nature medicine **Supplementary information** https://doi.org/10.1038/s41591-024-03172-7 # AI-based automation of enrollment criteria and endpoint assessment in clinical trials in liver diseases In the format provided by the authors and unedited #### Supplementary Table 1. Model development and test dataset characteristics. | Dataset | Trial
Phase | Number of
WSIs (H&E,
MT) | Drug class | Enrollment criteria | NCT
registration
number | | | | | | |--------------|----------------------------|--------------------------------|---|--|-------------------------------|--|--|--|--|--| | Model deve | Model development datasets | | | | | | | | | | | 1 | 3 | 2188, 2188 | ASK1 inhibitor | MASH diagnosis;
fibrosis F3 ¹⁵ | NCT03053050 | | | | | | | 2 | 3 | 2488, 2478 | ASK1 inhibitor | MASH diagnosis;
fibrosis F4 ¹⁵ | NCT03053063 | | | | | | | 3 | 2b | 528, 528 | Monoclonal antibody
directed against
LOXL2 | MASH defined as
steatosis > 5% with
associated lobular
inflammation: Ishak
stage 3,4 ¹⁶ | NCT01672866 | | | | | | | 4 | 2b | 561, 554 | Monoclonal antibody directed against LOXL2 | MASH diagnosis;
Ishak stage 5,6 ¹⁷ | NCT01672879 | | | | | | | 5 | 2 | 158, 163 | ASK1 Inhibitor,
monoclonal antibody
directed against
LOXL2 | Evidence of MASH
with fibrosis on
biopsy ¹⁸ | NCT02466516 | | | | | | | 6 | 2 | 312, 312 | PPARδ agonist | Definite MASH; MAS
≥ 4 with 1 per
component; fibrosis
F1, F2, F3 ²¹ | NCT03551522 | | | | | | | 7 | 3 | 1477, 766 | Nucleotide analogue (antiviral) | HBV ¹⁹ | NCT00117676 | | | | | | | 8 | 3 | 851, 415 | Nucleotide analogue (antiviral) | HBV ¹⁹ | NCT00116805 | | | | | | | 9 | 2b | 331, 333 | Monoclonal antibody directed against LOXL2 | PSC ²⁰ | NCT01672853 | | | | | | | Analytic per | | st set | | | | | | | | | | 10 | 2b | 639, 633 | Insulin sensitizer | Definite MASH; MAS
≥ 4 with 1 per
component; Fibrosis
F1, F2, F3 ²² | NCT02784444 | | | | | | | 11 | 2b | 938, 945 | ASK1 inhibitor, ACC inhibitor, FXR agonist | MASH diagnosis;
fibrosis F3 or F4 ²⁵ | NCT03449446 | | | | | | ASK1, apoptosis signal-regulating kinase 1 (also known as mitogen-activated protein kinase kinase kinase 5); ACC, Acetyl-CoA Carboxylase; F, fibrosis stage; FXR, farnesoid X receptor; HBV, hepatitis B virus; H&E, hematoxylin and eosin; LOXL2, lysyl oxidase-like 2; MT, Masson's trichrome; MAS, metabolic dysfunction-associated steatotic liver disease Activity Score; MASH, metabolic dysfunction-associated steatohepatitis; PPAR δ , peroxisome proliferator activated receptor delta; PSC, primary sclerosing cholangitis; WSI, whole slide image. #### Supplementary Table 2. Algorithm repeatability assessment using 10 independent reads per WSI. | | Number of WSIs | Model versus model agreement rate | |----------------------|----------------|-----------------------------------| | Steatosis | 639 | 100% | | Lobular inflammation | 639 | 100% | | Ballooning | 639 | 100% | | Fibrosis | 633 | 100% | WSI, whole slide image. **Supplementary Table 3.** Correlations between the Al-derived continuous scoring system and comparable noninvasive tests. Values were derived from Kendall's tau rank correlation analysis. FDR correction of p-values was performed using the Benjamini-Hochberg procedure. | Continuous scoring | NIT | Kendall's | P value | n | |---------------------------------------|--|-----------|----------|-----| | system | | Tau | | | | Continuous fibrosis stage | FibroScan | 0.33 | 2.49E-11 | 188 | | Continuous fibrosis stage | FIB4 | 0.23 | 1.56E-06 | 207 | | Continuous fibrosis stage | ELF | 0.22 | 2.52E-06 | 210 | | Continuous fibrosis stage | TIMP1 | 0.11 | 2.01E-02 | 210 | | Continuous fibrosis stage | PIIINP | 0.14 | 3.03E-03 | 210 | | Continuous fibrosis stage | MRI-PDFF | -0.11 | 2.36E-01 | 59 | | Continuous fibrosis stage | Morphometric quantitative collagen (%) | 0.56 | 2.20E-32 | 205 | | Continuous steatosis grade | MRI-PDFF | 0.52 | 4.83E-09 | 59 | | Continuous steatosis grade | Morphometric quantitative collagen (%) | -0.16 | 5.42E-04 | 205 | | Continuous lobular inflammation grade | C-reactive protein | 0.13 | 5.04E-03 | 211 | | Continuous lobular inflammation grade | Adiponectin | -0.15 | 1.38E-03 | 211 | | Continuous ballooning grade | HbA1C | 0.16 | 8.36E-04 | 211 | AI, artificial intelligence; ELF, enhanced liver fibrosis test; FIB4, fibrosis-4; HbA1C, hemoglobin A1c; MRI-PDFF, magnetic resonance imaging derived proton density fat fraction; NIT, noninvasive test; PIIINP, procollagen III N-terminal peptide; Kendall's Tau, Kendall's rank correlation coefficient for ordinal scores; TIMP, tissue inhibitor of metalloproteinase; TIMP1, TIMP metallopeptidase inhibitor 1. # **Supplementary Table 4.** Deployment of AIM-MASH in retrospective analyses of Phase 2/2b clinical trial cohorts. | NCT
(Phase) | Inclusion
Criteria (CRN
Fibrosis + | Drug Class
* | N | NITs
Used | Reader
Approach | Ref. | Surrogate Histologic Endpoints (SF
+ Exploratory Results | | | |------------------------------|---|--|---------------------|-----------------|---|---------------------------|---|---|---| | | MAS) | | | •• | | | | Met by
AIM-
MASH | Met by
Pathologist | | NCT039874
51 (Phase
2) | Histologic
evidence of
MASH with F4
fibrosis and | GLP-1
agonist/
insulin
regulation | BL:70
W48:70 | MRI-
PDFF | Single
pathologist
score | Poster | SHE1 | Not
assessed | No | | | MAS >3 | and weight
loss | | | | | SHE2 | Not
assessed | No | | | | | | | | | Exploratory | Reduction ir
consistent b
MASH and I
measureme | etween AIM-
MRI-PDFF | | NCT039874
51 (Phase
2) | Histologic
evidence of
MASH with F4
fibrosis and
MAS >3 | GLP-1
agonist/
insulin
regulation
and weight
loss | BL:70
W48:70 | MRI-
PDFF | Single
pathologist
score | Poster | Exploratory | placebo respectively pathologist; agreement to MASH and packed scoring of clibrosis, inflations. | Good
between AIM-
bathologist
nange in | | NCT029709
42
(Phase 2) | Histologic
evidence of
MASH with
fibrosis F1 to
F3 | GLP-1
agonist/
insulin
regulation
and weight | BL: 320
W72:251 | Not
assessed | Pathologist
consensus
score (N=2) | Poster | SHE1 | Yes | Yes | | | | loss | | | | | SHE2 | No | No | | | | | | | | | Exploratory | Dose depen
effect seen v
pathologist a
MASH scorti
MASH conti
detected sig
change in fil
compared to | with and AIM- ng; AIM- nuous scores nificant prosis | | NCT039004
29 (Phase
3) | Adults with
≥3 metabolic
risk factors,
liver stiffness | THR-β
agonist/
steatosis
reduction | BL: 782
W52: 777 | Not
assessed | Pathologist
consensus
score (N=2) | Reference
33
Poster | SHE1 | Yes | Yes | | | ≥8.5kPa,
hepatic fat
≥8%,
biopsy-
confirmed
MASH with | | | | | | SHE2 | Yes | Yes | |-------------------------------|---|--|-------------------|-----------------------------------|---|---------------------------|-------------|--|--| | | F1B-F3
fibrosis, and a
metabolic
dysfunction-
associated
steatohepatiti
s (MAS)
≥4 | | | | | | Exploratory | Not
assessed | Not
assessed | | NCT035515
22 (Phase
2) | Histologic
evidence of
MASH with
fibrosis F1 to
F3 and MAS ≥ | PPARō
agonist/
reduce
steatosis and
inflammation | BL:152 | MRI-
PDFF | Pathologist
consensus
scores
(N=2) | Reference
34
Poster | SHE1 | Not
assessed | Not
assessed | | | with a score of at least 1 for each MAS | | | | | | SHE2 | Not
assessed | Not
assessed | | | component | | | | | | Exploratory | plus interfac | quantified
logic features
e hepatitis and
mation in BL | | NCT034868
99 (Phase
2b) | Histologic
evidence of
MASH with | FGF21
analog/
steatosis | BL:197
W24:197 | MRE
MRI-
PDFF | Single
pathologist
score | Reference
35 | SHE1 | No | No | | | fibrosis F3
and NAS
score of > 1
for each MAS | reduction | | | | <u>Poster</u> | SHE2 | No | No | | | component | | | | | | Exploratory | ballooning a
inflammation
treated arm;
between AIM
NITs found;
AIM-MASH
scores show
significant in
all MAS com
BL compare | scoring both
rovement for
nd lobular
n, fibrosis in
Correlations
M-MASH and
continuous
yed statistically
enprovement in
aponents from
d to placebo | | NCT029122
60 (Phase
2) | Histologic
evidence of
MASH with
fibrosis F1 to | THR-β
agonist/
steatosis
reduction | BL:104
W36:104 | MRI-
PDFF,
FIB-4,
ELF TE | Pathologist
consensus
score (N=2) | Reference
36
Poster | SHE1 | Yes | Yes | | | F3 and MAS ≥
4 with a score
of at least 1
for each MAS | | | '- | | | SHE2 | Yes | Yes | | | component | | | | | | Exploratory | AIM-MASH continuous
steatosis, ballooning,
lobular inflammation
scoring correlates with
MRI-PDFF; AIM-MASH
area of portal inflammation
correlates with FIB-4, ELF,
TE | |--|-----------|--|--|--|--|--|-------------|--| |--|-----------|--|--|--|--|--|-------------|--| SHE 1: Resolution of steatohepatitis on overall histopathological reading and no worsening of liver fibrosis on MASH CRN fibrosis score. Resolution of steatohepatitis is defined as absent fatty liver disease or isolated or simple steatosis without steatohepatitis and a MAS score of 0–1 for inflammation, 0 for ballooning, and any value for steatosis SHE2: Improvement in liver fibrosis greater than or equal to one stage (MASH CRN fibrosis score) and no worsening of steatohepatitis (defined as no increase in MAS for ballooning, inflammation, or steatosis) Exploratory Results: Retrospective exploratory investigation using AIM-MASH in collaboration with study sponsors MASH, metabolic dysfunction-associated steatohepatitis; MAS, metabolic dysfunction-associated steatotic liver disease Activity Score; BL, Baseline; W, Week. #### *Drug Classes GLP-1, glucagon-like peptide-1 receptor; THR-β, thyroid hormone receptor β; FGF21, fibroblast growth factor 21; PPARδ, peroxisome proliferator activated receptor delta **MRI-PDFF, magnetic resonance imaging proton density fat fraction; FIB-4, fibrosis-4; ELF, enhanced liver function; TE, transient elastography; MRE, magnetic resonance elastography #### **Supplementary Table 5**. Example instructions for the interpretations of histologic features. | Histologic feature | Example instructions | |---------------------------------|--| | Lobular inflammation | Place label regions containing at least three inflammatory cells, not including those within sinusoids. Do not label regions of portal inflammation with this region label. | | Hepatocyte ballooning | Please use this label on regions of hepatocellular ballooning. Hepatocellular ballooning is defined as round cells with rarified cytoplasm that are at least 50% larger than neighboring normal cells. | | Steatosis | Please use this label on regions of dense steatosis. | | Thick pathologic fibrotic septa | Please use this label for thickened fibrotic septae extending from portal and central regions considered when staging liver biopsies. | | Portal tract (normal) | Please use this label for normal-appearing, small-/medium-sized portal regions, not expanded by fibrosis or inflammation. | | Portal tract (abnormal) | Please use this label for portal regions expanded by inflammation, fibrosis, bile ductular proliferation, or any combination of the above. | | Large normal septa | Please use this label for larger intrahepatic normal septae (usually containing larger arteries, veins, and bile ducts) that would not be included when staging liver biopsies. | | Subcapsular fibrosis | Please use this label for normal subcapsular regions of fibrosis not considered when staging liver biopsies. | #### **Supplementary Table 6.** Al-derived models, input substances, and objectives for application. | Model name | Major input substances | Objectives | |------------------------|---|---| | Artifact models | Background, blur artifact, bad stain artifact, black spots, bubble, cautery, crushed tissue, hair, margin ink, marker tape, skin cell, tissue fold, rainbow pattern artifact | Remove unwanted regions of WSI that should be excluded from downstream analysis | | MT tissue models | Lumen, blood vessel, bile duct, cirrhotic septal portal fibrosis, hilar fibrosis, large septal area, perisinusoidal fibrosis, septal fibrosis, subcapsular fibrosis, thick fibrotic septae, normal portal area, normal portal triad, fibrosis | Detect fibrosis regions to identify and quantify features of interest | | MT large septae models | Normal portal area, normal portal triad, perisinusoidal fibrosis, thick fibrotic septae | Detect regions of pathological fibrosis | | H&E tissue models | Lobular Inflammation, portal inflammation, interface hepatitis, bile duct, blood vessel, Normal hepatocytes, hepatocellular swelling, hepatocellular ballooning, steatosis, microvesicular steatosis | Detect macrovesicular
steatosis, hepatocellular
ballooning, and lobular
inflammation regions to
identify and quantify features
of interest | | H&E GNN models | Overlays from H&E tissue model: Lobular inflammation, portal inflammation, interface hepatitis, bile duct, blood vessel, normal hepatocytes, hepatocellular, swelling, hepatocellular ballooning, steatosis, microvesicular steatosis | Compute slide-level MASH
CRN ordinal grades | | MT GNN models | Overlays from MT large septae model: Large septae, pathological fibrosis, other tissue Overlays from MT tissue model: Fibrosis, bile duct, blood vessel, other tissue | Compute slide-level MASH
CRN ordinal stage | CRN, Clinical Research Network; GNN, graph neural network; H&E, hematoxylin and eosin; MT, Masson's trichrome; MASH, metabolic dysfunction-associated steatohepatitis; WSI, whole slide image # **Supplementary Table 7.** Description of models. | Model Name | Purpose | Model Input
(during
inference) | Model Output | |--|---|--------------------------------------|---| | Segmentation Mo | odels | | | | Model 1: Artifact
Model | To remove unwanted regions which should not even be considered as input for other models | H&E Whole Slide
Image | Output is a 3D matrix of class probabilities for each pixel in the WSI. Artifact segmentation classes: Usable tissue, Artifact area, and Background area. | | Model 2: H&E
Tissue Model | Detect steatosis,
hepatocellular
ballooning, lobular
inflammation
regions and other
to compute
features of interest | H&E Whole Slide
Image | Output is a 3D matrix of class probabilities for each pixel in the WSI. H&E segmentation classes: Lobular Inflammation, Portal Inflammation, Interface Hepatitis, Bile Duct, Blood Vessel, Normal Hepatocytes, Hepatocellular Swelling, Hepatocellular Swelling, Hepatocellular Ballooning, Steatosis, Microvesicular Steatosis, Normal Interface and Other/remaining Tissue. | | Model 3a:
Trichrome Tissue
Model | Detect fibrosis
region to compute
features of interest | Trichrome Whole
Slide Image | Output is a 3D matrix of class probabilities for each pixel in the WSI. Trichrome segmentation classes: Collagen/Fibrosis, Bile Duct, Lumen, Blood Vessel and Other/remaining Tissue | | Model 3b:
Trichrome
Pathological
Fibrosis Model | Detect pathological
fibrosis region in all
fibrosis area | Trichrome Whole
Slide Image | Output is a 3D matrix of class probabilities for each pixel in the WSI. Trichrome Pathological Fibrosis segmentation classes: Pathological Fibrosis, Normal Collagen and Other/remaining Tissue | | Graph Neural Net | | | | | Model 4a: H&E
GNN
Model - Steatosis | Compute slide-
level MAS ordinal
scores for
Steatosis | Raw model output from Model 2 | Output is a single integer score for Steatosis (values in the range of 0-3) | | Model 4b: H&E
GNN
Model - Ballooning | Compute slide-
level MAS ordinal
scores for
Hepatocellular
Ballooning | Raw model output from Model 2 | Output is a single integer score for Hepatocellular Ballooning (values in the range of 0-2) | |---|---|---|---| | Model 4c: H&E
GNN
Model - Lobular
Inflammation | Compute slide-
level MAS ordinal
scores for Lobular
Inflammation | Raw model output from Model 2 | Output is a single integer score for Lobular Inflammation (values in the range of 0-3) | | Model 5:
Trichrome GNN
Model | Compute slide-
level CRN ordinal
score | Raw model
outputs from
Model 3a and
Model 3b | Output is a single integer score for CRN score (values in the range of 0-4) | # **Supplementary Table 8.** Training parameters for H&E, trichrome, and artifact models. | | | Artifact
Model | H&E
Tissue
Model | Trichrome
Tissue
Model | Trichrome
Large
Septae
Model | |--------------------------------|----------------------------------|-------------------|------------------------|------------------------------|---------------------------------------| | Learning
Rate
Parameters | Base
Learning
Rate | 0.001 | 0.0001 | 0.0001 | 0.001 | | | Learning
Rate
Scheduler | Staircase | Staircase | Staircase | Staircase | | | Learning
Rate Decay
Factor | 0.5 | 0.5 | 0.5 | 0.5 | | | Learning
Rate Decay
Steps | 2500 | 10000 | 10000 | 5000 | | Batch Size | Train Batch
Size | 34 | 100 | 100 | 42 | | Batch Norm | Momentum
Value | 0.6 | 0.6 | 0.6 | 0.6 | | Optimizer | Optimizer
Name | Adam | Adam | Adam | Adam | | | Optimizer
Epsilon | 1e-4 | 1e-4 | 1e-4 | 1e-4 | | Dropout | Dropout
Probability
value | 0.5 | 0.5 | 0.5 | 0.5 | # **Supplementary Table 9.** Training parameters for GNN models. | | | GNN
Steatosis | GNN
Ballooning | GNN Lobular inflammation | GNN CRN
Fibrosis | |--------------------------------|----------------------------------|------------------|-------------------|--------------------------|---------------------| | Learning
Rate
Parameters | Base
Learning
Rate | 0.001 | 0.001 | 0.001 | 0.001 | | | Learning
Rate
Scheduler | Staircase | Staircase | Staircase | Staircase | | | Learning
Rate Decay
Factor | 0.8 | 0.8 | 0.8 | 0.8 | | | Learning
Rate Decay
Steps | 200 | 200 | 200 | 200 | | Batch Size | Train Batch
Size | 32 | 32 | 32 | 32 | | Optimizer | Optimizer
Name | Adam | Adam | Adam | Adam | | | Optimizer betas | 0.9 / 0.999 | 0.9 / 0.999 | 0.9 / 0.999 | 0.9 / 0.999 | | | Optimizer epsilon | 1e-8 | 1e-8 | 1e-8 | 1e-8 | | Dropout | Dropout
Probability
value | 0.5 | 0.5 | 0.5 | 0.5 | | Network architecture | Hidden
features | 128 | 128 | 128 | 128 | | | Layers | 2 | 2 | 2 | 2 | | Mixed effect model | Bias
multiplier | 0.1 | 0.01 | 0.07 | 0.1 |