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A B S T R A C T

Background: Identification of pregnancies with postpartum haemorrhage (PPH) antenatally rather than intrapar-
tum would aid delivery planning, facilitate transfusion requirements and decrease maternal complications. MRI
has been increasingly used for placenta evaluation. Here, we aim to build a nomogram incorporating both clinical
and radiomic features of placenta to predict the risk for PPH in pregnancies during caesarian delivery (CD).
Methods: A total of 298 pregnant women were retrospectively enrolled from Henan Provincial People’s Hos-
pital (training cohort: n = 207) and from The Third Affiliated Hospital of Zhengzhou University (external vali-
dation cohort: n = 91). These women were suspected with placenta accreta spectrum (PAS) disorders and
underwent MRI for placenta evaluation. All of them underwent CD and were singleton. PPH was defined as
more than 1000mL estimated blood loss (EBL) during CD. Radiomic features were selected based on their
correlations with EBL. Radiomic, clinical, radiological, clinicoradiological and clinicoradiomic models were
built to predict the risk of PPH for each patient. The model with the best prediction performance was vali-
dated with its discrimination ability, calibration curve and clinical application.
Findings: Thirty-five radiomic features showed strong correlation with EBL. The clinicoradiomic model resulted in
the best discrimination ability for risk prediction of PPH, with AUC of 0.888 (95% CI, 0.844�0.933) and 0.832 (95%
CI, 0.746�0.913), sensitivity of 91.2% (95% CI, 85.8%-96.7%) and 97.6% (95% CI, 92.7%-100%) in the training and
validation cohort respectively. For patients with severe PPH (EBL more than 2000mL), 53 out of 55 pregnancies
(96.4%) in the training cohort and 18 out of 18 (100%) pregnancies in the validation cohort were identified by the
clinicoradiomic model. The model performed better in patients without placenta previa (PP) than in patients
with PP, with AUC of 0.983 compared with 0.867, sensitivity of 100% compared with 90.8% in the training cohort,
AUC of 0.832 comparedwith 0.815, sensitivity of 97.6% compared with 97.2% in the validation cohort.
Interpretation: The clinicoradiomic model incorporating both prenatal clinical factors and radiomic signature
of placenta on T2WI showed good performance for risk prediction of PPH. The predictive model can identify
severe PPH with high sensitivity and can be applied in patients with and without PP.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Research in context

Evidence before this study
Magnetic resonance imaging (MRI) has been increasingly

used for placenta estimation and provides more comprehensive
evaluation compared with ultrasound. Previous studies have
built predictive models either for postpartum haemorrhage
(PPH) or hysterectomy or blood transfusion prediction in preg-
nancies based on clinical factors and ultrasound findings. How-
ever, the evaluation of ultrasound features of placenta depends
on the experiences of doctors and varies among institutions.
We searched PubMed and Web of Science, for research articles
with the following terms: “(postpartum haemorrhage OR post-
partum bleeding OR estimated blood loss OR blood loss OR
transfusion OR hysterectomy OR uterine artery embolism) AND
(placenta OR placenta accreta OR placenta increta OR placenta
percreta OR placenta accreta spectrum OR PAS) AND (signature
OR model) AND (radiomic OR texture) AND (magnetic reso-
nance imaging OR MRI)”. This search did not identify any previ-
ous radiomic model for PPH prediction in pregnancies who
underwent placental MRI.

Added value of this study
To our knowledge, this is the first study to build a clinicora-

diomic model based on the radiomic features of placenta on
T2WI and clinical factors to predict the risk for PPH in pregnan-
cies suspected with placenta accreta spectrum (PAS) disorders.
The radiomic features of placenta on T2WI showed strong cor-
relation with estimated blood loss (EBL). The clinicoradiomic
model we built incorporating 35 radiomic features of placenta
and 3 clinical factors can identify more than 91% of pregnancies
with PPH. Fifty three out of 55, 18 out of 18 patients with severe
PPH (EBL more than 2000mL) were identified in the training
and validation cohorts respectively. The good performance of
the clinicoradiomic model in subgroups with and without PP
suggested that the clinicoradiomic model can be applied for all
patients suspected with PAS disorders who underwent MRI.

Implications of all the available evidence
Our findings suggest that the clinicoradiomic model can be

applied in routine clinical use for PPH prediction in pregnant
women suspected with PAS disorders who underwent MRI
examination.
1. Introduction

Postpartum haemorrhage (PPH) is one of the leading causes of
maternal complications and mortality worldwide, which is usually
defined as more than 1000mL estimated blood loss (EBL) for cesar-
ean delivery (CD) [1,2]. Early identification of patients with PPH, pre-
dicting the need for blood products antenatally rather than
intrapartum would aid delivery planning, facilitate the preparation of
blood products and transfusion requirements, as well as decrease
maternal complications [3,4]. With the increase of maternal age and
the number of abortion and CD, the incidence of placenta accreta
spectrum (PAS) disorders is rising and is now estimated to be 1 in
500 to 1 in 300 pregnancies [5,6]. PAS disorders, accompanied by
incomplete separation of placenta and insufficient uterine contrac-
tion, often result in massive hemorrhage during delivery [7].

Ultrasound is the primary tool for PAS disorders diagnosis [8].
Magnetic resonance imaging (MRI) usually serves as an important
adjuvant tool to ultrasound. Until now, most studies of MRI concen-
trated on the antenatal diagnostic accuracy of PAS disorders and sev-
eral meta-analyses concluded that diagnostic accuracy of PAS
disorders was statistically similar to ultrasound alone [9�11]. This
did not provide additional value for clinicians and surgeons when an
ultrasound has already been performed [12]. The purpose of MRI for
possible PAS patients suspected by ultrasound should be to provide
additional helpful information such as the extent and degree of pla-
cental invasion, the presence of extrauterine involvement and to pre-
dict the emergency situation during the operation process (such as
blood loss, transfusion and hysterectomy) and thus help to improve
the care of patients with PAS disorders in higher-level medical cen-
ters. However, with the increase of gestational weeks, myometrial
thinning and placental signal heterogeneity, the signs indicating PAS
disorders on MRI become harder to evaluate and more dependent on
the experience of radiologists [13].

Radiomics analysis quantifying high-dimensional tissue features
that cannot be observed by the naked eye has shown great potential
in precision medicine, most of which were in the oncological field
[14�16]. Radiomics analysis provides us a quantitative method to
reflect tissue or tumor heterogeneity and tends to be more stable
compared with subjective evaluation. The studies of radiomics analy-
sis for placenta evaluation have emerged recently but until now are
relatively rare [17�20]. These studies found texture analysis of pla-
centa is a feasible tool for PAS diagnosis and even PAS severity assess-
ment [18]. Siauve N stated that radiomics analysis or machine
learning is especially suitable for placenta evaluation with increased
heterogeneity in late gestational weeks [17]. However, all the above
studies were limited with relatively small sample size and lack of
external validation dataset.

To the best of our knowledge, until now there is no reported study
predicting PPH or EBL during CD based on the radiomic or texture
features of placenta in patients suspected with PAS disorders. There-
fore, the aim of our study is first, to extract the radiomic features of
placenta which are highly correlated with EBL, and at the same time,
stable among multiple centres, and second, to establish a nomogram
to facilitate the prediction of PPH in women undergoing CD.

2. Materials and methods

2.1. Study population

The study was approved by the ethics committee of Henan Pro-
vincial People’s Hospital and The Third affiliated Hospital of Zhengz-
hou University. Informed consent from patients were waived for this
retrospective study. From May 2013 to April 2019, pregnant women
who underwent placental MRI were retrospectively collected from
the picture archiving and communication system (PACS) in Henan
Provincial People’s Hospital (Zhengzhou, China) and The Third affili-
ated Hospital of Zhengzhou University (Zhengzhou, China). The inclu-
sion criteria were: (a), all singleton pregnancies suspected with PAS
disorders who underwent MRI for placenta evaluation; (b), all
patients who underwent CD; (c), EBL and transfusion protocol were
available. The exclusion criteria were: (a), pregnancy terminated by
uterine curettage or induced 1abor; (b), retained placental tissue after
induced 1abor or birth; (c), not giving birth at one of the two hospi-
tals; (d), patients with poor image quality or severe motion artifacts
or missing images; (e), patients with vaginal delivery.

Finally, considering the larger sample size, 207 patients from
Henan Provincial People’s Hospital were enrolled as the training
cohort, and 91 patients from The Third affiliated Hospital of Zhengz-
hou University were enrolled as the validation cohort. The patient
recruitment flowchart was shown in Fig. S1.

Patients’ characteristics including maternal age, gravidity, parturi-
tion, abortion, previous cesarean deliveries, vaginal bleeding during
pregnancy, gestational age at MRI and delivery, pregnancy complica-
tions such as hypertension and diabetes, placenta position and pres-
ence of PAS evaluated by ultrasound and hemoglobin value before
CD were extracted from the medical records. The definition of
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placenta position and the image features indicating PAS diagnosis on
ultrasound were shown in Supplementary Methods.

All patients underwent CD. Surgical procedures like elective or
emergency CD, hemostasis techniques during operation including
intrauterine tamponade or packing, lifting suture of cervical or lower
uterine, B-lynch sutures, wedge resection of uterus, abdominal aortic
balloon implantation, uterine artery embolism, uterine artery ligation
or suture, hysterectomy and any other surgeries were recorded. The
EBL during surgery, blood transfusion protocoland postpartum diag-
nosis of PAS were obtained by reviewing the medical records.

All patients underwent placental MRI using one of the two 3.0T MRI
systems, either with (DiscoveryMR 750; GEMedical Systems,Milwaukee,
Wis) or (Skyra; Siemens Healthineers). The image protocols and detailed
parameters were shown in SupplementaryMethods and Table. S1.
2.2. Radiological evaluation

The flowchart of the study was shown in Fig. 1. Two radiologists
(Qingxia Wu and Yan Wang, with 9 and 10 years of pelvic imaging
experience respectively) evaluated the image findings separately on
a dedicated software (Radiant DICOM Viewer 4.6.9). Both readers
were blinded to previous MRI interpretation, each other’s interpreta-
tion, previous ultrasound reports, and the surgical and pathologic
reports from delivery.

Since it is difficult to differentiate the spectrum of placenta
accreta, increta and percreta, in this article, PAS refers to all the three
conditions unless specially noted. Image features that are highly
indicative of abnormal placentation according to published litera-
tures on MRI were assessed in terms of their presence or absence
[21,22]. These features were listed in the following order: (1) pla-
centa previa (PP), including complete and partial PP; (2) intraplacen-
tal nodular or linear dark bands; (3) focal blurring or interruption of
myometrial border; (4) intraplacental abnormal vascularity; (5) uter-
ine bulging with loss of normal shape of the uterus; (6) bladder
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Fig. 1. The flowchart of the study. This study included radiomic feature engineering, mode
mented to generate volume of interest (VOI) and then 1595 quantitative radiomic features
(LASSO) was then used to select the features which were highly correlated with EBL. Pearson
and EBL. Based on the selected features, a radiomic signature was constructed using the Gau
clinical factors as well as radiological features, clinical model and radiological model were bu
signature to generate clinicoradiological and clinicoradiomic model. Model comparison was
rhage prediction. Finally, the calibration and decision curve analysis were conducted to valid
tenting; and (7) direct visualization of adjacent tissue invasion, usu-
ally bladder.

Consensus was made in cases of disagreement after completion of
all readings.

2.3. Radiomic feature selection

2.3.1. Image segmentation
Sagittal SSFSE or HASTE T2WI, the optimal position for the uterus

and placenta observation, was retrieved from PACS for placenta seg-
mentation. One radiologist with 9 years of pelvic MR imaging experi-
ence performed all the segmentations of placental tissue manually
with an open-source ITK-SNAP software (www.itksnap.org).

Frequently it is hard to identify the interface between the placenta
and myometrium, so both the placental tissue and the underlying
myometrium were delineated. Previous studies reported that the cer-
vical length before delivery showed association with massive PPH in
pregnancies with PP [23]. A new sonographic jellyfish sign, the
absence of the normal linear demarcation between the placenta pre-
via and the cervix, was also reported to correlate with maternal com-
plications [24]. For patients with PP, the cervix was also included in
the segmentation, as illustrated in Fig. 2. Each segmentation was vali-
dated by a senior radiologist, who had 19 years of experience. The
segmented tissues on each slice were fused to generate VOI for radio-
mic feature evaluation.

2.3.2. Radiomic feature extraction
After manual segmentation, T2WI was standardized using z-score

normalization to obtain a standard normal distribution of the image
intensities.

Considering the potential of texture features to reflect the het-
erogeneity of placenta, which increases significantly with gesta-
tional week during pregnancy, we paid more attention to texture
features. Since the shape of placenta and uterus were indicative of
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Fig. 2. Representative cases and delineation of placenta. (a, b) A 25-year-old woman at 33+2 gestation weeks with placenta previa. She had a history of G4P2L2A0 with one previous
CD. The hemoglobin level was 99 g/L before CD. She had an EBL of 500mL during CD. Based on the clinicoradiomic model the predicted radiomic score was 0.111 and she was classi-
fied as without PPH. (c, d) A 32-year-old woman at 35+6 gestation weeks with placenta previa. She had a history of G3P1L1A1 with one previous CD. The hemoglobin level was
114 g/L before CD. She had an EBL of 8000mL during CD. Based on the clinicoradiomic model the predicted radiomic score was 0.936 and she was classified as with PPH. Although
the two placentas on T2WI showed similar radiological features in the eyes of radiologists, their radiomic scores were significantly different, predicting PPH precisely. Since it was
hard to identify the interface between placenta and subplacental myometrium, as shown in (b) and (d), the placental tissue, the underlying myometrium and the cervix were all
delineated to generate VOI of placenta.
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abnormal placentation, we also evaluated the shape features of the
VOI of placenta.

1595 radiomic features were extracted from the placenta VOI
using pyradiomic 2.2.0, including i) 14 shape features, ii) 306 first
order features, iii) 1275 texture features. The details of radiomic fea-
tures were listed in Supplementary Methods.

2.3.3. Feature selection and verification
To select the radiomic features highly correlated with EBL during

CD, we used least absolute shrinkage and selection operator (LASSO)
regression with three-fold cross-validation. Pearson correlation anal-
ysis was applied to examine the correlation between the selected fea-
tures and the EBL. Correlation analysis was also conducted between
the selected radiomic features and radiological features to determine
whether these features are correlated with each other.

2.4. Model building and radiomic signature validation

As shown in the model building part of Fig. 1, we built 5 models
using different combinations of factors. Radiomic, clinical and radio-
logical models were generated from radiomic features, clinical factors
and radiological features respectively. Clinicoradiomic model ana-
lysed clinical factors and radiomic features jointly while clinicoradio-
logical model included clinical factors as well as the radiological
features extracted by radiologists, which represented the model cur-
rently used in clinical.

After feature selection, we built the radiomic model using the sup-
port vector machine (SVM) algorithm with a radial basis kernel for
risk prediction of PPH based on the selected radiomic features. The
final regularization parameter was determined by the max AUC in
the training cohort with three-fold cross-validation. Thereafter, the
radiomic model predicted a radiomic signature indicating the proba-
bility of PPH for each sample.

To validate the performance improvement after the inclusion of
radiomic signature, the models with radiomic signature (radiomic
model, clinicoradiomic model) and the models without radiomic sig-
nature (clinical model, radiological model, clinicoradiological model)
were compared.

The correlation between prenatal clinical factors, radiological fea-
tures suggesting PAS evaluated by radiologists and EBL were tested
via Spearman correlation analysis, with the p-value set to 0.05. Fea-
tures with p-value more than 0.05 were excluded from the model.
Then multiple regression analysis was employed, backward step-
wise selection method with the stopping rule based on Akaike’s
information criterion (AIC) was conducted for clinical and radiologi-
cal feature selection, based on which clinical model and radiological
model were built.

The performance improvement introduced by the inclusion of
radiomic features was quantified by net reclassification improvement
(NRI) and integrated discrimination improvement (IDI).

NRI offered a meaningful index of classification accuracy, quanti-
fying the amount of correct reclassified samples introduced by radio-
mic signature. IDI indicated integrated discrimination improvement
[25]. The p-values associated with NRI and IDI indicated whether the
improvement of reclassification after the inclusion of radiomic signa-
ture was statistically significant.

After model comparison, a nomogram for clinical use was built
based on the model with the best discrimination ability of PPH. The
performance of the nomogram was evaluated with its discrimination
ability, calibration curve and clinical application.
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2.6. Statistical analysis

All the statistical analyses in this study were implemented with
Python 3.7.1 (https://www.python.org), R software (version 3.4.1;
http://www.Rproject.org) and IBM SPSS 22.0 for Windows (IBM Corp,
Armonk, New York). Python was used to extract and select the radio-
mic features as well as build the prediction models. R software was
used for evaluating the prediction models. SPSS was used to compare
the variables between different cohorts. The logistic regression with
LASSO penalty and the SVM model were implemented using Python
3.7.1 in the Scikit-learn package (version 0.21.3). The Kolmogorov-
Smirnov test was explored to detect whether the distribution of
numeric value was normal. Nonparametric Mann-Whitney U test
and Pearson Chi square test were used to explore the difference
between the training and validation cohorts. The correlation of clini-
cal and radiological factors with EBL and PPH were analyzed using
spearman correlation test. The significance threshold was set at 0.05.

3. Results

3.1. Patient characteristics, EBL and PPH

Prenatal clinical information, EBL and postpartum PAS diagnosis
in the training and validation cohorts were shown in Table 1. There
was no significant distribution difference when the PPH was catego-
rized as more than 1000mL EBL between the two cohorts (p=.502).
Table 1
Patient clinical characteristics in the training and validation cohorts.

Training Cohort n

Characteristics PPH (+) PPH (-)
n = 102 n = 105

Maternal Age, years (Median, range) 31.5,23�46 31,20�
Gravidity (Median, range) 4,1�9 3,1�7
Parturition (Median, range) 1,0�3 1,0�3
Abortion (Median, range) 1,0�5 1,0�4
Previous CD (Median, range) 1,0�3 1,0�3
Hemoglobin value before CD (g/L) Mean, range 101,65�134 105,81
Vaginal bleeding during pregnancy

Yes 43 57
No 59 48

Gestational age at MRI, weeks
<30 7 7
�30, <34 34 41
�34 61 57

Gestational age at delivery
Full term 24 30
Preterm 78 75

Pregnancy complications
Negative 88 83

Positive 14 22
Ultrasound placenta previa

Negative 19 33
Positive 83 72

Ultrasound PAS status
Negative 62 88
Positive 40 17

CD
Elective 92 98
Emergency 10 7

Estimated blood loss, mL (Median, range) 2000,1000�8000 600, 20
Blood transfusion

Yes 100 69
No 2 36

Final diagnosis of PAS
Negative 2 27
Positive 100 78

Abbreviations: PPH: Postpartum Haemorrhage; CD: Caesarian Delivery; PAS: Plac
The median EBL were 2000 and 1800mL for the 102 and 41 patients
with PPH in the training and validation cohorts respectively. These
two cohorts were similar in their distribution of maternal age, gravid-
ity, previous parturition, abortion and CD. The intrapartum surgical
procedures were shown in Table S2. The correlation coefficient
between EBL and final diagnosis of PAS after surgery was 0.404
(p<.001), whereas there was no correlation with EBL and final diag-
nosis of PAS in the validation cohort (p=.171).

3.2. Radiomic features correlated with EBL

In total, 1595 radiomic features were extracted from each VOI of
the placenta on T2WI. Among them, 35 features were selected using
the LASSO logistic regression algorithm. The 35 radiomic features can
be seen in Table S3. The correlation analysis between these 35 radio-
mic features and 7 radiological features can be seen in Fig. 3.

Since most of the selected features (34/35) were extracted from
the filter-filtered images and over half of them were obtained by
wavelet transform, texture features and high dimensional features
were more relevant with EBL. These features extracted by algorithms
also showed consistency with some radiological features extracted
by radiologists (Fig. 3). For example, intraplacental abnormal vascu-
larity was correlated with wavelet-HLL_firstorder_Energy feature
and wavelet-HLL_firstorder_TotalEnergy feature both in training and
validation cohort (p<.05). The correlation between these features
demonstrated that although some texture features were high
= 207 Validation Cohort n = 91 P

p PPH (+) PPH (-) p
n = 41 n = 50

44 .180 33,24�47 32,20�44 .257 .232
.001 3,2�6 3,1�12 .019 .171
.000 1,0�3 1,0�2 .033 .636
.024 1,0�4 1,0�9 .162 .393
.000 1,0�3 1,0�2 .000 .772

�135 .028 107,63�143 109,68�134 .578 .005
.081 .185 .008

16 13
25 37

.689 .595 .000
6 4
5 6
30 40

.409 .875 0.000
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6 3
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were highlighted using color purple. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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dimensional features which could not be observed by the naked eye,
several specific combinations of these features can be explained by
some radiological features to some extent.

As shown in Fig. 4a and b, the blood loss predicted by 35 features
were highly correlated with the EBL. The Pearson correlation coeffi-
cients of training and validation cohorts were 0.682 (p< .0001) and
0.353 (p=.0006).

Thereafter, a radiomic signature was constructed using the
Gaussian kernel SVM. The AUC and classification sensitivity of radio-
mic signature from the training cohort were 0.876 (95% CI,
0.832�0.820) and 89.2% (95% CI, 83.2�95.3%), from the validation
cohort were 0.795 (95% CI, 0.705�0.885) and 92.7% (95% CI,
84.8�100%) (Fig. 4c and d).

The distribution of radiomic signature and PPH of the individual
were presented in Fig. 4e and f, which clearly reveals that almost all
patients with PPH (92.7%, 38/41) would avoid being misclassified by
using the cutoff value of the radiomic signature.

3.3. Model building and radiomic signature validation

For prenatal clinical factors, Spearman correlation analysis
showed that maternal age, gravidity, parturition, abortion, previous
CD, hemoglobin value before CD and vaginal bleeding during preg-
nancy significantly correlated with EBL in the training cohort, with p
value of 0.008, <0.0001, <0.0001, 0.034, <0.0001, 0.008 and 0.031
respectively (Table S4). After AIC analysis, maternal age, number of
previous CD and hemoglobin value before CD were enrolled in the
clinical model.

There was a significant difference for the MRI features suggesting
PAS between training and validation cohort, as shown in Table S5. All
the seven image features suggesting PAS showed statistical correla-
tion with EBL in the training cohort. They were all enrolled to build
radiological model.
The clinicoradiomic model, developed by incorporating radiomic
signature with clinical factors (Fig. 5), resulted in an AUC of 0.888
(95% CI, 0.844�0.933) and 0.832 (95% CI, 0.746�0.913) for PPH pre-
diction in the training and validation cohort respectively. The perfor-
mance of radiomic signature, clinical, radiological, clinicoradiological
and clinicoradiomic models were shown in Table 2 and Fig. 5.

The clinicoradiomic model showed the best discrimination ability,
with the sensitivity of 91.2% (95% CI, 85.8%�96.7%) and 97.6% (95% CI,
92.7%�100%) in the training and validation cohort respectively. The
calculation formula of clinicoradiomic model was listed in Supple-
mentary results.

Subgroup analysis was also conducted to validate the performance
of the clinicoradiomic model. For patients with severe PPH, here
defined as more than 2000mL EBL, 53 out of 55 (96.4%), 18 out of 18
(100%) pregnancies were identified by the clinicoradiomic model. For
pregnancies with and without PP, the performance of clinicoradiomic
model for PPH prediction was shown in Table 3. Clinicoradiomic model
performed better in patients without PP than that with PP, with AUC of
0.983 (95%CI, 0.949�1.000) versus 0.867 (95%CI, 0.813�0.921), sensi-
tivity of 100% (95%CI, 100%�100%) versus 90.8% (95%CI, 84.8%�96.7%)
in the training cohort and AUC of 0.832 (95%CI, 0.748�0.912) versus
0.815 (95%CI, 0.718�0.913), sensitivity of 97.6% (95%CI, 92.8%�100%)
versus 97.2% (95%CI, 91.9%�100%) in the validation cohort.

The NRI and IDI of clinicoradiomic model versus clinical model
from the training cohort were 0.899 (p<.0001) and 0.298 (95%CI,
0.235�0.361, p<.0001), from the validation cohort were 0.801
(p<.0001) and 0.192 (95%CI, 0.093�0.290, p=.00015), respectively,
which highlighted the performance improvement introduced by
radiomic signature. The introduction of clinical factors also benefited
the prediction of PPH. When compared with the radiomic model, the
clinicoradiomic model showed improvement in integrated discrimi-
nation with an IDI of 0.064 (95%CI, 0.027�0.102, p=.00075) in the val-
idation cohort.
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Fig. 4. Construction and evaluation of radiomic signature. (a,b) The correlation between the blood loss predicted by 35 radiomic features and estimated blood loss (EBL) of training
cohort (a) and validation cohort (b). Each point represents a sample, with the red points for more than 1000mL EBL and the blue points for less than 1000mL EBL. The p-value of
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the value of radiomic score. AUC: area under receiver operating characteristic curve.
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Fig. 5. Comparison of ROC curves of different models. (a) and (b) are ROC curves of the models in training and validation cohort. Among the five models, the clinicoradiomic model
resulted in best performance, with an AUC of 0.888 in the training cohort and an AUC of 0.832 in the validation cohort.

Table 2
Performance of models for PPH prediction.

Cohort Model AUC ACC (%) SEN (%) SPE (%)

Training Cohort Clinical 0.729(0.660�0.796) 65.2(58.7�71.7) 63.7(54.2�73.0) 66.7(57.7�75.7)
Radiological 0.766(0.699�0.833) 72.5(66.4�78.5) 65.7(56.4�74.9) 79.0(71.2�86.8)
Radiomics 0.876(0.832�0.920) 74.4(68.6�80.2) 89.2(83.2�95.3) 60.0(50.6�69.2)
Clinicoradiological 0.825(0.768�0.882) 76.3(70.5�82.2) 72.5(63.9�81.2) 80.0(72.4�87.5)
Clinicoradiomics 0.888(0.844�0.933) 72.9(66.9�79.1) 91.2(85.8�96.7) 55.2(45.7�64.9)

Validation Cohort Clinical 0.740(0.629�0.848) 62.6(52.3�72.7) 56.1(40.3�71.6) 68.0(54.4�81.3)
Radiological 0.574(0.462�0.694) 54.9(44.7�65.5) 58.5(43.9�73.7) 52.0(37.9�66.3)
Radiomics 0.795(0.705�0.885) 62.6(52.8�72.2) 92.7(84.8�100) 38.0(24.2�51.3)
Clinicoradiological 0.725(0.618�0.832) 68.1(58.6�77.7) 63.4(48.4�78.7) 72.0(59.8�84.1)
Clinicoradiomics 0.832(0.746�0.913) 68.1(58.6�77.5) 97.6(92.7�100) 44.0(30.2�57.5)

Abbreviations: PPH: Postpartum Haemorrhage.

Table 3
Performance of the radiomic nomogram for PPH prediction in pregnancies with and without PP.

Cohort Subgroup AUC ACC (%) SEN (%) SPE (%)

Training With PP 0.867(0.813�0.921) 71.0(64.2�77.9) 90.8(84.8�96.7) 50.0(39.1�61.2)
Without PP 0.983(0.949�1.000) 84.2(72.7�95.3) 100(100�100) 73.9(55.9�91.2)

Validation With PP 0.815(0.718�0.913) 67.9(57.3�78.4) 97.2(91.9�100) 42.9(27.9�57.8)
Without PP 0.832(0.748�0.912) 68.1(58.7�77.4) 97.6(92.8�100) 44.0(30.3�57.4)

Abbreviations: PPH: Postpartum Haemorrhage; PP: Placenta Previa.
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3.4. Clinical application of the clinicoradiomic model

The radiomic nomogram was defined based on the clinicoradiomic
model, which showed the best discrimination ability among fivemodels.

The calibration curve together with the H-L test was used to esti-
mate the consistency between the probability of PPH predicted by
the clinicoradiomic model and actual outcomes. As shown in Fig. 6b
and c, the predicted probability of PPH is consistent with the actual
PPH outcomes both in training and validation cohorts, with the p-
value of 0.181 and 0.165, respectively.

The decision curve evaluated the performance for the clinicora-
diomic model in terms of clinical application, hence, reflecting its
clinical usefulness. In the DCA, the clinicoradiomic offered a net bene-
fit over the treat-all-patients scheme or the treat-none scheme at a
threshold probability >12% (Fig. 6d and e), which indicated that the
clinicoradiomic was clinically useful.



Fig. 6. The establishment and performance of the clinicoradiomic model. (a) The developed nomogram based on clinicoradiomicmodel. (b,c) Calibration curves of the clinicoradio-
mic model generated from the training and validation cohorts. The goodness of fits of predicted probability from the clinicoradiomic model with the actual outcomes of postpartum
haemorrhage (PPH) was assessed. The x-axis represented the probability of PPH calculated by the clinicoradiomic model while the y-axis represented the actual rate of PPH. Diago-
nal dotted line represented a perfect estimation by an ideal model, in which the estimated outcome perfectly corresponded to the actual outcome. Solid line represented perfor-
mance of the clinicoradiomic model, a closer alignment of which with the diagonal dotted line represented a better estimation. The p-value of H-L test was 0.181 and 0.165
respectively. (d,e) Decision curve analysis for the clinicoradiomic model. The x-axis showed the threshold probability and y-axis measured the net benefit. The red line represents
the clinicoradiomic model. The blue line represented the assumption that all patients were PPH while the black line represented the assumption that no patients were PPH.
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4. Discussion

This is the first large scale study to date to build a clinicoradiomic
model to predict the risk of PPH in pregnant women antepartum
based on placental radiomic features on T2WI . The performance of
this model was validated in an external validation cohort with
respect to discrimination, calibration curve and clinical application.
Thirty-five radiomic features showed strong correlation with EBL,
and were stable across multiple centers. The clinicoradiomic model
combining both clinical factors and radiomic signature can identify
more than 91% PPH and can be applied not only in pregnancies with
PP, but also pregnancies without PP.
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Nowadays the optimal management of PAS disorders remains
undefined. Hysterectomy is recommended for patients with abnor-
mally invasive placenta by the majority of members of the Society for
Maternal-Fetal Medicine (SMFM) [26]. Three out of 207 pregnancies in
the training cohort (1.45%) and 3 out of 91 pregnancies in the valida-
tion cohort (3.30%) underwent hysterectomy, which has the advantage
of reducing the immediate risks of major haemorrhage associated with
PAS disorders. For the intra-surgical diagnosis of PAS and preserving
the uterus and fertility ability, attempted manual removal of the pla-
centa was firstly employed for most pregnancies in the two hospitals
of our study, which tend to result in massive obstetric haemorrhage.
However, the correlation of EBL with clinical diagnosis of PAS disorders
is significant in the training cohort while not in the validation cohort,
as shown in Table S4. This is consistent with previous studies [27]. The
contribution of PAS to the increase of PPH remains controversial. Meh-
rabadi A found that increases in placenta accrete cannot explain the
recent increases in PPH, but contribute substantially to the proportion
of PPH with hysterectomy [27]. Some cases of PAS underwent manual
removal of placenta during CD did not submit pathological specimens,
meanwhile, diagnosis of PAS requires an ideal textbook image of villi
sitting atop muscle, which is hard to identify for patients without hys-
terectomy, and thus, cases with obvious gross invasion and without
pathological diagnostic requirement of PAS frequently existed [28].

Recently several studies tried to build models to predict PPH, blood
transfusion or severe complications based on clinical factors and ultra-
sound features of placenta [23,29�31]. All the pregnancies enrolled in
these studies presented with PP. Although endpoints differed among
these studies, the models showed promising results in predicting PPH.
Clinical factors including patients’ status and obstetrical histories were
easy to identify, whereas the ultrasound features for these models
including lacunae in placenta and uteroplacental hypervascularity were
prone to be influenced by the experience of ultrasound doctors and dif-
fered among hospitals. Therefore, the performance of these models
depends on situations. MRI provides more comprehensive evaluation of
placenta compared with ultrasound. Radiomics quantifies placental het-
erogeneity thoroughly with various output features [32,33]. Our present
study built the clinicoradiomic model by utilizing prenatal clinical fac-
tors and radiomic features of placenta on Sagittal T2WI for patients sus-
pected with PAS disorders who underwent placental MRI. The
clinicoradiomic model is not only applicable to pregnancies with PP, but
also without PP. The PAS diagnosis based on ultrasound and MRI was
not included in the model in order to avoid the subjective bias from the
experience of doctors. Romeo V et al. found machine learning analysis
of texture features of placenta on T2WI could identify PAS in patients
with PP [18]. However, the region-of-interest based features might not
reflect the heterogeneity of placenta. The delineation including not only
the placenta, but also the subplacental tissue and the cervix for patients
with PP ensured that the heterogeneity and surrounding circumstances
completely assessed.

Not only for ultrasound, but also for MRI, the interobserver reliabil-
ity for image features indicating PAS showed great variability when
qualitatively evaluated [22], with kappa value of 0.24 for myometrial
thinning and 0.85 for placental protrusion into internal os [34]. The
great difference for the MRI features suggesting PAS between the
training and validation cohorts in our study also illustrated the unreli-
ability of image interpreting among different situations and radiolog-
ists. Thus quantitative assessment of images is needed for objective
evaluation. Thirty-five radiomic features that showed strong correla-
tion with EBL in both centers were enrolled in the radiomic and clini-
coradiomic model. Although it is hard to interpret the specific
underlying meaning of these radiomic features [35,36], the good per-
formance of the model in the training and validation cohorts, in the
subgroup with or without PP suggests that radiomics analysis is a use-
ful and stable tool for EBL and PPH prediction. The stable performance
in different centers also highlights that radiomics analysis can over-
come data differences between multiple centers.
There were several limitations in our study. First, although efforts
have beenmade to improve the accuracy of quantification of EBL, there
was no recommended or preferred method from the guidelines,
except either using a visible estimate or through the use of blood col-
lection drapes, which showed unreliability among surgeons and insti-
tutions. However, EBL is still used to initiate levels of treatment in
RCOG guidelines [37]. Second, the optimal timing of placental MRI and
abnormal placentation detectable has not been clearly established in
the literature [38]. Horowitz JM reported that placental MRI at 32�36
weeks showed best discriminative ability for PAS interpretation [39].
Whereas the 24�30 weeks of gestation were recommended as optimal
time for MRI assessment of placenta accrete [40]. The gestation age
when performing placental MRI in our study ranged from 27 to 41
weeks. Considering that, we also did not take the time interval
between the MRI examination and CD into account. A future study
with larger scale samples confined to specific gestational age would
probably have better performance for PPH prediction. Third, the path-
ological diagnosis of PAS disorders was lacking in our study since not
all of them underwent histological placental evaluation. Fourth,
patients with twin or multiple pregnancies were not included in our
study, thus the prediction model is not practical for these patients.
Fifth, MRI is not as widely used for clinical use in pregnant women as
ultrasound. Unlike previous models based on ultrasound features, the
radiomic nomogram we built is limited to patients who underwent
MRI. However, people seekingMRI are usually high risk with PP or sus-
pected PAS, who will definitely benefit from the antepartum predic-
tion of PPH with the radiomic nomogramwe built.
5. Conclusion

Identification of pregnancies with postpartum haemorrhage (PPH)
antenatally rather than intrapartumwould aid delivery planning, facil-
itate transfusion requirements and decrease maternal complications.
By radiomic analysis, thirty-five radiomic features showed strong cor-
relation with EBL, which remained stable across multiple centers. The
clinicoradiomic model incorporating both prenatal clinical factors and
radiomic features of placenta on T2WI showed great performance in
predicting PPH. The predictive model can identify severe PPH with
high sensitivity and can be applied in patients with and without PP.
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