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Abstract: The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in one-third of patients with de novo
acute myeloid leukemia (AML). Mutated FLT3 variants are constitutively active kinases signaling
via AKT kinase, MAP kinases, and STAT5. FLT3 inhibitors have been approved for the treatment
of FLT3-mutated AML. However, treatment response to FLT3 inhibitors may be short-lived, and
resistance may emerge. Compounds targeting STAT5 may enhance and prolong effects of FLT3
inhibitors in this subset of patients with FLT3-mutated AML. Here STAT5-inhibitor AC-4-130, FLT3
inhibitor midostaurin (PKC412), BMI-1 inhibitor PTC596, MEK-inhibitor trametinib, MCL1-inhibitor
S63845, and BCL-2 inhibitor venetoclax were assessed as single agents and in combination for their
ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of
bone marrow stroma. Synergistic effects on cell viability were detected in both FLT3-mutated and
FLT3-wild-type AML cells treated with AC-4-130 in combination with the MCL1 inhibitor S63845.
AML patient samples with a strong response to AC-4-130 and S63845 combination treatment were
characterized by mutated FLT3 or mutated TET2 genes. Susceptibility of AML cells to AC-4-130,
PTC596, trametinib, PKC412, and venetoclax was altered in the presence of HS-5 stroma. Only the
MCL1 inhibitor S63845 induced cell death with equal efficacy in the absence or presence of bone
marrow stroma. The combination of the STAT5-inhibitor AC-4-130 and the MCL1 inhibitor S63845
may be an effective treatment targeting FLT3-mutated or TET2-mutated AML.

Keywords: acute myeloid leukemia (AML); hematological malignancies; FMS-like tyrosine kinase 3
(FLT3); signal transducer and activator of transcription 5 (STAT5); ten-eleven translocation-2 (TET2);
tumor suppressor p53 (TP53); myeloid leukemia cell differentiation protein (MCL1)

1. Introduction

FMS-like tyrosine kinase 3 (FLT3) is an inducible growth factor receptor signaling via
PI3K-PDK1-AKT and via RAS-RAF-MEK-ERK leading to cell growth and proliferation [1,2].
Mutations of the FLT3 gene are detected in around a third of patients with de novo acute
myeloid leukemia (AML). Mutated FLT3 variants are constitutively active kinases signaling
via AKT and MAP kinases, and as a gain of function via STAT5 [3]. The FLT3 inhibitor
midostaurin was approved together with intensive chemotherapy for first-line treatment
of FLT3-mutated AML by the FDA in 2017, and was also authorized for use in the EU.
However, treatment response to FLT3 inhibitors may be short-lived, and leukemia relapse
is the major cause of treatment failure, as resistance may frequently emerge [4]. Moreover,
the stromal microenvironment provides an escape route from FLT3 inhibitors through the
GAS6-AXL-STAT5 axis [5,6].

STAT5 refers to two highly related genes, STAT5A and STAT5B, which are both located
on human chromosome 17 [7]. STAT5 proteins are not only activated by a wide variety of
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ligands that control proliferation, survival, and cell communication, but their dysregulation
also facilitates tumor progression in various human cancers, particularly leukemia and
lymphoma [8]. The STAT5 proteins are key downstream transcription factors in FLT3-
mutated AML. STAT5 inhibition was reported to be a promising strategy for FLT3-ITD+
AML treatment [5]. In AML cells, STAT5 can be activated by FLT3-ITD, but also by activated
cytokine receptors [3,7,9]. Myeloid cytokine receptors can be activated by granulocyte and
macrophage colony-stimulating factors (G-CSF, GM-CSF, M-CSF), stem cell factor (SCF),
thrombopoetin (THPO), and interleukins. These cytokines are secreted by bone marrow
stroma cells to support the growth of normal hematopoietic stem and progenitor cells in
the bone marrow. The same cytokines will also support the growth of leukemic stem and
progenitor cells in the bone marrow. In normal cord blood cells, STAT5 phosphorylation can
be efficiently induced by THPO, IL-3, and GM-CSF. SCF-induced STAT5 phosphorylation
is largely restricted to the megakaryocyte–erythroid progenitor (MEP) compartment, while
G-CSF, as well as IL-3 and GM-CSF, are most efficient in inducing STAT5 phosphorylation
in the myeloid progenitor compartments [10]. Stromal cells can induce multidrug resistance
in AML cells via upregulation of the PI3K/Akt signaling pathway, or via upregulation of
STAT3 signaling [11,12].

Compounds directly targeting STAT5 canonical functions may inhibit dimerization,
DNA binding, or transcriptional activity. The mechanisms of direct STAT5 inhibition
include disruption of tyrosine phosphorylation, dimerization, nuclear translocation, and/or
DNA binding. Targeting the SH2 domain was, therefore, the main focus for the design and
identification of selective inhibitors [13]. AC-4-130 directly binds to the STAT5 SH2 domain
and disrupts STAT5 activation, dimerization, nuclear translocation, and STAT5-dependent
gene transcription [14]. AC-4-130 impairs the proliferation and clonogenic growth of
human AML cell lines and primary FLT3-ITD+ AML patient cells in vitro and in vivo.
Activated STAT5 can block apoptosis via induction of BCL-2 and MCL-1 proteins [15,16].
The BCL2 inhibitor venetoclax was approved by the FDA in 2018 in combination with
azacitidine, decitabine, or cytarabine for the treatment of newly diagnosed acute myeloid
leukemia (AML) in adults who are 75 years or older, or who have comorbidities that
preclude use of intensive induction chemotherapy. The MCL1 inhibitor S63845 was effective
in combination with the MEK inhibitor trametinib in hematological cells with elevated
MCL1- and MEK-protein levels, independent of the mutational status of FLT3 and TP53 [17].

Here, we assessed the STAT5-inhibitor AC-4-130, FLT3 inhibitor midostaurin, BMI-1
inhibitor PTC596, MEK-inhibitor trametinib, MCL1-inhibitor S63845, and BLC2 inhibitor
venetoclax as single agents and in combination for their ability to induce apoptosis and cell
death in leukemic cells grown in the absence or presence of bone marrow stroma. AML
cells represented all major morphologic and molecular subtypes with normal karyotype,
including FLT3 mutated or wild-type, NPM1 mutated or wild-type, as well as TP53 mutated
or wild-type cells.

2. Results
2.1. Susceptibility of AML Cell Lines Grown in the Absence or Presence of HS-5 Stroma Cells to
AC-4-130 and Venetoclax

To determine the sensitivity of AML cells to the STAT5 inhibitor AC-4-130, AML cells
were subjected to in vitro cytotoxicity assays. AML cells were treated with the compound
for 20 h in dose-escalation experiments before cell-viability assessment. Cell viability was
also determined in AML cells grown in the presence of bone marrow stroma cells secreting
granulocyte and macrophage colony-stimulating factors (G-CSF, GM-CSF, M-CSF), and
other cytokines thereby inducing STAT signaling. The AML cell lines covered the major
morphologic and molecular subtypes including, particularly, FLT3 mutated or wild-type,
NPM1 mutated or wild-type, as well as TP53 wild-type, mutated, hemizygous, and null
cells (Table 1).
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Table 1. Genetic variants in acute myeloid leukemia (AML) cell lines.

ID FAB Origin FLT3 TP53 Gene Variants Karyotype

HL-60 M2 de novo wt null CDKN2A R80X
NRAS Q61L hypotetraploid

ML-2 M4 de novo wt wt KMT2A-AFDN
KRAS A146T t(6;11)

MOLM-13 M5a, relapse MDS ITD wt KMT2A-MLLT3 t(9;11)

MOLM-16 M0, relapse de novo wt V173M
C238S

MLL V1368L
MTOR T571K hypotetraploid

OCI-AML3 M4 de novo wt wt
NRAS Q61L

NPM1 L287fs
DNMT3A R882C

+1, +5, +8

SKM-1 M5, refractory MDS wt R248Q
R248Q

ASXL1 Y591X
KRAS K117N
TET2 C1419fs

del9q12

AML, acute myeloid leukemia; MDS, myelodysplastic syndrome. FAB, French-American-British classification.

The susceptibility to AC-4-130 was elevated in TP53-mutated SKM-1 cells, with IC50 of
0.7 µM; intermediate in TP53 wild-type MOLM-13 and ML-2 cell lines, with IC50 values of
3 µM; reduced in the TP53-mutant MOLM-16 and TP53 wild-type cell line OCI-AML3, with
IC50 values of 10 µM; and very low in the TP53 null HL-60 cells (Figure 1A). In the presence
of stroma cytokines, the susceptibility to AC-4-130 was enhanced in SKM-1 cells, with IC50
at 0.5 µM; and reduced in MOLM-13 and ML-2, with IC50 at 4.4 µM and 10 µM, respectively
(Figure 1B). The sensitivity of AML cell lines to BMI1 inhibitor PTC596, MEK-inhibitor
trametinib, and MCL1-inhibitor S63845 was determined in previous studies [17,18]. To
determine the sensitivity of the AML cell lines to the BCL2 inhibitor venetoclax, dose-
escalation experiments were performed. The susceptibility to venetoclax was elevated in
ML-2 and MOLM-13, with IC50 values of 0.3 and 0.8 µM, respectively; intermediate in HL-
60; and very low in SKM-1, MOLM-16, and OCI-AML3 cells, with IC50 > 10 µM (Figure 1C).
In the presence of stroma cytokines, the susceptibility to venetoclax was much enhanced in
SKM-1 cells, with IC50 of 0.4 µM, in OCI-AML3 with IC50 of 1.2 µM, and reduced in ML-2
with IC50 of 4 µM (Figure 1D). In order to define the most effective treatment combinations,
we focused on inhibitors expected to elicit synergistic effects in combination with AC-4-130
based on previous studies with BMI1, FLT3, MCL1- and MEK inhibitors [17–20], as well as
the BCL2 inhibitor venetoclax, as indicated in Figure 2.

Figure 1. Dose-response curves of AML cell lines. AML cells were treated with the STAT5 inhibitor AC-4-130 (A,B) or the
BCL2 inhibitor venetoclax (C,D) for 20 hours in the absence (A,C) or in the presence (B,D) of HS-5 stroma cells. Cell-viability
data are average values of multiple repeat measurements per dosage. The standard deviation was 3–6%.
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Figure 2. Schematic representation of STAT5 signaling pathways in myeloid cells. STAT5 can be activated by FLT3-ITD
and by cytokine receptor signaling via Janus tyrosine kinases (JAKs). FLT3-ITD is a constitutively active growth factor
receptor signaling via PI3K-AKT [2], via RAS-MEK-ERK [3], and via STAT5 [16], leading to cell growth and proliferation
via p53 inhibition and MCL1 induction. Hematopoietic cytokine receptor signaling is largely mediated by JAKs and their
downstream transcription factors, the STATs [7]. Mutations in the tumor suppressors IDH1/2 and TET2 may be functionally
equivalent [21]. The tumor suppressor FoxP3 may inhibit AKT and its downstream target MCL-1 [22,23]. Oncogenic
functions are indicated in red, tumor suppressor functions in green, and chemical inhibitors in pink.

2.2. AC-4-130 Combination Treatment in AML Cell Lines

Cell viability was determined in AML cell lines treated with increasing dosages of
single compounds and in combination treatments using the STAT5 inhibitor AC-4-130
and a variety of targeted therapies, including the BMI-1 inhibitor PTC596, the MCL1
inhibitor S63845, and the MEK inhibitor trametinib (Figure 3). Combination indexes were
calculated according to Chou Talalay (Table 2). Some cell lines were additionally treated
with AC-4-130 in combination with the FLT3-ITD inhibitor PKC-412 (midostaurin) or
the BCL2 inhibitor venetoclax. Synergistic effects were present in TP53 mutated cell line
SKM-1 treated with AC-4-130 and PTC596, trametinib, S63845, or venetoclax (Figure 3A,
Figure S1). For the FLT3-ITD cell line MOLM-13, response to combination treatments was
detected with moderate synergy with AC-4-130 in combination with PKC-412, S63845, or
venetoclax, as well as additive effects with AC-4-130 in combination with PTC596, and
antagonistic effects in the combination of AC-4-130 with trametinib (Figure 3B, Figure S1).
The FLT3 and TP53 wild-type cell line ML-2 response was moderately synergistic to AC-4-
130 in combination with S63845, and mildly synergistic in combination with trametinib or
venetoclax (Figure S1).
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Figure 3. Susceptibility of SKM-1 and MOLM-13 AML cells to various treatment combinations. Cell
viability was determined by AML cells grown in the absence (A,B) and in the presence (C,D) of
HS-5 stroma cells. SKM-1 (A,C) and MOLM-13 (B,D) cells were treated for 20 hours with single
compounds and in combination with AC-4-130 (AC, yellow) and PTC596 (P, red), S63845 (S, blue), or
trametinib (T, pink). Concentrations of inhibitors are nM for PTC596, S63845, and trametinib, and
µM for AC-4-130. All values are in reference to mock-treated cells (=100% viability).

Table 2. Combination index values in AML cell lines.

AML
Cell Line

HS-5
Stroma

AC-4-130
+PTC596

AC-4-130
+Trametinib

AC-4-130
+S63845

AC-4-130
+PKC412

AC-4-130
+Venetoclax

SKM-1 absent 0.6–0.8 0.6–0.8 0.7–0.9 nd 0.4–0.6
present 1.0–1.2 0.8–1.0 1.1–1.3 nd 0.5–0.7

MOLM-13 absent 0.9–1.1 1.2–1.7 0.8–1.0 0.4–0.6 0.6–0.8
present 0.6–0.8 nc 0.8–1.0 0.4–0.6 0.8–0.9

Combination indexes were calculated according to Chou Talalay [24]. Interpretation of combinatorial effects. Strong synergy CI = 0.1–0.3,
moderate synergy CI = 0.3–0.7, mild synergy CI = 0.7–0.9, additive CI = 0.9–1.1, antagonism CI > 1.1. nc, not calculable; nd, not determined.

2.3. Changed Susceptibility of AML Cell Lines to Combination Treatment with AC-4-130 in the
Presence of Bone Marrow Stroma

To investigate the elevated susceptibility of FLT3 wild-type SKM-1 compared to
FLT3-mutated MOLM-13 cells to AC-4-130, cell viability was determined in AML cells
grown in the presence of bone marrow stroma cells secreting granulocyte and macrophage
colony-stimulating factors (G-CSF, GM-CSF, M-CSF), and other cytokines thereby inducing
STAT signaling. The STAT5 inhibitor AC-4-130 was more effective in SKM-1 (Figure 3C,
Figure S1), and less effective in MOLM-13 cells grown in the presence of HS-5 stroma
(Figure 3D), indicating a moderate cell- and context-specific dependence of STAT5 signaling.
The BMI1 inhibitor PTC596 was more effective in SKM-1 and less effective in MOLM-13 cells
grown in the presence of HS-5 cells, indicating an elevated cell and context dependence
of BMI1 signaling. The BCL2 inhibitor venetoclax was more effective in SKM-1 and
less effective in ML-2 cells in the presence of HS-5 stroma (Figure S1), indicating a cell
and context dependence of BCL2 function. In contrast, the MCL1 inhibitor S63845 had
similar efficacy in SKM-1 and MOLM-13 cells independent of HS-5 presence. The elevated
susceptibility of SKM-1 cells to AC-4-130 may be due to dominant signaling of cytokine
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receptors via STAT5 in this cell line. SKM-1 cells’ response to the BCL2 inhibitor was
very low in the absence, but substantial in the presence of HS-5 stroma, indicating BCL2
induction by cytokine receptor signaling in this cell line. In MOLM-13 cells, STAT5 signaling
is induced by FLT3-ITD. Here, the presence of stroma cytokines may have activated other
STAT proteins and reduced the susceptibility to the STAT5 inhibitor. In contrast to the
STAT5 inhibitor AC-4-130 and the BMI1 inhibitor PTC596, whose efficacies were cell- and
context-dependent, the MEK1 inhibitor trametinib was generally less effective in the AML
cells in the presence of HS-5 stroma (Figure 3). While susceptibility to the MEK inhibitor
trametinib was reduced in SKM-1 cells, MOLM-13 cells were resistant to trametinib in the
presence of stroma cytokines. MEK1 may activate STAT5 in SKM-1, but not in MOLM-13
cells. For the FLT3 inhibitor midostaurin (PKC412), the susceptibility of MOLM-13 cells
was reduced in the presence of HS-5 stroma. Because of the altered susceptibilities, the
effects of combination treatments on AML cells grown in the absence of HS-5 stroma were
altered in AML cells grown in the presence of HS-5 stroma (Table 2).

2.4. Induction of Apoptosis and Cell Death in AML Cell Lines

The effects of treatment with AC-4-130 and PTC596, S63845, or trametinib alone and
in combination on induction of apoptosis, cell-cycle arrest, and cell death were determined
in cytometric assays (Figure 4A–F), while effects on the expression of STAT5 target genes
CDKN1A and BCL2 were determined by qRT-PCR (Figure 4G,H). Apoptosis and cell death
were strongly induced in MOLM-13 cells treated with AC-4-130 and further enhanced in
combination with the BMI1 inhibitor PTC596 (Figure 4A,B). Apoptosis and cell death were
also induced in MOLM-13 cells with AC-4-130 in combination with the FLT3 inhibitor mi-
dostaurin (PKC412) or the BCL2 inhibitor venetoclax (Figure 4C,D). Induction of apoptosis
and cell death were less pronounced in SKM-1 cells treated with AC-4-130 in combination
with trametinib, S63845, or PTC596 (Figure 4E). Here, the induction of cell-cycle arrest was
substantiated as G1 arrest in midostaurin-treated cells and G2 arrest in PTC596-treated
cells (Figure 4F), and evident in the induction of CDKN1A gene expression and reduction of
BCL2 gene expression in SKM-1 cells treated with AC-4-130 and trametinib (Figure 4G,H).

2.5. AC-4-140 Combination Treatments in Leukemic Cells In Vitro

After initial studies in AML cell lines, the treatment combinations of AC-4-130 with
PTC596, trametinib, or S63845 were applied to patient-derived hematological cells. Primary
cells of a variety of hematological malignancies were included to determine the specificity
of the treatment combinations. A total of 18 AML, 1 MDS, 2 multiple myeloma (MM),
2 B-ALL, and 1 CML, as well as PBMCs of 4 healthy donors (HD), were subjected to single-
compound and combination treatments (Table 3). Treatment with the STAT5 inhibitor
AC-4-130 (2 µM) on its own had minimal effects on cell viability (Figure S2). Treatment
with the BMI inhibitor PTC596 on its own or in combination with AC-4-130 had minimal
effects on cell viability (Figure S2A). The cytotoxic effects induced by trametinib (100 nM)
treatment were significant in a few AML samples, but not further enhanced in combination
with AC-4-130 (Figure S2B). Cytotoxic effects induced by treatment with the MCL1 inhibitor
S63845 (100 nM) were significant in 12 AML, the MDS sample and 1 B-ALL, with further
enhancement in combination with AC-4-130 (Figure S2C). Treatment with the FLT3 inhibitor
midostaurin (PKC412) on its own or in combination with AC-4-130 had minimal effects
on cell viability (Figure S2D). Treatment with the BCL2 inhibitor venetoclax on its own
had significant effects on cell viability in half of the tested AML samples, with further
enhancement in combination with AC-4-130 (Figure S2E).

Compared to the healthy donor cells, the tested patient samples split into two groups
with respect to response to combination treatment with AC-4-130 and S63845 (Figure 5).
Cell viability was reduced to 75% in healthy donor cells, to 80% in AML cells with normal
response (NR), and to 40% in AML cells with strong response (SR). The AML samples
with strong response to AC-4-130 and S63845 combination treatment comprised eight FLT3
mutated, six TET2 mutated AML, and one AML with IDH2 and DNMT3A mutations. One
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of the secondary AMLs susceptible to the combination of AC-4-130 and S63845 carried
a TP53 mutation with a variant allele frequency of 5%, while two AMLs less susceptible
to this combination treatment carried TP53 mutations with a variant allele frequency of
50% and 92%. Of the two B-ALL samples, one was very susceptible to the combination of
AC-4-130 and S63845, while the other one had a normal response. However, to determine
whether this treatment combination may be effective in B-ALL, a wider array of ALL
samples would have to be tested.

Figure 4. Induction of apoptosis and cell death in AML cells treated with AC-4-130 alone and in combination with targeted
compounds. Cytometric analysis of MOLM-13 cells treated for 20 h with AC-4-130 alone and in combination with PTC596
(A,D), PKC412 or venetoclax (B,E) to measure induction of apoptosis using annexinV and PI staining (A,B), and induction
of cell-cycle arrest and cell death (subG1 fraction) using DAPI staining (B,E). Cytometric analysis of SKM-1 cells treated
for 20 h with AC-4-130 (AC) alone and in combination with trametinib (T), S63845 (S), or PTC596 to measure induction of
apoptosis using annexinV and PI staining (C), and induction of cell-cycle arrest and cell death (subG1 fraction) using DAPI
staining (F). Relative quantitation of STAT5A target genes CDKN1A and BCL2 in SKM-1 cells treated for 20 hours with
AC-4-130 and trametinib (G,H). Concentrations of inhibitors were nM for PKC412 (PKC), PTC596 (P), S63845 (S), trametinib
(T), and venetoclax (VC), and uM for AC-4-130 (AC). Cells were grouped into four categories each: low- and high-intensity
signal in Annexin staining (Ann lo, Ann hi), and low- and high-intensity signal in PI staining (PI lo, PI hi). DNA content in
DAPI staining < 2n, 2n, >2n, 4n (subG1, G0/G1, S, G2).
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Table 3. Clinical characteristics of hematological patient samples.

ID Disease FAB Antecedent Gene Variants Karyotype AC+S *

AML1 sAML M0 MDS EVI1 (overexpressed) −7 NR
AML2 AML M0 TP53 (VAF 92%) complex NR
AML3 sAML MDS CEPBA, ASXL1, EZH2, RUNX1 normal NR
AML4 sAML ET ASXL1, CALR, KMT2A (amp), TP53 (VAF 50%), 49, +der(11) NR
AML5 AML M5 FLT3-TKD (0.63), NPM1, DNMT3A normal SR

AML6 sAML M4 bicytopenia NPM1, FLT3-TKD (0.57), TET2, TP53
(VAF 5%), SRSF2 +8 SR

AML7 AML M5 ASXL1, TET2, KRAS, SH2B3, U2AF1 −7 SR
AML8 AML M5 FLT3-ITD (0.58), NPM1, DNMT3A normal SR
AML9 sAML M1 MDS NPM1, TET2, DNMT3A normal SR

AML10 AML M1 FLT3-ITD (0.833), NPM1 normal SR
AML11 AML M2 normal complex, −7,−9 NR
AML12 sAML MPN JAK2 normal NR
AML13 sAML M4 breast cancer NPM1, TET2 normal SR
AML14 AML M1 FLT3-ITD (>1.0), NPM1 normal SR
AML15 AML M4 FLT3-ITD (0.504), NPM1 normal SR
AML16 AML M2 NPM1, IDH2, DNMT3A normal SR
AML17 AML M1 FLT-3-ITD (0.783), BCOR, TET2, U2AF1 del20q11, +8 SR

AML18 AML M4 FLT3-TKD (0.487), NRAS, KRAS,
KMT2A-MLLT10 t(10;11), +8 SR

MDS1 MDS TET2, ETV6, KRAS, SRSF2, CBL del7q SR
BA1 B-ALL IGH (rearranged) normal NR
BA2 B-ALL normal normal SR

CML1 CML BCR-ABL1 t(9;22) NR
MM1 MM normal NR
MM2 MM t(4;14) NR
HD n.a. normal normal NR

AML, acute myeloid leukemia; sAML, secondary AML; ALL, acute lymphoblastic leukemia; CML, chronic myeloid leukemia; ET, essential
thrombocytopenia; HD, healthy donor MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; MM, multiple myeloma. For
the FLT3 gene, the mutant allele ratio, and for the TP53 gene, the mutant allele frequency (VAF) are indicated in parentheses. * Response to
combination treatment with AC-4-130 and S63845; normal response (NR), strong response (SR).

Figure 5. Susceptibility of hematological cells in vitro to combination treatment with AC-4-130 and
S63845. Cell viability was determined in hematological cells after 20 h treatment with 2 µM AC-4-130
and 100 nM S63845The patient samples were sorted into two groups, one with normal response (NR)
and one with strong response (SR). Significance was calculated by Mann-Whitney test. Primary data
are presented in Figure S2.
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3. Discussion

As treatment response to FLT3 inhibitors may be short-lived, with leukemia relapse
as the major cause of treatment failure, compounds targeting STAT5 may enhance and
prolong effects of FLT3 inhibitors in this subset of patients with FLT3-mutated AML. To
characterize the susceptibility of various AML cell lines to the STAT5 inhibitor AC-4-130,
we performed a dose-escalation screening. Susceptibility to AC-4-130 varied in the tested
AML cell lines with elevated susceptibility of the TP53-mutated secondary AML cell line
SKM-1, intermediate susceptibility of the TP53 wild-type cell lines MOLM-13 and ML-2, as
well as reduced susceptibility of the TP53 wild-type cell line OCI-AML3, the TP53 mutated
MOLM-16, and the TP53 null cell line HL-60. The elevated susceptibility of the SKM-1
cell line was unexpected, as there is no mutated FLT3 activating STAT5 signaling in these
cells, and the presence of mutated tumor suppressor TP53 is often associated with chemo-
resistance. In view of the cell-viability studies in AML patient cells, the susceptibility
of SKM-1 cells to AC-4-130 may be due to the presence of a TET2 mutation in this cell
line. To investigate the elevated susceptibility of FLT3 wild-type SKM-1 compared to
FLT3-mutated MOLM-13 cells to AC-4-130, cell viability was determined in AML cells
grown in the presence of bone marrow stroma secreting granulocyte and macrophage
colony-stimulating factors (G-CSF, GM-CSF, M-CSF), and other cytokines thereby inducing
STAT5 signaling. In the presence of bone marrow stroma, AC-4-130 and the BMI1 inhibitor
PTC596 were more effective in SKM-1 cells and less effective in MOLM-13 cells, indicating
that the elevated susceptibility of SKM-1 cells to AC-4-130 and PTC596 may be due to
dominant signaling of cytokine receptors via STAT5 and via PI3K/AKT in this cell line.
In addition, co-culture with HS-5 stroma may induce the STAT5 target protein BCL2, as
has been suggested for HL-60 cells [25]. In contrast to AC-4-130 and PTC596, the MEK1
inhibitor trametinib and the FLT3 inhibitor PKC412 (midostaurin) were less effective in the
AML cells in the presence of HS-5 stroma. HS-5 stroma may induce resistance to FLT3 and
MEK inhibitors via upregulation of the PI3K/AKT signaling pathway [11]. Similar effects
have been described in c-kit mutant AML cells, where cytokines secreted by bone marrow
stromal cells protect c-KIT mutant AML cells from c-KIT inhibitor-induced apoptosis [26].
The differential efficacies of targeted compounds in the context of the peripheral blood
and bone marrow environment may be relevant for therapeutic success. Early relapse may
arise when treatments are effective at eradicating leukemic cells in the peripheral blood but
not in the bone marrow, where leukemic cells are sheltered. Thus, novel biological systems
are currently established that enable the investigation of leukemia–stroma cross-talk and
verification of novel therapies’ effectiveness under such bone marrow niche-mimicking
conditions [27]. In our study, we employed a simple co-culture system with the HS-5
stroma cell line to grow AML cells in a bone-marrow niche environment. We discovered
that several targeted compounds had reduced efficacy in AML cells grown on HS-5 stroma,
while the MCL1 inhibitor S63845 induced cell death with equal efficacy in the absence or
presence of bone marrow stroma, making it an excellent candidate to target leukemic stem
cells in the bone marrow.

To determine which compounds may be effective in AML cells treated in combination
with a STAT5 inhibitor, we focused on inhibitors expected to elicit synergistic cytotoxic
effects in combination treatments based on previous studies with BMI1, FLT3, MCL1, and
MEK inhibitors [17–20]. In the current study, we found synergistic cytotoxic effects in
FLT3 wild-type AML cell lines treated with combinations of the STAT5 inhibitor AC-4-130
and the MCL1 inhibitor S63845, and in the FLT3-ITD-positive MOLM-13 cells treated
with combinations of the STAT5 inhibitor AC-4-130 and the FLT3 inhibitor midostaurin
(PKC412). However, concurrent STAT5 and FLT3 inhibitor treatment was not effective in
FLT3-mutated AML patient samples. There were also clearly antagonistic effects observed
in MOLM-13 cells treated with a combination of STAT5 inhibitor AC-4-130 and the MEK
inhibitor trametinib. Moreover, the effects of concurrent STAT5 and MEK inhibition were
rather antagonistic in AML patient samples, independent of FLT3 status. This antagonistic
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effect in the presence of STAT5 and MEK inhibition may result from induced signaling via
PI3K and AKT, thereby preventing induction of apoptosis.

To validate the findings in a translational setting, we applied the STAT5 inhibitor
AC-4-130 in combination with BMI1, FLT3, MCL1, MEK, and BCL2 inhibitors to AML
patient samples. While treatments with combinations of the STAT5 inhibitor AC-4-130
with the FLT3 inhibitor midostaurin (PKC412), the BMI1 inhibitor PTC596 or the MEK
inhibitor trametinib were rather ineffective, the combination of AC-4-130 and the MCL1
inhibitor S63845 led to a significant reduction in cell viability in a larger subset of AML. The
susceptible AML patient samples were characterized by the presence of either mutated FLT3
or mutated TET2, and one case of mutated IDH2 and DNMT3A genes. The susceptibility of
FLT3-mutated cells to the STAT5 and MCL1 inhibitor may be based on the gain of function of
the mutated FLT3 activating STAT5 [3] and its downstream target MCL1. The susceptibility
of TET2 mutant cells to the STAT5 inhibitor may be related to a cooperativity of TET2
and STAT5 in the activation of downstream targets [28,29]. The susceptibility of TET2
mutated cells to the MCL1 inhibitor may arise due to AKT-induced MCL1 over-activation
in these cells, where AKT may no longer be regulated by mutated TET2 protein [22,23].
Leukemic IDH1 and IDH2 mutations disrupt TET2 function and impair hematopoietic
differentiation [30,31]. As TET2 function is dependent on the metabolites produced by the
IDH proteins [21,32], susceptibility to STAT5 and MCL1 inhibitors may be similar in AML
cells with IDH mutations, as in TET2 mutated cells.

Susceptibility to the combination treatment of AC-4-130 and S63845 was significant in
a secondary AML carrying a TP53 mutation with a variant allele frequency (VAF) of 5%.
Two AML samples less susceptible to the combination of AC-4-130 and S63845 carried TP53
mutations at frequencies of 50% and 92%. TP53 mutation variant allele frequency may be
associated with clinical outcome of patients with myelodysplastic syndrome (MDS) and
AML [33,34]. In newly diagnosed AML, the presence of a TP53 mutation with VAF > 40%
was independently associated with a significantly higher cumulative incidence of relapse and
worse relapse-free and overall survival in patients treated with a cytarabine-based regimen.

It is important to note that there was a considerable effect of the MCL1 inhibitor S63845
in combination with the STAT5 inhibitor AC-4-130 on cell viability of normal PBMCs of
healthy donors. This is in contrast to the marginal effect of the MCL1 inhibitor S63845 in
combination with the MEK inhibitor trametinib on normal PBMCs previously described
in [17], indicating that MCL1 function is of vital importance in normal PBMCs in the
context of activated STAT5 signaling, but not in the context of activated MEK signaling.
Such a considerable effect on normal monocytes may constitute a limitation in a treatment
strategy using a combination of STAT5 and MCL1 inhibitor in a therapeutic context. The
side effects of a STAT5 and MCL1 inhibitor combination therapy may be comparable to
the side effects of the conventional standard induction therapy, including elevated risk of
infection and increased bruising or bleeding. A possible advantage of a STAT5 and MCL1
inhibitor combination compared to the standard induction therapy may be the effective
reduction of leukemic stem cells in the bone marrow.

Compared to previous studies, we now, for the first time, included the bone marrow
stroma in our preclinical testing of AML cells. This is a new approach that introduces a new
level of testing of potentially effective combination therapies. New insights may be gained
by restating preclinical testing in AML cells grown in the presence of bone marrow stroma.

4. Materials and Methods
4.1. Patient Samples

Mononuclear cells of AML patients diagnosed and treated at the University Hospital,
Bern, Switzerland, between 2005 and 2018 were included in this study. Informed consent
from all patients was obtained according to the Declaration of Helsinki, and the studies were
approved by decisions of the local ethics committee of Bern, Switzerland. Peripheral blood
mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMCs) were collected
at the time of diagnosis before initiation of treatment. The AML cells were analyzed at the
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central hematology laboratory of the University Hospital Bern according to state-of-the-art
techniques [35]. Mutational screening for FLT3, NPM1, TP53, and conventional karyotype
analysis of at least 20 metaphases were performed in all samples. In addition, all samples
were analyzed by NGS sequencing of the myeloid panel genes.

4.2. Cell Lines and Cell Culture

Human AML cells lines OCI-AML3 (AML-M4, FLT3wt, DNMT3A R882C, NPM1mut,
TP53wt), MOLM-13 (AML-M5, t(9;11), FLT3-ITD, TP53wt), MOLM-16 (AML-M0, FLT3wt,
TP53mut), ML-2 (AML-M4, t(6;11), FLT3wt, TP53mut), and HL-60 (AML-M2, FLT3wt, TP53
null) were supplied by the Leibniz Institute DSMZ, German Collection of Micro-Organisms
and Cell Cultures. AML cells were grown in RPMI 1640 media (SIGMA-ALDRICH, St.
Louis, MO, USA) supplemented with 20% fetal bovine serum (FBS, Biochrom GmbH,
Berlin, Germany) in a standard cell culture incubator at 37 ◦C with 5% CO2. The human
bone marrow stroma cell line HS-5 was obtained from ATCC (ATCC® CRL-11882™). HS-5
cells were grown in DMEM media (SIGMA-ALDRICH, St. Louis, MO, USA) supplemented
with 10% fetal bovine serum (FBS, Biochrom GmbH, Berlin, Germany). The HS-5 cells
secreted granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage-CSF
(GM-CSF), macrophage-CSF (M-CSF), Kit ligand (KL), macrophage-inhibitory protein-1
alpha, interleukin-1 alpha (IL-1alpha), IL-1beta, IL-1RA, IL-6, IL-8, IL-11, and leukemia
inhibitory factor (LIF). For the co-culture assays, HS-5 cells were plated on six-well plates
on day 1. On day 2, Nunc 0.4 uM cell culture inserts (ThermoFisher, Roskilde, Denmark)
were placed over the HS-5 feeder layer and AML cells were filled into the cell culture
inserts. On day 3, AML cells were collected from the six-well inserts and replated on
96-well plates, before addition of compounds. Cytotoxicity assays were performed on
day 4.

4.3. Cytotoxicity Assays

For assays with AML cell lines, cells were plated at a density of 5 × 105/mL and
treated with targeted compounds or conventional induction therapy. For assays with
patient-derived mononuclear cells, the cells were cultured for 2 h prior to treatment. The
STAT5 inhibitor AC-4-130 was purchased at Aobious, Inc. Gloucester, MA, USA. The BMI1
inhibitor PTC596, the FLT3 inhibitor midostaurin (PKC412), the MCL1 inhibitor S63845, and
the MEK inhibitor trametinib were purchased at MedChemExpress (Monmouth Junction,
NJ, USA). A stock solution of venetoclax was prepared by dissolving a venclexta tablet
(Abbvie Inc., North Chicago, IL, USA) in DMSO. Cell viability was determined after 20 h
of treatment using the MTT-based cell-proliferation kit I (Roche Diagnostics, Mannheim,
Germany). This time point was selected because the cellular responses were effectual for
the calculation of combination indexes after 20 h of treatment with two compounds in
leukemic cells. For AML cell lines, four independent assays (biological replicates) with
four measurements (technical replicates) per dosage were performed. For hematological
patient samples, two independent assays with three technical replicates per dosage were
performed. Statistical analysis was done on GraphPad Prism (GraphPad Software, San
Diego, CA, USA). Data are depicted as XY graphs, box plots or scatter plots with mean
values and SD. For the calculation of combination indexes, three dosages of AC-4-130 and
two dosages of the other compounds were applied alone and in combination. Combination
indexes were calculated on CompuSyn software (version 1.0; ComboSyn, Inc., Paramus,
NJ, USA).

4.4. Measurement of mRNA Expression by qPCR

RNA was extracted from AML cells and quantified using qPCR. The RNA extraction
kit was supplied by Macherey-Nagel, Düren, Germany. Reverse transcription was done
with MMLV-RT (Promega, Madison, WI, USA). Real-time PCR was performed on the
QuantStudio 7 Real-Time PCR Instrument using FastStart Universal master mix (Roche
Diagnostics, Mannheim, Germany) and gene-specific probes (Cat# 4331182, Thermo Fisher
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Scientific, Waltham, MA, USA) Hs00355782_m1 (CDKN1A), Hs04986394_s1 (BCL2), and
Hs02758991_g1 (GAPDH). Measurements for CDKN1A and BCL2 were normalized with
GAPDH values (ddCt relative quantitation). Assays were performed in three or more
independent experiments. Data are depicted in column bar graphs plotting mean with
SD values.

4.5. Antibodies and Cytometry

Staining for apoptosis was done using annexinV-CF488A (Biotium Inc., Fremont, CA,
USA) in annexinV buffer and Hoechst 33,342 (10 µg/mL) for 15 min at 37 ◦C, followed
by several washes. Propidium iodide was added shortly before imaging on a NC-3000
imager (ChemoMetec, Allerod, Denmark). For cell-cycle analysis, cells were incubated in
lysis buffer with DAPI (10 µg/mL) for 5 min at 37 ◦C and analyzed on NC-3000 imager.
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