
INTRODUCTION

Methylation of DNA is important in the genetic regula-
tion of mammalian cells. CpG islands are GC-rich areas of
the genome corresponding to the promoter regions of genes
and are associated with transcriptional activity (1). The methyl-
ation status of these CpG islands has been shown to be in-
volved with oncogene activation and tumor suppressor gene
inactivation. Hypermethylation of CpG islands in the tumor
suppressor gene p15INK4B, p16/CDKN2, and VHL (von Hip-
pel-Lindau) occurs frequently in various types of human
malignancies (2-4).

Previous studies on the p16 gene in genitourinary cancer
cell lines showed that aberrant methylation as well as genetic
mutation could be an important mechanism for the inacti-
vation of the p16 gene (5, 6). This finding raised the ques-
tion whether an epigenetic component such as DNA methyl-
ation might play a role in the transcriptional silencing of
other tumor-related genes in the genitourinary cancer cell
lines. The question prompted us to define the role of DNA
methylation in the regulation of tumor-related genes in gen-
itourinary cancers.

A recent study on the profile of promoter hypermethyla-
tion for 12 genes (p16INK4A, p15INK4B, p14ARF, p73, APC,
BRCA1, hMLH1, GSTP1, MGMT, CDMI, TIMP3, and

DAPK) in 15 major tumor types revealed one or more of the
genes are hypermethylated in every tumor types (7). How-
ever, the profile of promoter hypermethylation for the genes
differs in each cancer type, providing a tumor type- and gene-
specific profile. Transcriptional inactivation of MGMT by
DNA methylation occurs in a wide spectrum of human
tumors (8), whereas that of GSTP1 is characteristic of steroid-
related neoplasms such as breast, liver, and prostate cancers
(9, 10). Hypermethylation of the mismatch repair gene
hMLH1 is restricted to the sporadic tumors with microsatel-
lite instability (11-14). Thus, a combined methylation ana-
lysis of these three genes may contribute to develope molec-
ular detection strategies for virtually every form of human
cancers (12).

E-cadherin (E-cad) and VHL can be other candidate genes
for the detection of the major human cancers. A previous
study has demonstrated that the frequent loss of E-cadherin
expression in human carcinomas, such as breast, prostate,
and gastric cancer, results from hypermethylation of the E-
cadherin promoter region (15). Mutations in the VHL tumor
suppressor gene are found in 55% to 70% of clear cell renal
cell carcinomas. Originally, VHL was identified in families
with a VHL disease, a rare hereditary multitumor syndrome
(16). However, recent studies defined the inactivation of VHL
gene as a likely initiating event in human carcinoma (3, 17).
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Hypermethylation of Tumor-related Genes in Genitourinary Cancer
Cell Lines 

Hypermethylation of CpG island is a common mechanism for the inactivation of
tumor-related genes. In the present study, we analyzed 13 genitourinary cancer
cell lines for aberrant DNA methylation of 5 tumor-related genes using methyla-
tion-specific polymerase chain reaction (MSP). GSTP1 was methylated in 5
(38.5%), E-cadherin in 1 (8%), VHL in 1 (8%), and MGMT and hMLH1 in none
(0%). Six out of thirteen genitourinary cancer cell lines had methylation of at least
one of five genes; 5 had one gene methylated, and, 1 had two genes methylated.
Methylation of these 5 genes was not detected in any of the bladder cancer cell
lines. GSTP1 was methylated in all of the 3 prostate cancer cell lines. We conclude
that aberrant hypermethylation may be an important mechanism for the inactiva-
tion of cancer-related genes in kidney and prostate cancer cell lines.
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The identification of genes targeted by hypermethylation
may provide insights into the mechanisms for the inactiva-
tion of tumor-suppressive pathways in genitourinary cancer.
In addition, hypermethylated genes may serve as targets for
the development of novel screening tests for cancer (18). In
the present study, we examined the aberrant methylation
status of five tumor-related genes in 13 genitourinary cancer
cell lines by methylation-specific PCR (MSP) method.

MATERIALS AND METHODS

Cell cultures

Thirteen genitourinary cell lines were used. Their primary

sites and characteristics are shown in Table 1. The cell lines
T24, Caki-1, Caki-2, DU145, and LNCaP were provided
by American Type Culture Collection (ATCC, Rockville,
U.S.A.). The other cell lines were obtained from Korean Cell
Line Bank (KCLB, Seoul, Korea). T24, Caki-1, and Caki-2
were grown in McCoy’s 5a media containing 10% heat-
inactivated fetal bovine serum (FBS). Du145 was grown in
MEM medium supplemented with 10% FBS, and the others
were cultured in RPMI 1640 media containing 10% FBS.
The cultures were kept in a 37℃, humidified chamber con-
taining 5% CO2.

DNA isolation

Genomic DNA was obtained from these cell cultures in
late log-phase growth at 75-80% confluence. Cell monolay-
ers were washed in phosphate-buffered saline and lysed in 3
mL DNA extraction buffer (0.5% sodium dodecyl sulfate
(SDS), 10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA (pH 8.0).
Proteinase K (20 mg/mL) was added and the samples were
incubated at 50℃ for 2 hr. DNA was extracted with phenol
and chloroform followed by ethanol precipitation.

Bisulfite modification for MSP

DNA methylation patterns in the CpG island of the target
genes were determined by chemical modification of unmethy-
lated, but not the methylated, cytosines to uracils, and sub-
sequent PCR using primers specific for either methylated or
modified unmethylated DNA (19). Primer sequences and
annealing temperatures are shown in Table 2. One microgram
of DNA was denatured by NaOH and modified by sodium

Cell line Primary site Histopathology

T24 Bladder Transitional cell carcinoma
J82 〃 Transitional cell carcinoma
5637 〃 Carcinoma
HT-1197 〃 Carcinoma
HT-1376 〃 Carcinoma
ACHN Kidney Renal cell adenocarcinoma
Caki-1 〃 Clear cell carcinoma: metastasis to skin
Caki-2 〃 Clear cell carcinoma
A-498 〃 Carcinoma
A-704 〃 Adenocarcinoma
DU145 Prostate Brain metastasis
LNCaP 〃 Lymph node metastasis
PC-3 〃 Bone metastasis

Table 1. Primary sites and histopathology of the cell lines

Primer set M/U S/AS Sequence (5′→3′) Size (bp) Annealing temp. (℃)

E-cad M S TTAGGTTAGAGGGTTATCGCGT
AS TAACTAAAAATTCACCTACCGAC

115 57

U S TAATTTTAGGTTAGAGGGTTATTGT
AS CACAACCAATCAACAACACA 97 53

VHL M S TGGAGGATTTTTTTGCGTACGC
AS GAACCGAACGCCGCGAA 158 60

U S GTTGGAGGATTTTTTTGTGTATGT
AS CCCAAACCAAACACCACAAA 165 60

MGMT M S TTTCGACGTTCGTAGGTTTTCGC
AS GCACTCTTCCGAAAACGAAACG 81 59

U S TTTGTGTTTTGATGTTTGTAGGTTTTTGT
AS AACTCCACACTCTTCCAAAAACAAAACA 93 59

hMLH1 M S ACGTAGACGTTTTATTAGGGTCGC
AS CCTCATCGTAACTACCCGCG 112 60

U S TTTTGATGTAGATGTTTTATTAGGGTTGT
AS ACCACCTCATCATAACTACCCACA 124 60

GSTP1 M S TTCGGGGTGTAGCGGTCGTC
AS GCCCCAATACTAAATCACGAC 91 55

U S GATGTTTGGGGTGTAGTGGTTGTT
AS CCACCCCAATACTAAATCACAACA 97 55

Table 2. PCR primers used for methylation-specific PCR

M, methylated; U, unmethylated; S, sense strand; AS, antisense strand
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bisulfite. DNA samples were then purified using Wizard
DNA purification resin (Promega), treated with NaOH
again, precipitated with ethanol, and resuspended in water.
Ten microliters of each PCR product was directly loaded
onto 2% agarose gels, stained with ethidium bromide, and
visualized by a UV transilluminator.

RESULTS

Thirteen genitourinary cancer cell lines were analyzed for

the promoter hypermethylation of 5 cancer-related genes.
After the bisulfite modification of DNA, MSP was employed
for the detection of methylated and unmethylated DNA
sequences of the target genes (20). Methylation of each CpG
site of these genes was determined by the presence of uncon-
verted cytosines. The unmethylated form of each gene was
detected in each of the 13 cell lines. Significant hyperme-
thylation of GSTP1 was observed in 5 cell lines (38.5%).
Hypermethylation of E-cadherin and VHL was observed in
only one cell line each. No methylated templates of MGMT
and hMLH1 were detected by MSP in all 13 cell lines. The
bands that represented the unmethylated forms, especially

Fig. 1. Methylation analyses of the promoter region CpG islands
of five genes in bladder cancer cell lines by methylation-specif-
ic PCR. The cell lines are designated on the left side of each
panel. The PCR products in lanes marked U indicate unmethy-
lated genes; products in lanes marked M indicate  hypermethy-
lated genes. Lane M represents 100-bp DNA marker. 
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Fig. 2. Methylation analyses of the promoter region CpG islands
of five genes  in renal cancer cell lines by methylation-specific
PCR. The cell lines are designated on the left side of each
panel. The PCR products in lanes marked U indicate unmethy-
lated genes; products in lanes marked M indicate  hypermethy-
lated genes. Lane M represents 100-bp DNA marker.
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Fig. 3. Methylation analyses of the promoter region CpG islands
of five genes in prostate cancer cell lines by methylation-specif-
ic PCR. The cell lines are designated on the left side of each
panel. The PCR products in lanes marked U  indicate unmethy-
lated genes; products in lanes marked M indicate  hypermethy-
lated genes. Lane M represents 100-bp DNA marker. 
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Cell lines E-cad VHL MGMT hMLH1 GSTP1

Bladder T24 U U U U U
J82 U U U U U
5637 U U U U U
HT-1197 U U U U U
HT-1376 U U U U U

Kidney ACHN U U U M U
Caki-1 U U U U U
Caki-2 U U U U M
A-498 M U U U M
A-704 U M U U U

Prostate Du145 U U U U M
LNCaP U U U U M
PC-3 U U U U M

Table 3. Aberrant methylation of genitourinary cancer cell lines

U, unmethylated; M, methylated

Cell
line
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those for E-cadherin and MGMT, were faint. The detailed re-
sults of methylation for each gene in all cancer cell lines are
shown in Fig. 1, 2, and Fig. 3, and are summarized in Table 2.

In the present study, 6 out of 13 genitourinary cancer cell
lines showed hypermethylation of 1 to 2 genes out of 5 tar-
get genes (Table 3).

DISCUSSION

Methylation of the CpG islands of tumor suppressor genes
leading to their transcriptional inactivation is a highly con-
sistent feature of tumorigenesis. The studies of primary can-
cer cell lines indicate that methylation may constitute an
alternative mechanism for silencing tumor suppressor genes.

Our data demonstrated the distribution pattern of the
aberrant methylation of the tumor-related genes in geni-
tourinary cancer cell lines. Glutathione S-transferases (GST)
are a family of enzymes involved in the detoxification of
xenobiotics and oxygen radicals (21, 22). Recent studies
have demonstrated that the expression of the GSTP1 gene,
one of the GST isoenzymes, is controlled by DNA methyla-
tion (10). Hypermethylation of the GSTP1 promoter region
was found in 75% of mostly localized tumors (23). Quite
unexpectedly, the promoter region of the GSTP1 gene, which
is unmethylated in normal prostate and benign hyperplasia,
was found to be hypermethylated in carcinomas (24, 25).
This finding is intriguing because GSTP1 is not considered
a tumor suppressor gene. Whereas the other members of
the family become downregulated during tumorigenesis
(26, 27), GSTP1 is the most ubiquitously expressed isoen-
zyme and even overexpressed in some other cancers. The
recently developed technology of gene expression arrays has
been used to study the gene expression profile of solid tumors.
It appears that the gene expression profile, which includes
the type of genes expressed and the level of expression, is
altered in neoplasms. Of the genes that yielded significant
signals, GSTM1 showed a greater reduction in mRNA level
in prostate cancer specimens than in normal prostate speci-
mens (28). This result suggests that GST-based metabolism
is potentially important in cancers, and deserves further inves-
tigation. In our study, 3 out of 5 kidney cancer cell lines and
all of the 3 prostate cancer cell lines showed GSTP1 promoter
hypermethylation, suggesting hypermethylation of GSTP1
is an important factor for kidney and prostate tumorigene-
sis. Hypermethylation of the GSTP1 gene in primary renal
cancer tissue has not been reported previously, and further
studies with primary renal cancer samples are needed.

Gnarra et al. studied whether the changes of methylation
status in the CpG island of the VHL gene accounted for the
loss of expression of the gene (17). They observed a renal cell
culture line treated with 5-aza-2′-deoxycytidine resulted in
a re-expression of the VHL gene (17). To elucidate the role
of somatic alterations for the etiology and prognosis of renal

cancers, 227 sporadic renal epithelial tumors were analyzed
for mutations and hypermethylations in the VHL tumor
suppressor gene (3). VHL hypermethylations were identi-
fied in 13% of clear cell renal cell carcinomas (29). Another
study showed hypermethylation of the 5′region of this gene
in 5 of 26 (19%) clear cell renal cell carcinomas (17). In our
study, one out of 5 renal cancer cell line (1/5, 20%) showed
hypermethylation of the VHL gene.

Expression of the homotypic cell-to-cell adhesion molecule,
E-cadherin, suppresses tumor cell invasion and metastasis in
experimental tumor models. It has been demonstrated that
transcriptional inactivation of E-cadherin expression occurs
frequently during tumor progression, and that E-cadherin
expression in human cancer cells is regulated by CpG methyl-
ation around the promoter region. A previous study showed
that the loss of E-cadherin function contributes to progres-
sion of solid tumors such as breast (30) and gastric cancers
(31). In the present study, only one renal cancer cell line
showed hypermethylation of this gene. 

The DNA repair protein O6-methylguanine DNA methyl-
transferase (MGMT) removes alkyl adducts from a methyl
group to an active cytosine in its own sequence through a
reaction that inactivates the MGMT molecule itself for each
lesion repaired. The loss of expression of MGMT is rarely
due to genetic mutation, but due to methylation of discrete
regions of the CpG island of the gene has been associated
with the silencing of the gene in primary human neoplasia
(8) including brain, head and neck, gliomas, lung and colo-
rectal carcinomas. The tumors with silenced MGMT by
aberrant methylation include those with a frequent rate of
K-ras mutation, such as colon, lung, and head and neck car-
cinomas (32). This suggests that one potential consequence
of the loss of MGMT expression may be an increased suscep-
tibility to K-ras mutation. Bladder carcinomas are known to
be associated with a carcinogen exposure. However, in the
present study, aberrant hypermethylation of the MGMT pro-
moter region was not detected in any of the genitourinary
cancer cell lines.

The previous studies indicate that the aberrant hyper-
methylation of the hMLH1 promoter and the consequent
transcriptional silencing is a common event in the formation
of sporadic microsatellite unstable colon cancer (33). Others
have demonstrated a strong correlation between the presence
of hMLH1 hypermethylation and MSI+ tumors in colorec-
tal (12, 34), endometrial (13, 35), and gastric tumors (36),
and an absence of hMLH1 methylation in other tumor types
(13). The accurate proportion of hypermethylation of hMLH1
in genitourinary cancer has not been determined. In the pre-
sent study, none of the 13 genitourinary cancer cell lines
showed hypermethylation of hMLH1 promoter region.

Southern hybridization approaches reveal overall methy-
lation status of CpG islands, but can only provide informa-
tion about those CpG sites within the sequences recognized
by methylation-sensitive restriction enzymes (37). A more
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sensitive method of methylation-sensitive restriction enzyme
digestion followed by PCR is prone to false-positive results,
since any uncleaved DNA will be amplified by PCR to yield
a positive result for methylation. The chemical modification
of cytosine to uracil by bisulfite treatment and direct sequenc-
ing is not only technically difficult but also labor-intensive
and less sensitive than Southern analysis. Recently described
bisulfite-based PCR method called MSP is an excellent alter-
native, but it is usually a qualitative, rather than quantita-
tive method. Several investigators have developed genome-
scanning techniques sensitive to DNA methylation to gain
appreciation of the genome-wide changes occurring within
various cancers (38). These quantitative MSP can be applied
to elucidate diverse biological processes involving DNA
methylation and therefore is believed to provide more accu-
rate information about the effect of aberrant methylation on
carcinogenesis.

From the results of the present study, we conclude that
aberrant hypermethylation may be a common mechanism
to inactivate cancer-related genes in kidney and prostate can-
cer cell lines. The exact nature of the methylation defect in
cancer cells should be defined by further studies employing
quantitative MSP.
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