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Wound healing after an injury is essential for life. An in-depth understanding of the healing

process is necessary to ultimately improve the currently limited treatment options for

patients suffering as a result of damage to various organs and tissues. Injuries, even

the most minor, trigger an inflammatory response that protects the host and activates

repair pathways. In recent years, substantial progress has been made in delineating the

mechanisms by which inflammatory cytokines and their receptors facilitate tissue repair

and regeneration. This mini review focuses on emerging literature on the role of the

cytokine macrophage migration inhibitory factor (MIF) and its cell membrane receptor

CD74, in protecting against injury and promoting healing in different parts of the body.

Keywords: wound healing, regeneration, cytokines, macrophage migration inhibitory factor (MIF), CD74 receptor,
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INTRODUCTION

Whenever an injury occurs, the body needs to repair it efficiently in order to protect from further
damage and restore function. From minor scratches to myocardial infarction, we continually
experience traumatic events throughout life. Therefore, the healing process is essential for survival.
Further understanding of the mechanisms that promote healing could lead to new therapeutic
opportunities to improve the lives of individuals with illnesses that resulted from organ and tissue
injury (1, 2). In addition to protecting against invading pathogens, an appropriate inflammatory
response activates repair pathways that are essential for healing, without causing unwanted damage
to the host tissue. Cytokines play a crucial role in inflammation-driven repair. Cytokines act by
binding to specific receptors on certain cell types triggering downstream signaling events that
ultimately promote the healing process (3, 4).

This review focuses on the recent advances that have greatly contributed to our current
understanding of the link between the signaling pathways activated upon binding of macrophage
migration inhibitory factor cytokine to its membrane receptor CD74 and wound healing in
different body parts (Figure 1).

MACROPHAGE MIGRATION INHIBITORY FACTOR

Macrophage migration inhibitory factor (MIF) is one of the first described cytokines, identified
as a soluble immune cell-derived factor over 50 years ago in 1966. Similar to cytokines such
as tumor necrosis factor (TNF), MIF’s range of functions has exceeded what is implied by
the historical name (5, 6). The MIF gene was cloned in 1989, and subsequent studies have
demonstrated a wide range of roles for MIF. MIF is a truly pleiotropic inflammatory cytokine
that is expressed by a variety of cells, and is a critical upstream mediator of innate immunity.
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FIGURE 1 | Role of CD74 receptor in tissue injury and wound repair.

Given its important role in immunity, it is not surprising
that excess MIF expression has been linked to exaggerated
inflammation and immunopathology. In addition, MIF
demonstrates well-documented proliferative properties. MIF
is secreted by many different types of cells and interacts with
several receptors, which helps to explain the variety of biological
functions. Receptors that interact that bind MIF include CD74,
and chemokine receptors CXCR2 and CXCR4 (7–15).

CD74

CD74 is a type II transmembrane protein consisting of an N-
terminal cytosolic tail, a short transmembrane region, and a
long C-terminus luminal region. Human CD74 is encoded on
chromosome 5 and consists of four isoforms. Isoforms p33 and
p41 are generated by alternative splicing, that is, the p33 isoform
is created by excluding exon 6b from p41 CD74 transcript.
Isoforms p35 and p43 originate from an alternative start site
(16–21). While CD74 was first discovered in 1979 through co-
immunoprecipitation of the Major Histocompatibility Class II
antigen (MHCII), it wasn’t until 1989 the antigen presentation
function of CD74 was recognized. CD74 is expressed on classical
antigen presenting cells (APCs), such as dendritic cells and
macrophages, acts as a chaperone that binds MHCII, and is
commonly referred to as the Class II invariant chain (Ii) (16, 18,
22, 23).

Subsequently, a growing body of evidence supported the
concept that CD74 could have additional functions as a
receptor. Surface expression of CD74 occurred independently of
concomitant MHCII expression. Additionally, CD74 expression
was found on the surface of non-APCs such as endothelial
cells, and epithelial cells in the kidney, lung, gut, and
skin (24, 25).

CD74 IS A RECEPTOR FOR MIF CYTOKINE

The receptor that mediated MIF activity remained elusive
until a study in 2003, which utilized a cDNA library and
fluorescently conjugated MIF to screen for a receptor and
identified CD74 as the MIF receptor. The authors described that
MIF bound to the extracellular domain of CD74, resulting in
extracellular signal-regulated kinase (ERK) pathway activation
(25). MIF-induced ERK activation through CD74 appears to
depend on CD74 forming a complex with co-receptor CD44
(CD74/CD44) (26, 27). In addition to ERK, stimulation of CD74
has been shown to trigger activation of the PI3K-Akt signal
transduction cascade, NF-κB, and the AMP-activated protein
kinase (AMPK) pathways. These pathways play important roles
in cell proliferation and survival (28).

D-dopachrome tautomerase (D-DT, MIF-2) was recently
described as a member of the MIF protein superfamily,
demonstrating overlapping inflammatory and proliferative
properties with MIF. D-DT and MIF genes are located in close
proximity on chromosome 22, ∼80 kb apart. The amino acid
sequence of humanMIF and D-DT shows 34% identity, however,
the structure of the two proteins is highly conserved. D-DT binds
CD74 and initiates similar signaling pathways (29, 30). MIF
homologs are also expressed by parasites. These MIF homologs
are structurally and functionally similar to human MIF and
interact with CD74. While it may seem counter-intuitive for
protozoans to secrete MIF, parasite MIF appears to contribute to
immune evasion and invasion (31–33).

REGULATION

Regulation of MIF-CD74 interactions occurs at several levels.
MIF is constitutively expressed with increased MIF secretion
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FIGURE 2 | CD74 expression is increased in inflammatory bowel disease

(IBD). CD74 (brown) is increased in significant amounts in proliferating crypt

epithelial cells in the gut of IBD patient. Scale bar: 50µm. Panel is reproduced

from Farr et al. (58) with permission.

occurring early in the inflammatory response. Triggers of
increased MIF release include lipopolysaccharide (LPS) and
cell injury. Secreted MIF then interacts with CD74 to carry
out some if its functions (10, 14). CD74 activity is regulated
by changes in expression, proteolytic processing, and MIF-
interacting proteins that prevent binding to CD74. Similar to
MIF, CD74 is expressed on multiple cells: immune cells (e.g.,
B lymphocytes, macrophages, dendritic cells) and non-immune
cells including epithelial cells. Information on the regulation
of CD74 expression in these different cells remains limited.
Increased CD74 expression is observed in injury, inflammation,
and cancer. IFN-γ, a cytokine crucial to both innate and adaptive
immunity, increases CD74 expression in a variety of cells (34–
36). Intracellular binding partners released in the extracellular
space can regulate cytokine activity. Both ribosomal protein
S19 (RPS19) and c-Jun activation domain binding protein 1
(JAB1) were shown to have regulatory effects by binding to MIF,
inhibiting its interaction with CD74 (37, 38). CD74 also exists in
a soluble CD74 ectodomain form which results from proteolytic
shedding of the ectodomain region. However, the molecular
mechanism including the protease responsible for releasing
CD74 ectodomain remains poorly understood. Ectodomain
shedding decreases the amount of CD74 surface receptors
available to interact with MIF. Also, CD74 ectodomain regulates
MIF activity by acting as a decoy receptor, sequestering free MIF
to negatively regulate MIF signaling (39–41). Another proteolytic
step involves signal peptide peptidase-like 2a (SPPL2a), which
is an aspartic intramembrane protease. SPPL2a has shown to
play an important role in CD74 proteolysis (42, 43). Yet, the
exact role of SPPL2a-mediated CD74 proteolysis inMIF signaling
and whether modulating SPPL2a enzyme activity affects MIF
proinflammatory and proliferative functions remain to be fully
investigated (16).

In the following sections, we summarize the recent data
supporting the reparative role of MIF-CD74 signaling in different

organs and tissues during injury. The role of CD74 in other
disease processes, antigen presentation, and cancer has been
well-reviewed elsewhere (16, 16–18, 28, 44–48).

MIF-CD74 SIGNALING IN PROMOTING
MUCOSAL HEALING DURING
COLITIS-ASSOCIATED INJURY

Inflammatory bowel disease (IBD), exemplified by Crohn’s
disease (CD) and ulcerative colitis (UC), is a growing public
health challenge and socio-economic problem that affect millions
with rapidly increasing incidence worldwide (49, 50). Mucosal
healing has been established as an important treatment predictor
of sustained clinical remission and resection-free survival in
IBD (51). Unfortunately, a significant number of IBD patients
do not respond to current treatment (including corticosteroids
or biologics), and as many as 70% of CD and 25% of UC
patients require surgical resection of affected regions of their
intestine (52). Current therapeutic strategies focus on limiting
inflammation, thus, there is an urgent need to develop new
approaches that also facilitate tissue repair and mucosal healing.

Our understanding of the genetic contributions to IBD
has seen significant advances over the past few decades.
Genome-wide association studies (GWAS) have identified new
single nucleotide polymorphisms (SNPs) associated with IBD
predisposition and treatment failure (53, 54). A recent study
aimed at determining genetic factors associated with poor
response to anti-TNF therapy, found that a strong association
between a CD74 polymorphism and anti-TNF failure in patients
with ulcerative colitis. The rs7709772 SNP is located in the CD74
promoter region. The odds ratio for non-response to anti-TNF
therapy with this SNP was relatively high at 22 (55).

CD74 gene expression is increased in patients with IBD (56,
57), which occurs in the inflamed areas compared with non-
inflamed and healthy intestine (Figure 2). CD74 overexpression
was most noticeable in proliferating crypt epithelial cells
of patients with IBD and amebic colitis, a condition often
misdiagnosed as IBD (58, 59). CD74 is almost undetectable in
the epithelium of non-inflamed human and mice intestine when
analyzed by immunohistochemistry (58, 60, 61). Therefore, it was
not too surprising to find that CD74 deficient mice had normal
colon, histology, and barrier integrity, and lacked spontaneous
colitis in the absence of pathologic insults (58). On the other
hand, MIF is expressed by epithelial cells that line the intestine
and MIF-deficient mice have impaired intestinal barrier integrity
(62). Using a combination of genetic knock-out, bone marrow
chimera mice, chemical, non–chemically-induced, acute, and
chronic mouse models of colitis, CD74 was found to be essential
for mucosal healing in colitis-associated injury. At the cellular
level, MIF stimulation of CD74 on intestinal epithelial cells
increased cell proliferation and wound closure, an effect that was
lost in CD74-deficient cells. Mechanistically, MIF, which also is
increased in colitis, stimulated the CD74 receptor, activating pro-
proliferative Akt and ERK pathways (58). So while dispensable
in steady state conditions, CD74 appears to be necessary for
reparative inflammation.
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Based on these findings, enhancing the CD74 pathway
might represent a unique treatment approach for promoting
healing in IBD. Though, finding the right ligand to stimulate
CD74 may present a challenge. That is, stimulation of CD74
with exogenous MIF might lead to an excessive inflammatory
state, as MIF is capable of stimulating CXCR2 and CXCR4
receptors in addition to CD74. CXCR2 and CXCR4 receptors
when activated promote influx of neutrophils and lymphocytes,
respectively (63, 64).

MIF-CD74 PATHWAY IN RECOVERY FROM
LUNG INJURY

Lung injury arises from a wide variety of insults, which include
pulmonary infections, such as bacterial and viral pneumonia
caused by influenza and coronavirus, vaping-associated
pulmonary illness (VAPI), ischemia–reperfusion-induced lung
injury, and ventilator-induced lung injury (65–67). In the 2018–
2019 season, influenza caused around 500,000 hospitalizations
and 34,000 deaths (68). The emerging CoVID-19 has an
increasing impact through infections and deaths as well as the
economic impacts of quarantines and event cancellations to
reduce infection spread (69, 70).

Lung injury causes damage to the epithelium. The alveolar
epithelial barrier consists of two main cell types: alveolar
epithelial type I and type II cells. Type I cells are flat cells
through which gas exchange takes place and occupies most of
the alveolar surface area. Type II cells serve as progenitor cells
for the alveolar epithelium. Type I cells are more sensitive to
injury and are predominantly destroyed during lung damage.
Type II cells proliferate and differentiate into type I cells, thus
actively reforming the alveolar epithelium after damage and
promoting alveolar repair (71). Type II cells express CD74 on
their surface. During acute injury such as viral infection, type I
cells release MIF. Extracellular MIF binds to CD74 on adjacent
type II epithelial cells, activating Akt and ERK pathways, resulting
in cell proliferation and differentiation to restore the alveolar
barrier (72).

Lung endothelial cells display almost undetectable amounts of
CD74 at baseline. A recent study found that chronic hyperoxia
led to CD74 upregulation in endothelial cells (73). Hyperoxia
is common in patients with adult respiratory distress syndrome
(ARDS), which is due to the requirement for high levels of
supplemental oxygen. Endothelial injury is a key feature of
hyperoxic acute lung injury (74). MIF-CD74 activation was
found to protect from oxidative stress in an animal model. MIF
and CD74 genetic knock-outs, and pharmacological inhibition of
CD74 resulted in loss of the protective effects of CD74. This led to
increases in inflammatory cytokines, apoptosis, and mortality. At
the molecular level, CD74 activation during hyperoxia induced
proliferative and pro-survival effects through ERK and Akt
activation (73).

Neutrophils appear to play a significant role in tissue damage
and the development of acute lung injury (75). It is important
to mention that excess MIF was shown to correlate with
neutrophil accumulation into the lung (76). However, it remains

unclear how much MIF-CXCR2 interaction is contributing to
leukocyte recruitment.

MIF-CD74 PATHWAY IN RECOVERY FROM
KIDNEY INJURY

Acute kidney injury (AKI) remains a significant medical problem
and is associated with increased hospital mortality, length of
stay, and costs. Individuals who survive an AKI hospitalization
are likely to fail renal function recovery and go on to develop
chronic kidney disease and hypertension (77). Most cases of
AKI are due to ischemia, but our kidneys are also vulnerable
to damage by toxins, infection, and immune-mediated insults.
Ischemic AKI, for example, results in significant renal tubular cell
damage. Free radicals formed during ischemia and reperfusion
(I/R) also contribute to renal damage. Surviving cells undergo
epithelium regeneration to restore healthy renal function (78,
79). A better understanding of the repair processes underlying
kidney repair will facilitate therapies that will prevent injury,
promote recovery, and minimize the progression to chronic
kidney disease.

CD74 is expressed on the surface of renal tubular epithelial
cells. Also, these cells express low levels of MIF which is increased
following AKI to ensure adequate supplies at the site of damage
(80, 81). A spontaneous pathological renal phenotype is absent
MIF knock-out mice, suggesting little to no effect on healthy
organs (82). However, high MIF levels can be found in the
serum of patients following cardiac surgery and correlates with
protection from AKI (81). In a murine model of experimental
ischemia-reperfusion injury, MIF, MIF-2, and CD74 knock-out
mice had worse tubular injury compared to wild type control
mice. MIF-2 improved the recovery of injured epithelial cells
by enhancing cell regeneration through secretory leukocyte
proteinase inhibitor (SLPI) and activating transcription factor
(ATF) 4-dependent mechanisms (83). SLPI has proliferative,
antioxidant and cytoprotective properties, and is being evaluated
as a biomarker for AKI after surgery (84–86).

While MIF/MIF-2 are likely protective in IR, this might
not be the case for all renal diseases depending on the
underlying pathology. For example, MIF has been linked to
injury and inflammation in models of glomerular diseases (87–
89). Therefore, additional studies are required to determine
which patient conditions would benefit from blockade vs.
stimulation strategies.

CD74 SIGNALING IN PROTECTING THE
HEART AFTER INJURY

Cardiovascular disease is the leading cause of death in the
United States. Risk factors for cardiovascular disease include
smoking, obesity, and hypertension. Myocardial infarction,
or heart attack, occurs in one American every 40 s (90).
Treatment for MI is composed of anti-coagulant medication,
thrombolytics, and surgical intervention to restore normal
blood flow. However, damage to cardiomyocytes caused by
ischemia is not addressed in the standard treatment regimen
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and can lead to heart failure. Targeting repair of heart
tissue during MI may improve patient outcomes and prevent
chronic disease.

CD74 signaling was shown to have protective effects in
cardiomyocytes in cardiac I/R injury animal model. MIF
is secreted from the cardiomyocytes during I/R and acts
in an autocrine-paracrine manner, stimulating cell surface
CD74 receptor. Activation of CD74 with exogenous MIF-
2 improved cell survival and infarct size both in wild-type
control and conditional MIF-2 knockout mice, while CD74
deletion led to worse injury. Mechanistically, MIF-2 binding
to CD74 quickly activates the AMP-activated protein kinase
(AMPK) cascade via a calcium dependent kinase, CaMMK2
(91). Activation of the AMPK pathway in cardiomyocytes
decreases apoptosis, necrosis, and contractile dysfunction
following ischemia (91, 92). MIF-2 in contrast to MIF appears
to lack the necessary CXCR-interacting motifs necessary for
activation, and it is believed to exert a more selective action in
activating the tissue-protective CD74 signaling pathway. That
said, MIF triggers the CD74/CD44/AMPK receptor signaling
pathway, which promotes glucose uptake in cardiomyocytes
and protects the heart during ischemia-reperfusion injury (93,
94). Further studies are required to determine the potential of
MIF/MIF-2 as a treatment strategy to protect the heart against
ischemic injury.

CD74 AND CUTANEOUS WOUND HEALING

Impaired wound healing in the setting of non-healing surgical
or traumatic wounds, pressure ulcers, diabetic foot ulcers,
venous, and ischemic ulcers, presents a substantial healthcare
burden. Chronic non-healing wounds contribute to significant
healthcare costs, poor quality of life, and serious outcomes such
as amputations (95, 96).

Following injury, several cytokines play important roles
during tissue repair and promote cutaneous wound healing
by the classic stages of wound repair: inflammation, new
tissue formation, and remodeling (97, 98). Therefore, cytokine
pathways have been targeted when designing regenerative
strategies to promote chronic wound repair (99). Gene
expression studies have been valuable for identifying cytokines
expressed during the inflammatory process in a wound
setting (100). A study analyzing gene expression profiles in
patients with punch biopsies found MIF gene expression
increased during cutaneous wound healing (101). The role
of MIF in promoting wound healing was investigated using
an animal model of skin injury. MIF levels were elevated
early after injury and facilitated proliferation and migration
of keratinocytes from the edge of the wound (102). These
results support a reparative response of MIF to cutaneous
injury. In addition, transcriptomic analysis revealed CD74
upregulated in pressure ulcers in a neuropathic ulcer mouse
model (103). It is plausible that theMIF-CD74 pathway promotes
cutaneous wound repair, however, further studies will be
required to characterize the role of CD74 signaling in cutaneous
wound healing.

CD74 ACTIVITY IN OTHER ORGANS AND
TISSUES

CD74 signaling has also been found to play a potential role
in healing in other tissues such as the nervous system and
liver. Sciatica is a chronically painful disease caused by injury
to the sciatic nerve. Schwann cells express CD74, and MIF is
upregulated following sciatic nerve injury. MIF-stimulated CD74
activation of the ERK pathway led to Schwann cell proliferation
and subsequent nerve regeneration. Also, in vitro studies show
that MIF facilitates Schwann cell migration. Both Schwann cell
proliferation and migration promote nerve regeneration (104).
A separate in vitro study demonstrated that CD74 activation
by MIF promoted cell survival and proliferation of neural
progenitor cells (105). Further studies will be required to
determine if MIF-induced proliferation of neural progenitor cells
can be a therapeutic option in brain disorders. In the liver, CD74-
MIF signaling plays a protective role in nonalcoholic fatty liver
disease (NAFLD) by enhancing AMPK (106).

PROINFLAMMATORY EFFECTS AND
DISEASE OUTCOMES LINKED TO
MIF-CD74 SIGNALING

While this review focuses on the protective role of MIF-CD74
signaling, it should be noted that this is not the case for all
diseases (18, 44, 107). The complex pathological processes that
result in disease combined with CD74’s expression on a variety of
cell types, and its multiple co-receptors with diverse downstream
signaling pathways contribute to these varied outcomes. For
example, lupus nephritis is inflammation of the kidney that is
caused by the autoimmune disease systemic lupus erythematosus
(SLE) (108). B cells participate in SLE immunopathogenesis
(109). B lymphocytes express elevated levels of CD74 in
mouse models of SLE and lupus-prone mouse strains have
elevated MIF. Both MIF and CD74 elevated expression positively
correlated with worsening inflammation. MIF inhibition and
CD74 deficiency protected against glomerulonephritis in lupus-
prone mice (110, 111). Despite these results that suggest MIF-
CD74 pathway plays a role in lupus pathology, a phase 1 clinical
trial of an anti-MIF monoclonal antibody in lupus nephritis was
terminated early for unclear reasons (112). These findings suggest
that MIF-CD74 functions with differential outcomes occur in a
context- and cell type-dependent manner. Given this complexity,
additional research is needed to determine when and how to
inhibit or stimulate the MIF-CD74 pathway to achieve benefit.
Also, whether disease associations are a result of different co-
receptor involvement on different cell types should be a focus of
future research.

MIF’s proinflammatory effects involve enhancing the
expression of various cytokines such as TNF-α, IL-6, IL-8 (14).
Cytokines like IL-6 are now recognized for their roles triggering
tissue repair and regeneration (4, 113). While these downstream
proinflammatory MIF effects have been linked to immune
disorders, it remains possible that they play a role in the healing
effects of MIF-CD74 signaling. This would be an interesting area
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for future investigation as balancing the positive and negative
effects of MIF appears to be key.

CONCLUSION

Discussed above is the recurrent observations of the protective
effects of MIF-CD74 signaling in wound-healing. Recent studies
have furthered our understanding of the mechanisms by which
CD74 stimulation leads to tissue repair in multiple parts of
the body involving some of the most important diseases.
Despite these advances, key questions remain unanswered. For
example, although there is mechanistic overlap, the downstream
pathways that are important for CD74-mediated repair appear
to vary with the tissue or cell type. In epithelial cells, such
as those that line the gut and alveoli of the lungs, MIF-
CD74 interaction triggers the activation of pro-survival and
proliferative Akt and ERK pathways. In contrast, activation of the
pro-survival kinase AMPK seems to play a more significant role
in cardiomyocytes and hepatocytes. The molecular reason for the
different downstream signaling pathways beyond differences in
cell types is not fully understood and present worthy unknowns
to be solved by future studies. Furthermore, a selective agonist
that will stimulate CD74-mediated repair with little or no

unwanted side effects remains poorly defined. The answers to
such questions may allow us to translate these recent scientific
discoveries into clinical interventions, and ultimately benefit
those suffering as a result of injury to various organs and tissues.
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