0.63 0.05 0.09

104 11.6 0 19.32 14 11.66 11.44 7.72 2.4 0.06 0.16

105 11.63 0.14 13.48 9.77 10.23 10.94 1.85 1.86 1.4 0.69

106 11.64 0.05 18.64 13.51 11.46 11.33 7 1.87 0.18 0.31

107 11.7 0.3 14.94 10.83 10.87 10.79 3.24 0.87 0.83 0.91

108 11.75 0.1 17.04 12.35 11.32 11.39 5.29 0.6 0.43 0.36

109 11.79 0.08 17.5 12.68 11.48 11.3 5.71 0.89 0.31 0.49

110 11.85 0.21 18.97 13.75 11.23 11.61 7.12 1.9 0.62 0.24

111 11.9 0.14 17.09 12.38 11.74 11.73 5.19 0.48 0.16 0.17

112 12.05 0.07 14.68 10.64 11.47 11.61 2.63 1.41 0.58 0.44

113 12.07 0.81 18.22 13.2 10.57 9.6 6.15 1.13 1.5 2.47

114 12.15 0.22 17.11 12.4 10.8 10.87 4.96 0.25 1.35 1.28

115 12.23 0.13 16.53 11.98 11.56 11.25 4.3 0.25 0.67 0.98

116 12.28 0.13 14.77 10.7 11.82 11.53 2.49 1.58 0.46 0.75

117 12.35 0.21 14.61 10.59 11.94 11.74 2.26 1.76 0.41 0.61

118 12.47 0.17 17.1 12.39 11.57 11.58 4.63 0.08 0.9 0.89

119 12.63 0.15 16.91 12.25 11.72 11.63 4.28 0.38 0.91 1

120 12.65 0.21 14.5 10.51 10.64 11.24 1.85 2.14 2.01 1.41

121 12.9 0.53 16.79 12.17 11.42 11.53 3.89 0.73 1.48 1.37

Average difference between observed and predicted 3.32 1.05 0.57 0.57

Standard deviation of the difference between observed and

predicted

2.14 0.78 0.63 0.57

https://doi.org/10.1371/journal.pone.0216178.t001
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