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Abstract: The gold catalysts supported on various morphologies of α-Fe2O3 in carbon monoxide (CO)
oxidation reaction have been studied for many researchers. However, how to improve the catalytic
activity and thermal stability for CO oxidation is still important. In this work, an unusual morphology
of α-Fe2O3 was prepared by hydrothermal method and gold nanoparticles were supported using
a deposition-precipitation method. Au/α-Fe2O3 catalyst exhibited great activity for CO oxidation.
The crystal structure and microstructure images of α-Fe2O3 were carried out by X-ray diffraction
(XRD) and scanning electron microscopy (SEM) and the size of gold nanoparticles was determined by
transmission electron microscopy (TEM). X-ray photoelectron spectra (XPS) and Fourier transform
infrared spectra (FTIR) results confirmed that the state of gold was metallic. The 1.86% Au/α-Fe2O3

catalyst calcined at 300 ◦C had the best catalytic performance for CO oxidation reaction and the
mechanism for CO oxidation reaction was also discussed. It is highly likely that the small size of gold
nanoparticle, oxygen vacancies and active sites played the decisive roles in CO oxidation reaction.
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1. Introduction

Nowadays, environmental pollution has become a severe problem that cannot be ignored. Carbon
monoxide (CO) is one of the common toxic gases in air pollution and its presence has a very bad
influence on the environmental management and human health. Hence, it is definitely necessary to
deal with the emission of CO. Usually, CO comes from automobile engines, fossil fuels, industrial
chemical combustion and so on. The familiar effective controlling method is to convert CO into
CO2 [1–4].

Gold nanocatalysts catalyzing CO oxidation reaction have attracted widespread concern among
scientists since it was first reported by Haruta et al. [5] in the late 1980s. Many factors, including the
size of gold particles, the property of support material and the prepared method and so on, have great
influence on the catalytic activity [6]. Especially, the morphology of support has a non-negligible
effect on the interaction between gold and support, further influencing the catalytic performance of
gold catalysts. Jia et al. [7] investigated the effect of morphology of Ceria support on the activity of
Au/CeO2 for CO oxidation. The results showed Au/nanopolyhedra-CeO2 had the better performance
at low temperature, while Au/nanorod-CeO2 was the best catalyst at high temperature. Guczi et al. [8]
interpreted that the activity of Au/oxide perimeter depended not only on the particle size but also
on the morphology of the oxide component, likely amorphous structure. Li et al. [9] synthesized
Au/CeO2-TiO2-nanorods and Au/CeO2-TiO2-nanoparticles by hydrothermal and co-precipitation
methods, respectively. The catalytic results reported that Au/CeO2-TiO2-nanorods were more active
than Au/CeO2-TiO2-nanoparticles because of the dominated surface structure of CeO2-TiO2 support.
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A mass of papers have reported that the catalysts with gold supported on reducible oxide exhibit
higher activities, such as Fe2O3, TiO2, Co3O4 and so on [10–12]. Hematite (α-Fe2O3), relying on
large oxygen storage, narrow band gaps, low cost, earthly abundant and environmentally friendly
properties, has often been chosen as support and loads gold to explore its catalytic activities for CO
oxidation, photocatalysis, water-gas shift reaction and so on [2,13–16]. In these catalytic reactions,
the structure or morphology of hematite plays an important role in catalytic performance [17–19],
which is interesting for researchers and has been studied up to now. Zeng et al. [20] fabricated
Au/α-Fe2O3-hollow catalyst by a hydrothermal-thermal decomposition process and experimental
results declared that the Au/α-Fe2O3-hollow catalyst showed better catalytic performance for CO
oxidation compared to other catalysts, where the morphologies of α-Fe2O3 were spindle, rod and
hollow rod. After that, Zhang et al. [2] prepared the Ag/Fe2O3 catalyst derived from metal-organic
framework (MOF), which had higher surface area and showed high catalytic activity for CO oxidation.
At the same time, Shunsuke Tanaka et al. [21] reported another type of Fe2O3 catalyst supported
gold for CO oxidation, in which Fe2O3 was prepared using an asymmetric PS-b-PAA-b-PEG triblock
copolymer template. And the catalyst exhibited better catalytic activity compared to commercial
Au/Fe2O3. Although these M/Fe2O3-modified (M = Au, Ag) catalysts show improved catalytic activity,
it is still essential to make full conversion temperature lower in CO oxidation reaction by an easy
prepared method and make catalysts own great catalytic performance in various reactions.

In this work, a novel worm-like α-Fe2O3 support was prepared via hydrothermal method and
then was supported gold nanoparticles by a deposition-precipitation method to explore the catalytic
activity for CO oxidation. The gold nanoparticles were distributed uniformly on the surface of α-Fe2O3.
And experimental results showed that the Au/α-Fe2O3 catalyst possessed excellent catalytic activity for
CO oxidation reaction. The gold nanoparticles in catalyst played an important role, which provided
more active center and improved the catalytic activity for CO oxidation.

2. Materials and Methods

2.1. Materials

All chemical reagents were analytical grade and were used directly without any purification.
Ferric chloride hexahydrate (FeCl3·6H2O, 99.0%) and glycol were purchased from Chemical Reagent
Supply and Marketing Company, Tianjin, China. Ethanol was purchased from Guangfu Technology
Development Co. Ltd., Tianjin, China. Urea was purchased from Wind Ship Chemical Reagent
Technology Co. Ltd., Tianjin, China. Oleylamine and sodium hydroxide (NaOH, 96%) was purchased
from the Aladdin Industry Corporation, Shanghai, China. Chloroauric acid (HAuCl4) was purchased
from Masco Chemical Co. Ltd., Tianjin, China.

2.2. Preparation of α-Fe2O3 Support

The α-Fe2O3 support was prepared by a hydrothermal method. Typically, 2.4 g of FeCl3·6H2O
was added into 60 mL of mixing solution of ethanol and glycol, whose volume ratio was 3:1. After
FeCl3·6H2O was dissolved, 1.06 g of urea and 4 mL of oleylamine were added successively under
constant stirring. The system was stirred for 1 h and the solution was then transferred into a 100 mL of
Teflon-lined stainless steel autoclave. The autoclave was heated in an oil bath at 180 ◦C for 12 h. After
the autoclave was cooled to room temperature naturally, the precipitate was washed with distilled
water and ethanol several times, dried at 80 ◦C for 12 h and calcined at 600 ◦C for 150 min in air.

2.3. Preparation of Au/α-Fe2O3

Gold was supported onto the α-Fe2O3 support by a deposition-precipitation method. In this
method, a certain amount of HAuCl4 solution was added dropwise to the α-Fe2O3 aqueous solution
(0.4 g of α-Fe2O3 in 100 mL distilled water). After being violently stirred for 10 min, the pH value of
the suspension was adjusted to about 8 by adding NaOH solution (1 mol/L) dropwise, then stirred and
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aged at room temperature for 12 h. After that, the suspension was heated in a thermostat water bath at
90 ◦C for 4 h. Finally, the precipitate was washed several times with deionized water to remove Cl−

and then dried at 80 ◦C for 12 h. The mass fraction of Au in sample was described as x% Au/α-Fe2O3

(x = 0.62, 1.86, 2.72, 3.59).

2.4. Characterization

The actual loadings of Au in samples were measured by inductively coupled plasma optical
emission spectrometry (ICP-OES, Spectro, SpectroBlue, Germany). The X-ray diffraction (XRD) patterns
were obtained using Rigaku D/max-2500 (Rigaku, Japan) X-ray diffractometer (Cu Kα, λ = 1.5418 Å) to
identify the crystal phase of catalysts. Scanning electron microscopy (SEM) images of the samples
were got using a JSM-7500F microscope (JEOL, Japan). Transmission electron microscopy (TEM) and
high resolution (HR) TEM images were obtained using a Tecnai G2F20 microscopy (FEI, Hillsboro, OR,
USA) operated at 200 kV. Ultraviolet-Visible diffuse reflectance spectra (UV-Vis DRS) were collected
using a SHIMADZU UV-3600 spectrophotometer (Shimadzu, Japan). The Fourier transform infrared
spectra (FTIR) were recorded using a Nicolet MAGNA-IR 560 spectrometer (Nicolet, Wisconsin, USA).
X-ray photoelectron spectra (XPS) were accepted using a Kratos Axis Ultra DLD Spectrometer (Kratos
Analytical Ltd., Manchester, UK) with a monochromator of Al Kα source to determine the chemical
states of Au and Fe. The H2 temperature-programmed reduction profiles (H2-TPR) were tested on a
ChemiSorb 2720 (Micromeritics, Georgia, GA, USA) and the temperature programmed desorption
profiles of ammonia (NH3-TPD) were obtained using a chemBET TPD (Quantachrome, Florida, FL,
USA).

2.5. CO Oxidation Catalytic Activity

The catalytic activity was evaluated using a fixed-bed flow millireactor at atmospheric pressure.
The catalyst (0.2 g) was diluted with quartz sand (17.6 g) and then was loaded in a stainless steel tube,
whose inner diameter is 8 mm. The feed gas containing of 10% CO balanced with air passed through
the reactor at a total flow rate of 36.3 mL/min. The reaction temperature gradient was 5 ◦C/min and the
testing temperature range was 25–200 ◦C. The effluent gases were analyzed using an on-line GC-508A
gas chromatography equipped with H2 as carrier gas. The conversion rate of CO was calculated to
evaluate the activity, whose equation [22] was shown as follows:

CO Conversion =
[CO2]

[CO] + [CO2]
× 100%, (1)

3. Results and Discussion

3.1. ICP and XRD

The actual content of gold in sample was measured by ICP. Compared to the theoretical content
of 1%, 2%, 3% and 4%, the actual content were 0.62%, 1.86%, 2.72% and 3.59%, respectively. Clearly,
60–90% of gold was successfully loaded on the α-Fe2O3 support for all catalysts.

Figure 1 shows the XRD patterns of (a) precursor, (b) α-Fe2O3 and various amount of Au/α-Fe2O3

catalysts ((c) 0.62%, (d) 1.86%, (e) 2.72%, (f) 3.59%) calcined at 300 ◦C for 2 h, which revealed that the
hexagonal α-Fe2O3 was prepared successfully after the calcination of precursor at 600 ◦C and the load of
gold on the surface of α-Fe2O3 support did not change the phase of hematite. The precursor was made
up of variety materials, whose diffraction peaks could be indexed to β-FeOOH, α-FeOOH, γ-Fe2O3

and α-Fe2O3 (JCPDS No. 34-1266, 29-0713, 39-1346 and 33-0664). The diffraction peaks of α-Fe2O3

perfectly corresponded to the hexagonal hematite (JCPDS No. 33-0664), of which the diffraction peaks
at 2θ = 24.18◦, 33.15◦, 35.61◦, 40.85◦, 49.48◦, 54.09◦, 57.43◦, 62.45◦ and 63.99◦ were indexed to {012},
{104}, {110}, {113}, {024}, {116}, {122}, {214} and {300} planes of hematite, respectively. The diffraction
peaks of gold at 2θ = 38.2◦ and 44.5◦ were separately corresponded to {111} and {200} planes of Au fcc
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crystal (JCPDS No. 04-0784). In Figure 1 curves c–f, the peaks of gold were weak, which probably was
caused from the small particle size or the relatively low gold content in catalysts [23]. Besides, it was
clear that the peak intensity of hematite at 2θ = 33.15◦ and 35.61◦ in gold catalysts got stronger, which
implied the crystalline of hematite increased after the addition of gold [22].
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Figure 1. X-ray diffraction (XRD) patterns of (a) precursor, (b) α-Fe2O3 and various amount of
Au/α-Fe2O3 catalysts ((c) 0.62%, (d) 1.86%, (e) 2.72%, (f) 3.59%) calcined at 300 ◦C for 2 h.

3.2. SEM and TEM

The SEM and TEM images are shown in Figures 2 and 3. As shown in Figure 2, the hydrothermal
time played an important role in the morphology of hematite. Firstly, when it was heated at 180 ◦C
for 4 h in oil bath, α-Fe2O3 was mainly made up of irregular particles. With the further increase of
time, it could be seen that the morphologies of α-Fe2O3 support were increasingly like worm. While
the hydrothermal time increased to 12 h, the worm-like α-Fe2O3 finally formed and it was used for
all subsequent studies. Usually, the morphology of α-Fe2O3 obtained by hydrothermal method is
spindle-shaped or spherical [24]. However, in this work, a novel worm-like α-Fe2O3 support was
prepared by reacting for 12 h using hydrothermal method, whose specific surface area was 23.2 m2/g
measured by BET. Its TEM image is shown in Figure 3b, of which the inset is the HR-TEM image of
α-Fe2O3 support. It could be clearly seen that the lattice fringe was 0.255 nm, which was corresponded
to the (110) plane of α-Fe2O3 [21,25]. The rest of TEM images in Figure 3 separately represents
(a) precursor, (c) 1.86%, (d) 2.72% and (e) 3.59% Au/α-Fe2O3 catalysts calcined at 300 ◦C; (f) 1.86%
Au/α-Fe2O3 catalysts calcined at 500 ◦C. The morphology of precursor in Figure 3a was like-leaf before
changing into hematite. In Figure 3c–e, gold nanoparticles were distributed on the surface of hematite
support in various gold catalysts. The insets of Figure 3c–e shows the corresponding size distributions
of gold nanoparticles, which indicated the average diameters of gold nanoparticles were 2.29, 2.96 and
3.32 nm in 1.86%, 2.72% and 3.59% Au/α-Fe2O3 catalysts, respectively. Additionally, some agglomerate
gold nanoparticles occasionally appeared on the surface of 2.72% Au/α-Fe2O3 and 3.59% Au/α-Fe2O3

catalysts, which was probably due to the increase content of gold in catalysts compared to that in 1.86%
Au/α-Fe2O3 catalyst. It also could be seen that the size of gold in Figure 3f increased to around 7 nm
due to the calcination. The size of gold nanoparticles has a great effect on the catalytic activity. As we
know, the smaller gold particle size improves the catalytic performance in CO oxidation reaction.
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Nanomaterials 2019, 9, 1118 6 of 14

3.3. UV-Vis DRS and FTIR

The UV-Vis spectra of α-Fe2O3 and Au/α-Fe2O3 catalysts with various gold loadings calcined at
300 ◦C for 2 h are shown in Figure 4. The absorption of α-Fe2O3 at wavelengths (200–800 nm) were
usually attributed to three kinds of electronic transitions [26]. The absorption peaks at 200–400 nm
mainly resulted from the charge transfer from ligand to metal and partly from the contribution of
Fe3+ ligand field transitions. The obvious peak at 530–570 nm was considered to form mainly by the
pair excitation process of α-Fe2O3. And the peaks at 600–900 nm could be corresponded to the d–d
transition [26,27]. The peak of gold loaded on support normally occurs at 500–570 nm due to the
localized surface plasmon resonance of Au nanoparticles [4]. There was no obvious peak of gold, which
might be overlapped with the peak of α-Fe2O3 at 530–570 nm. This weak gold peak further indicated
the small gold nanoparticle size in catalysts, which was consistent with TEM results (Figure 3). Besides,
it was apparent that the peaks of Au/α-Fe2O3 catalyst all had an obvious red-shift compared to that
of α-Fe2O3 support and the 1.86% Au/α-Fe2O3 catalyst had the largest red-shift among these gold
catalysts. The red-shift action was caused probably from the reduction of electron density in the gold
nanoparticles owing to the chemical interactions with neighboring hematite, in which the electrons
transformed from the cluster to the surrounding matrix [28].
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catalyst calcined at 300 ◦C.

Figure 5 shows the FTIR spectra of α-Fe2O3 and Au/α-Fe2O3 calcined at 300 ◦C for 2 h. The obviously
broad peak at about 3420 cm−1 was attributed to the O–H stretching vibration of absorbed water
and the shoulder peak at 1630 cm−1 was ascribed to the H–OH bending vibration of absorbed
water [29,30]. The two sharp peaks at 460 cm−1 and 530 cm−1 were mainly due to the Fe–O vibration
of α-Fe2O3 [31,32]. The FTIR spectra of gold catalysts were similar with that of support, indicating the
addition of gold has a little effect on the bond of hematite.
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3.4. XPS

The oxidation states and the surface elemental composition of catalysts were further confirmed
by XPS and the XPS results of 1.86% Au/α-Fe2O3 calcined at 300 ◦C for 2 h were shown in Figure 6.
Figure 6a shows the full spectrum of Au/α-Fe2O3, where the peaks of Fe, O, C and Au were assigned,
respectively. Especially, the element C came from the hydrocarbon compound in instrument and the
reason for the small hump of gold was probably related to the low loading. For the Fe 2p XPS spectrum
in Figure 6b, the peaks at 710.8 eV and 724.1 eV corresponded to Fe 2p3/2 and Fe 2p1/2, respectively.
The binding energy (BE) value for Fe 2p3/2 peak was consistent with the value for ferric oxides reported
by A.P. Grosvenor et al. [33] and the Fe3+ cation occupied octahedral sites. Figure 6c shows the high
resolution XPS spectrum of O 1s in Au/α-Fe2O3. The main peak at 529.8 eV corresponded to the lattice
oxygen of hematite and the other two peaks at 531.5 eV and 533.6 eV were attributed to the oxygen
vacancies in the structure and the surface OH−1 groups [34,35], respectively. The state of gold in
Au/α-Fe2O3 catalyst was further determined by the Au 4f XPS spectra in Figure 6d. It could be seen that
the BE of Au 4f 7/2 was 84.0 eV and the BE of Au 4f 5/2 was 87.6 eV, which corresponded to the metallic
gold [36]. The result was consistent with the FTIR analytical result. Besides, Overbury et al. [37] has
reported that the valence of gold had an impact on the catalytic property of catalyst and the metallic
gold played an improved role in catalyzing CO oxidation.
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3.5. H2-TPR and NH3-TPD

The H2-TPR results evaluated the reduction behaviors of α-Fe2O3 support and Au/α-Fe2O3

catalyst calcined at 300 ◦C for 2 h, which were shown in Figure 7a. There were two reduction peaks in
the TPR curve of hematite, which were separately located at about 340 and 610 ◦C. The reduction peak
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around 340 ◦C was assigned to the reduction of Fe2O3 to Fe3O4, while another stronger peak around
610 ◦C could be attributed to the reduction of Fe3O4 to FeO and Fe0 [38,39]. In the reductive process of
Fe2O3 to Fe3O4, the reductive temperature (340 ◦C) in this work compared to that (380 ◦C) reported by
Zhang et al. [40] decreased, which declared that the hematite presented stronger reducibility.

Au/α-Fe2O3 catalysts with various gold loadings had two reduction peaks and their reduction
processes were identical with α-Fe2O3. However, the first peak position in Au/α-Fe2O3 shifted to
higher temperature compared with pure α-Fe2O3 and the second peak position was also different from
α-Fe2O3. In these latter peaks, the 1.86% Au/α-Fe2O3 catalyst had the lowest temperature in achieving
complete reduction, indicating that it had the most improved reducibility, which was beneficial to
catalyze CO oxidation reaction.

The NH3 desorption curves of α-Fe2O3 and Au/α-Fe2O3 catalyst calcined at 300 ◦C were shown
in Figure 7b. It was clear that there were mainly three desorption peaks in the temperature range of
100–800 ◦C for these catalysts. The peaks in all catalysts around 110–200 ◦C were attributed to the
weak acid sites and physiosorbed NH3 and the peaks around 300–400 ◦C were ascribed to the medium
acid sites. While in the high-temperature area, the peaks around 450–650 ◦C were elaborated to the
strong acid sites [41,42]. Considering the desorption peaks at low temperature, the 1.86% and 2.72%
Au/α-Fe2O3 had a relatively weaker acidity among these catalysts. And in the peaks of all catalyst at
high temperature, the 0.62% Au/α-Fe2O3 catalyst presented stronger acidity on account of the higher
desorption temperature. The acid-base property is related to the oxidizing ability and the strong acidity
of catalyst has the disadvantageous effect on the formation of active oxygen. Hence, the catalyst with
weaker acidity would be conducive to the CO oxidation reaction.
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3.6. CO Oxidation Catalytic Activity

The relation schema between CO conversion rate and reaction temperature of Au/α-Fe2O3 catalyst
was shown in Figure 8a. As seen in it, the α-Fe2O3 support had no catalytic activity for CO oxidation,
while 1.86% Au/α-Fe2O3 had the best catalytic ability with the T100 (T100, the temperature that CO
conversion rate is 100%) of 30 ◦C. And the T100 of 0.62%, 2.72% and 3.59% Au/α-Fe2O3 were 70, 90 and
140 ◦C, respectively. According to these catalytic results, it could be easily deduced that the addition of
gold had a great influence on the catalytic activity. Moreover, when the content of gold was higher than
1.86, the catalytic activity began to decrease, which might be related to the decrease of active center.
As shown in the characterization results of UV-Vis and NH3-TPD, 1.86% Au/α-Fe2O3 catalyst equipped
with stronger interaction between gold and support, which could promote the formation of more
active center. And the weaker acidity of 1.86% Au/α-Fe2O3 would accelerate the generation of active
oxygen, which was benefit for the CO oxidation. The catalytic performance of Au/α-Fe2O3-like-worm
in this work was also compared with other gold catalysts supported on Fe2O3 and CeO2 reported
in the literature for CO oxidation, which was shown in Table 1. From Table 1, it could be seen
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that the Au/α-Fe2O3-like-worm catalyst performed the relatively high catalytic activity among these
catalysts for CO oxidation. And the specific rate of Au/α-Fe2O3-like-worm (2.61 molCOgAu

−1h−1) was
26.1 and 2.2 times higher than those of Au/Fe2O3-WGC (0.10 molCOgAu

−1h−1) and Au/commercial
Fe2O3 (1.21 molCOgAu

−1h−1) catalysts. It is well known that several factors, such as gold particle size,
preparation method and the choice of support may give rise to the different performance of gold
catalysts [43].
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Table 1. Comparison of catalytic performance of different gold catalysts for CO oxidation.

Catalyst Au Loading
(wt.%)

Au Particle
size (nm)

Specific Rate
(molCOgAu−1h−1) T100 (K) Reference

Au/α-Fe2O3-like-worm 1.86 2.3 2.61 303 This work
Au/Fe2O3-WGC 0.5 3.7 0.10 623 [43]

Au/Fe2O3 1.0 7.4 0.94 423 [43]
Au/commercial Fe2O3 (Fluka) 0.5 1–5 1.21 – [44]

Au/Fe2O3-nanorod 0.5 1–5 3.99 – [44]
Au/Fe2O3-mesoporous 7.9 3–10 0.30 523 [21]

Au/CeO2 3.2 5.4 0.26 320 [45]

Calcination is a good measure to prepare high-performance catalyst and different calcined
temperature has diverse influence on catalyzing CO oxidation. Figure 8b was the CO conversion
curves of 1.86% Au/α-Fe2O3 catalyst calcined at different temperature. When the reaction temperature
was 20 ◦C, the conversion rate of catalyst calcined at 80, 200, 300 and 400 ◦C were 10%, 20%, 80%
and 0%, respectively. And the T100 of these catalysts were separately 120, 70, 30 and 160 ◦C. Clearly,
the catalyst calcined at 300 ◦C presented the best catalytic activity. Boccuzzi et al. [46] has reported that
the impact of calcined temperature on catalytic activity is mainly ascribed to the size of gold particles.
The smaller size of gold nanoparticles could provide more effective defects, such as edge, corner, step
and so on. Hence, the decreased catalytic activity of catalyst calcined at 400 ◦C was possibly related to
the sinter of gold nanoparticles.

The repeatability, persistence and thermostability of samples were further studied. The repeated
test curves of 1.86% Au/α-Fe2O3 catalyst calcined at 300 ◦C were shown in Figure 9a. After finishing
the first circulation, the test was restarted from room temperature. In the third repeated test, the CO
conversion rate still stayed at 100% at the reaction temperature of 30 ◦C. Therefore, the catalyst had a
high repeatability in catalyzing CO oxidation. The persistent test of catalyst was reported in Figure 9b
and the reaction was kept for 60 h at 30 ◦C (T100). This result showed that there was no decline in
catalytic activity, which strongly proved the catalyst had a long service life. The high-temperature
stability tests were shown in Figure 10. 1.86% Au/α-Fe2O3 catalyst calcined at 300 ◦C was run for 50 h at
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100, 140 and 180 ◦C, respectively. Excitedly, the conversion rates of all catalysts were maintained at 100%
after keeping reaction for 50 h, indicating that the Au/α-Fe2O3 catalyst with high temperature-stable
was definitely prospective in industrial application for CO oxidation.
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the CO oxidation reaction temperature of (a) 100 ◦C, (b) 140 ◦C, (c) 180 ◦C.

The CO oxidation reaction mechanisms for metal oxide supported gold were highly debated in
the literatures [47–49]. In this work, the possible reaction mechanism of hematite supported gold
catalyst was showed in Figure 11 and described as follows. Further research would be carried out
to investigate the detailed reaction mechanism. CO molecule was absorbed on the surface of gold
in the Au/α-Fe2O3 catalyst and the catalyst was activated. The lattice oxygen in α-Fe2O3 connected
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with CO absorbed on the surface of gold, leaving oxygen defects in hematite. Then the defects were
occupied by O2 in air and the O2 molecule sequentially reacted with the CO absorbed on gold to form
CO3 structure. Followingly, the CO3 molecule decomposed to CO2 and the O vacancy in hematite was
filled with the O of gas-phase O2 [50–52]. Hence, more defects in hematite might more largely improve
the conversion of CO to CO2 and promote the catalytic ability of catalyst.
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Figure 11. Schematic diagram of the possible CO oxidation mechanism for Au/α-Fe2O3.

4. Conclusions

In summary, a novel Au/α-Fe2O3-like-worm catalyst has been prepared firstly by hydrothermal
and deposition-precipitation method. It has been shown that the 1.86% Au/α-Fe2O3 catalyst calcined
at 300 ◦C had the best catalytic activity in CO oxidation due to the small size of Au particle and
more active center. The catalyst achieved complete CO conversion at a temperature of 30 ◦C. And
the conversion rate of 1.86% Au/α-Fe2O3 was still 100% after running 60 h at 30 ◦C, indicating the
high stability of Au/α-Fe2O3. The Au/α-Fe2O3 catalyst owned effective activity for low-temperature
CO oxidation and excellent stability, which suggested that it is prospective to be used to control the
emission of CO in industrial application. Moreover, the study of novel worm-like α-Fe2O3 would shed
new light on wide application of α-Fe2O3 in other catalytic reactions. The excellent performance of
Au/α-Fe2O3-like-worm is expected to spur further development for gold catalysts for low-temperature
CO oxidation.
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