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Abstract: Senescence is the last stage of plant development and is controlled by both internal and
external factors. Premature senescence significantly affects the yield and quality of cotton. However,
the genetic architecture underlying cotton senescence remains unclear. In this study, genome-wide
association studies (GWAS) were performed based on 3,015,002 high-quality SNP markers from the
resequencing data of 355 upland cotton accessions to detect genomic regions for cotton senescence. A
total of 977 candidate genes within 55 senescence-related genomic regions (SGRs), SGR1–SGR55, were
predicted. Gene ontology (GO) analysis of candidate genes revealed that a set of biological processes
was enriched, such as salt stress, ethylene processes, and leaf senescence. Furthermore, in the leaf
senescence GO term, one candidate gene was focused on: Gohir.A12G270900 (GhMKK9), located
in SGR36, which encodes a protein of the MAP kinase kinase family. Quantitative real-time PCR
(qRT-PCR) analysis showed that GhMKK9 was up-regulated in old cotton leaves. Overexpression
of GhMKK9 in Arabidopsis accelerated natural leaf senescence. Virus-induced gene silencing (VIGS)
of GhMKK9 in cotton increased drought tolerance. These results suggest that GhMKK9 is a positive
regulator and might be involved in drought-induced senescence in cotton. The results provide new
insights into the genetic basis of cotton senescence and will be useful for improving cotton breeding
in the future.
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1. Introduction

Cotton (Gossypium spp.) is an important industrial crop worldwide that offers re-
newable natural fibers, oil, and animal feed [1]. The genomes of the genus Gossypium are
extraordinarily diverse, including approximately 45 diploid species (2n = 2x = 26) and seven
tetraploid (2n = 4x = 52) species [2,3]. Gossypium hirsutum L. (also known as upland cotton),
one of the seven tetraploid cotton species, is the most widely cultivated species worldwide
because of its adaptability, high yield, and moderate fiber quality [4,5]. Although upland
cotton makes a significant contribution to revenue in several countries [4], cotton yield is
reduced due to senescence when it is induced prematurely under adverse environmental
stresses [6].

Senescence is the last stage of plant development and is accompanied by a transition
from nutrient assimilation to nutrient remobilization [7,8]. During plant senescence, many
major macromolecules are degraded, including proteins, lipids, and nucleic acids, but
the most visible symptom is leaf yellowing owing to the catabolism of chlorophyll [9,10].
The onset and progression of senescence are regulated by both internal and external
factors. Internal factors include various phytohormones [7,11] that play diverse roles in
leaf development. For example, ethylene, abscisic acid (ABA), and salicylic acids (SA)
are acknowledged as senescence-promoting hormones [12–16]. Additionally, multiple
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external environmental factors, including abiotic and biotic stresses, can trigger changes of
hormones, which form a complex regulatory network of senescence [8]. Interestingly, the
mitogen-activated protein kinase (MAPK) cascades play an important role in conveying
endogenous and exogenous signals [17].

Senescence is a complex, quantitative trait, and many studies have reported the genetic
basis of leaf senescence in plants. Under various stress conditions, several quantitative
trait loci (QTL) associated with senescence were discovered using linkage mapping in crop
plants, such as rice [18,19], wheat [20–23], barley [24], maize [25], sorghum [26–29], and
potato [30]. Although these studies are helpful for understanding the genetic architecture
of senescence, it is difficult to identify the underlying genes owing to a lack of resolution. In
the past decade, genome-wide association studies (GWAS) have become a powerful method
for detecting quantitative trait loci and candidate genes at the genome-wide level [31–34].
In a recent study, 25 candidate genes for chlorophyll content (CC) and stay-green (SG) traits
were identified using a diverse population of 368 rice accessions via GWAS [35]. OsSG1 is
considered a pleiotropic gene regulating CC, SG, and chlorophyll accumulation [35]. In
another GWAS study, 64 candidate genes associated with maize senescence were identified
using the maize diversity panel, of which 14 genes were involved in senescence-related
processes, such as proteolysis and sink activity, and eight candidate genes were supported
by a regulatory network [36]. Furthermore, our previous study revealed 50 genomic
regions associated with cotton senescence via a multi-locus GWAS based on 185 upland
cotton accessions and SLAF-seq data [37]. The candidate gene, GhCDF1, was identified as a
negative regulator of cotton senescence. However, further studies are needed to understand
the mechanisms underlying cotton senescence.

Here, a genome-wide association study was conducted to dissect the genetic basis
of senescence in cotton. The association panel consisted of 355 upland cotton accessions
planted in multiple environments, and chlorophyll content indices were measured as
indicators of senescence. Using resequencing data, 55 senescence-related genomic regions
(SGRs) were discovered based on GWAS, and 977 potential candidate genes associated
with cotton senescence were identified. The function of candidate gene GhMKK9 was
then analyzed, and it was found that GhMKK9 silencing improves the drought resistance
of cotton, whereas GhMKK9 overexpression accelerates senescence in Arabidopsis. These
results provide a foundation for the breeding and the genetic improvement of cotton.

2. Results
2.1. Analysis of Phenotypic Variations

To evaluate the variability of senescence in the GWAS panel, the relative chlorophyll
levels of 355 upland cottons were investigated with the SPAD-502 m during two peri-
ods, the flowering and boll-setting period (FBP) and the boll-opening period (BOP), in
multiple environments, including Anyang (AY) and Huanggang (HG) in 2016 and 2017,
designated as SPAD_FBP_AY16, SPAD_FBP_AY17, SPAD_FBP_HG16, SPAD_FBP_HG17,
SPAD_BOP_AY16, SPAD_BOP_AY17, SPAD_BOP_HG16, and SPAD_BOP_HG17. To as-
sess the rate of leaf senescence, the diurnal variation of SPAD was calculated, including
D_SPAD_AY1, D_SPAD_AY17, D_SPAD_HG16, and D_SPAD_HG17. Additionally, the
absolute chlorophyll concentrations and diurnal variation were determined at AY in 2017
(see the Methods section).

The investigated traits followed approximately normal distributions (Figures 1 and S1–S3)
and exhibited wide variation among different years and locations (Supplementary Table S1).
In the FBP period, the average SPAD values in AY and HG in 2016 were 49.12 and 46.27,
respectively, compared to 55.10 and 48.87 in 2017. In the BOP period, the average SPAD
in AY in 2016 was higher than that in 2017, at 52.01 and 48.77, respectively, whereas the
average SPAD in HG in 2016 was 42.52, lower than that in 2017 (50.19). The standard
deviation of SPAD values in the FBP period was distributed from 2.25 to 3.66, compared
with the range of 3.54–12.84 in the BOP period. In addition, the average variations of
the index D_SPAD ranged from −0.19 to 0.19. Furthermore, the ANOVA result indicated
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that genotype, environment, and the genotype-by-environment interaction had significant
effects on SPAD (p < 0.01), while heritability of SPAD in the FBP period was higher than
that in the BOP period (0.65 and 0.41, respectively) (Supplementary Table S2). These re-
sults indicate that cotton senescence is significantly influenced by environmental factors,
particularly in the BOP period.
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Figure 1. Frequency distributions of the mean values of SPAD. (A) The mean value of SPAD in the
FBP period. (B) The mean value of SPAD in the BOP period. (C) The mean value of diurnal variation
of SPAD.

Pearson’s product–moment correlation coefficients and test statistics were used to eval-
uate traits. Although there were significant positive correlations (p < 0.001) among chloro-
phyll contents, the diurnal variations of chlorophyll content were more related to the BOP
period (|r| = 0.00–0.35) than the FBP period (|r| = 0.01–0.93) (Supplementary Figure S4).

2.2. GWAS for Cotton Senescence and Identified Genomic Regions

A total of 3,015,002 high-quality single-nucleotide polymorphisms (SNPs) were identi-
fied after a strict filtering pipeline. GWAS was then performed for both single traits across
different environments and the best linear unbiased prediction (BLUP) values across all
environments using a linear mixed model by EMMAX [38] (Supplementary Figure S5–S7).
Given the significant thresholds (p < 10−6 or p < 10−5 in at least two environments), 380 sig-
nificant signals were identified (Supplementary Table S3).

Because the majority of GWAS signals are usually located in noncoding or intergenic
regions, functional variations are rarely identified by association tests from SNPs [39]. There-
fore, significant signals were integrated, and 55 senescence-related genomic regions (SGRs)
obtained, namely, SGR1–SGR55. (Table 1). The total span of SGRs was approximately
18.09 megabases (Mb), of which 27 were over 1 kb in length. In the A subgenome, 37 SGRs
were distributed across all 13 chromosomes (A01–A13) with a total length of 9.49 Mb, while
18 SGRs were distributed across only nine chromosomes of the D subgenome, with a total
length of 8.60 Mb. Interestingly, there was an extremely long genomic region on the D12
chromosome, SGR52, which spanned 4.33 Mb and accounted for half of the total length of
SGRs in the D subgenome. In addition, forty-three SGRs (78.18%) were detected at least
twice, indicating that the results were stable and reliable.

Table 1. Summary of senescence-related genomic regions.

SGR Chr Start (bp) End (bp) Trait

SGR1 A01 115,568,753 115,568,865 Ratio_ab_FBP
SGR2 A02 6,556,304 6,653,102 SPAD_BOP_AY17, D_SPAD_blup, D_SPAD_AY17
SGR3 A02 155,73,340 15,573,343 D_total_ab, D_chla
SGR4 A02 82,886,748 82,925,332 SPAD_BOP_AY16, D_SPAD_AY16
SGR5 A03 5,877,926 6,672,551 D_SPAD_blup, SPAD_BOP_AY17
SGR6 A03 82,626,806 84,562,267 SPAD_BOP_AY16, D_SPAD_AY16
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Table 1. Cont.

SGR Chr Start (bp) End (bp) Trait

SGR7 A03 113,682,897 113,683,008 SPAD_BOP_AY16, D_SPAD_AY16
SGR8 A04 69,311,017 69,315,686 Ratio_ab_BOP
SGR9 A05 9,695,614 9,695,614 Ratio_ab_FBP
SGR10 A05 31,628,900 31,628,910 SPAD_BOP_AY17, D_SPAD_AY17
SGR11 A05 61,940,854 61,940,864 D_chlb, D_ratio_ab

SGR12 A06 1,128,396 2,179,285 Chlb_BOP, D_chlb, Total_ab_BOP,
Ratio_ab_BOP, D_ratio_ab

SGR13 A06 49,902,382 49,941,259 D_ratio_ab, D_chla, D_total_ab, Chla_BOP,
Total_ab_BOP

SGR14 A06 61,589,693 61,589,748 Ratio_ab_FBP
SGR15 A06 63,390,768 63,390,795 D_chla, Chla_BOP, Total_ab_BOP
SGR16 A06 113,048,017 115,046,117 D_SPAD_HG17, Ratio_ab_BOP
SGR17 A07 12,602,257 12,602,280 SPAD_BOP_AY17, D_SPAD_AY17
SGR18 A07 61,313,631 61,313,636 Chla_BOP, Total_ab_BOP
SGR19 A08 18,726,393 18,727,072 D_SPAD_AY16, SPAD_BOP_AY16
SGR20 A08 48,942,300 50,338,088 SPAD_BOP_AY17, D_SPAD_AY17
SGR21 A08 85,414,259 85,415,664 Ratio_ab_BOP, D_SPAD_HG17
SGR22 A09 40,190,612 40,190,642 D_SPAD_AY17, D_SPAD_blup
SGR23 A09 71,543,578 71,543,578 Ratio_ab_FBP
SGR24 A09 83,855,283 84,822,913 D_SPAD_AY16, SPAD_BOP_AY16
SGR25 A10 5,521,694 5,526,321 D_SPAD_AY16, SPAD_BOP_AY16
SGR26 A10 27,875,320 28,364,565 BOP_blup, D_SPAD_blup
SGR27 A10 92,752,436 92,766,905 SPAD_FBP_HG16, Ratio_ab_FBP
SGR28 A11 5,387,130 5,588,967 D_SPAD_blup, D_SPAD_AY17, SPAD_BOP_AY17
SGR29 A11 106,469,948 106,477,914 D_SPAD_AY16, SPAD_BOP_AY16
SGR30 A12 4,116,205 4,126,358 Chlb_FBP, Total_ab_FBP
SGR31 A12 10,742,829 10,742,829 FBP_blup
SGR32 A12 12,591,095 12,594,279 D_SPAD_blup, D_SPAD_AY17, SPAD_BOP_AY17
SGR33 A12 57,300,054 57,307,338 D_SPAD_AY16, SPAD_BOP_AY16
SGR34 A12 62,551,488 62,556,405 D_ratio_ab, D_ratio_ab
SGR35 A12 70,740,474 70,740,474 D_SPAD_blup, D_ratio_ab, D_SPAD_AY17
SGR36 A12 108,514,660 108,934,586 SPAD_BOP_AY17, D_SPAD_AY17, D_SPAD_blup
SGR37 A13 77,580,822 77,580,838 BOP_blup, SPAD_BOP_AY16
SGR38 D01 51,414,839 51,415,298 BOP_blup, D_SPAD_blup
SGR39 D01 57,675,353 57,675,364 Ratio_ab_FBP, Chla_FBP
SGR40 D01 60,671,107 60,671,202 D_SPAD_blup, D_SPAD_AY17
SGR41 D02 23,837,463 23,837,463 Ratio_ab_FBP
SGR42 D02 32,314,480 32,314,480 D_SPAD_AY17, SPAD_BOP_AY17
SGR43 D02 67,476,213 67,476,218 D_ratio_ab
SGR44 D06 55,810,689 56,177,650 Ratio_ab_BOP, D_ratio_ab, D_SPAD_HG17
SGR45 D07 510,384 510,546 Ratio_ab_BOP
SGR46 D07 10,915,964 11,432,705 SPAD_FBP_HG17, SPAD_FBP_HG17
SGR47 D07 26,125,297 26,125,366 Ratio_ab_FBP, D_ratio_ab, Chlb_FBP
SGR48 D08 43,939,104 43,939,104 Chlb_FBP

SGR49 D10 65,317,192 67,265,400 SPAD_BOP_AY17, BOP_blup, D_SPAD_AY17, FBP_blup,
SPAD_FBP_HG16

SGR50 D11 9,657,009 10,060,413 FBP_blup, SPAD_FBP_HG16
SGR51 D12 23,540,471 23,540,583 D_SPAD_AY16

SGR52 D12 37,359,379 41,685,124 D_total_ab, Chla_BOP, BOP_blup, SPAD_BOP_HG16,
SPAD_FBP_HG16

SGR53 D12 55,716,433 56,755,391 Ratio_ab_BOP, D_ratio_ab
SGR54 D13 26,198,781 26,198,804 D_SPAD_AY17, SPAD_BOP_AY17
SGR55 D13 64,827,390 64,827,424 Ratio_ab_FBP

SGR: senescence-related genomic region; Chr: chromosome.

2.3. Prediction of Candidate Genes

In this study, all the genes located in the 55 SGRs were identified as candidate
senescence-related genes. Subsequently, 977 candidate genes were identified
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(Supplementary Table S4). Of these, 853 candidate genes were annotated as orthologs
in Arabidopsis. Notably, 156 genes were recorded in the leaf senescence database LSD 3.0,
such as EIN3 (Gohir.A03G034800/Gohir.A03G034800), WRKY6 (Gohir.D07G088100), and
PPH (Gohir.D12G102900) (Supplementary Table S5). This result suggests that our approach
to dissecting the genetic basis of cotton senescence was effective. Furthermore, enrichment
analysis of gene ontology (GO) biological processes (BPs) showed that the significant en-
richments (p < 0.05) of these genes were associated with plant senescence-related processes,
such as response to salt stress, ethylene processes, and leaf senescence (Figure 2). For
example, Gohir.D12G208700 (GhRCD1) is a homolog of AT1G32230 in Arabidopsis, encoding
a protein belonging to the (ADP-ribosyl) transferase domain-containing subfamily of the
WWE protein–protein interaction domain protein family, and RCD1 was reported to be
involved in superoxide-induced cell death [40,41]. Gohir.A12G270200 (GhJAZ3) encodes
jasmonate zim-domain protein 3, which negatively regulates AtMYC2, a key transcrip-
tional activator of JA responses [42]. Most strikingly, we focused on the candidate gene
Gohir.A12G270900 (GhMKK9), which is a homolog of AT1G73500 (AtMKK9), a member of
the MAP kinase kinase family that was reported to play a positive role in leaf senescence of
Arabidopsis [43].
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Figure 2. GO enrichment analysis of candidate genes associated with cotton senescence.

GhMKK9 is located in SGR36, which spans approximately 420 kb and is associated with
three phenotypic values, D_SPAD_AY17, SPAD_BOP_AY17, and D_SPAD_blup (Figure 3A).
In the genomic region, we discovered a non-synonymous SNP (A12_108859102) within the
CDS region of GhMKK9, which causes a change in the base from C to T, as well as a change
in amino acid from alanine (GCC) to valine (GTC) (Figure 3B). This SNP and another
synonymous SNP (A12_108860059), also located in the CDS region, form two haplotypes,
TG (Hap1) and GA (Hap2). In the associated panel, 158 cotton accessions carried Hap1,
and 197 accessions carried Hap2. Although the SPAD values (FBP_blup) of Hap1 and Hap2
were not significantly different in the FBP period, the BOP_blup and D_SPAD_blup values
of Hap1 were significantly higher than those of Hap2 (Figure 3C), indicating that Hap1 is a
favorable haplotype for delaying cotton senescence.
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LD heat map (lower) of SGR36. (B) Gene structure and haplotypes of the candidate gene GhMKK9.
(C) Phenotypes of different haplotypes. There are 158 accessions for Hap1 and 197 accessions for
Hap2. Asterisks indicate significance levels (*** p < 0.001); ns, not significant.

2.4. GhMKK9, A Positive Regulator of Cotton Senescence

Quantitative real-time PCR (qRT-PCR) analysis showed that the expression level of
GhMKK9 in old cotton leaves was significantly higher than that in young cotton leaves
(Figure 4A). Furthermore, we silenced the expression of GhMKK9 in cotton using virus-
induced gene silencing (VIGS) (Figure 4C). After one week of drought treatment, the
CK group showed an obvious leaf wilting phenotype, whereas the VIGS-silenced plants
(pTRV2-GhMKK9) only showed a barely visible wilting phenotype (Figure 4B). The SPAD
value of cotton leaves in the CK group after drought treatment was also significantly
lower than that of the VIGS-silenced plants (Figure 4D). Moreover, to further examine the
function of GhMKK9, we overexpressed GhMKK9 under the control of the 35S promoter
(35S::GhMKK9) in Arabidopsis and obtained two transgenic lines (OE7 and OE14), which
were confirmed by qRT-PCR (Figure 4F). After six weeks of culture under normal conditions,
the overexpressing Arabidopsis lines OE7 and OE14 exhibited more severe senescence
phenotypes than wild-type Arabidopsis, such as rosette leaf wilting and a higher degree of
yellowing (Figure 4E). In addition, we determined the transcript levels of two senescence-
marked genes, AtSAG12 (up-regulated during senescence) [44,45] and AtCAT2 (down-
regulated during senescence) [46,47]. The transcript level of AtSAG12 in the transgenic
plants was significantly higher than that in the WT plants (Figure 4G), whereas the transcript
level of AtCAT2 in the transgenic plants was significantly lower than that in the WT plants
(Figure 4H). Taken together, these results suggest that GhMKK9 is a positive regulator of
leaf senescence and may also be involved in drought-stress-induced senescence.
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and old cotton leaves by qRT-PCR. (B) Phenotypes of empty control (CK) and VIGS cotton plants
(pTRV2-GhMKK9) under drought stress. After four weeks, the CK and VIGS cotton plants were
treated with water shortage for 7 days. (C) Expression levels of GhMKK9 in the CK and VIGS
cotton plants. (D) SPAD value of the CK and VIGS plants under drought stress. (E) Phenotypes of
six-week-old WT and transgenic Arabidopsis plants (OE7 and OE14). (F) Expression levels of GhMKK9
in the WT and transgenic Arabidopsis plants. (G,H) Expression levels of senescence-marked genes
AtSAG12 and AtCAT2 in the WT and transgenic Arabidopsis plants. Asterisks indicate significance
levels (*** p < 0.001, ** p < 0.01, and * p < 0.05).

3. Discussion

The senescence process of plant leaves is a very complex biological regulation process
which first depends on age and is also affected by external environmental signal stimuli [11].
Therefore, internal genetic and external environmental factors together determine the onset
and rate of senescence. The senescence process in plants involves the remobilization
and reutilization of nutrients from senescing parts as sinks [7,48], which is particularly
important for crop plant products. Cotton fiber is one of the most important industrial
textile fibers worldwide. Senescence has an important impact on the quality and yield
of cotton fiber [6]. Compared with other crops, such as rice, wheat, and corn, cotton has
the habit of indeterminate growth, which blurs the lines between growth, maturation,
and senescence. Nevertheless, the flowering and boll period (FBP) is considered to be
an important developmental stage of cotton because the plant undergoes a transition
from vegetative to reproductive growth in which the level of plant endogenous hormones
reaches a peak, photosynthesis is enhanced, and the activity of the “sink” is also enhanced.
Then, in the boll-opening period (BOP), cotton senescence, such as chlorosis, is visible.
Therefore, these two periods were chosen to study the regulation of senescence in cotton.
Although senescence has received increasing attention in cotton breeding, research on
the genetic basis of cotton senescence remains limited. In this study, chlorophyll content
indices were selected as indicators to evaluate the senescence performance of the upland
cotton population. Due to the combined action of genetic and environmental factors,
the chlorophyll content varied widely across different planting locations and years. The
SPAD value in the BOP period had a larger range of variation than that in the FBP period.
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Moreover, the SPAD value in the FBP period showed higher heritability than that in the
BOP period (0.65 and 0.41, respectively), which is similar to the results of the previous
study [37]. These results indicate that environmental factors have a more significant impact
on later cotton development.

A GWAS was performed based on 3,015,002 high-quality SNP markers from the
resequencing data of 355 accessions to detect the genetic structure of cotton senescence. A
total of 380 significant signals were identified. Given that functional variations are usually
rare in GWAS [49], significant SNPs were integrated into genomic regions (GWAS loci). In
the previous study, 50 genomic regions associated with cotton senescence were revealed
based on SLAF-seq data of 185 accessions, which spanned a total of 51.50 Mb [37]. In
the present study, 55 senescence-related genomic regions (SGRs) spanning approximately
18.09 Mb were identified. Compared with SLAF-seq-based GWAS, the resequencing data
greatly increased the fine-mapping resolution. Six SGRs (SGR29, SGR39, SGR40, SGR43,
SGR44, and SGR49) were located within ~1 Mb of the genomic regions reported in the
previous study. (Figure 5). Interestingly, these SGRs were located in the D subgenome
(except for SGR29) and were associated with the chlorophyll content in the BOP period
and/or the diurnal variation of chlorophyll content (excepted for SGR39). These results
suggest that the D subgenome plays an important role in the regulation of senescence
in cotton. A range of abiotic and biotic stressors, such as drought, salt, and pathogen
infection, can accelerate the onset and/or progression of plant senescence [7,8,50], and
the D subgenome was reported to make an important contribution to stress tolerance in
allotetraploid cotton [51]. This provides a possible explanation for the results.
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Of the 55 SGRs, a total of 977 candidate genes were annotated. Among them, 156 genes
were also recorded in the leaf senescence database LSD 3.0, and GO analysis revealed a set
of biological processes, such as salt stress, ethylene processes, and leaf senescence. This
suggests that the theory used in this study was effective. Interestingly, focus was given to a
candidate gene, Gohir.A12G270900, which is homologous to AT1G73500 and encodes an
MKK9 protein in Arabidopsis. AtMKK9 plays an important role in the regulation of Arabidop-
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sis senescence [43]. There are many signaling pathways in plants that involve responses to
external stimuli, and one of the most common is the MAPK signaling pathway. In eukary-
otes, the MAPs cascade signaling pathway is a highly conserved signaling module [52,53].
Each MAPKs cascade signaling module is composed of three protein kinases that act in
sequence: MPK, MKK, and MKKK. In Arabidopsis, there are 20 MPK genes, 10 MKK genes,
and 69 MKKK genes [54]. In upland cotton, there may be 52 GhMKs, 23 GhMKKs, and
166 GhMKKKs genes [55]. The candidate gene Gohir.A12G270900 (GhMKK9) is a member
of the GhMKK family. GhMKK9 is located in SGR36, which is associated with multiple
senescence phenotypes, indicating high repeatability and reliability. Interestingly, a non-
synonymous SNP (A12_108859102) and synonymous SNP (A12_108860059) were observed
in the exon region of GhMKK9. The SNP A12_108859102 changed the amino acid from
alanine (GCC) to valine (GTC), which may affect the function of the GhMKK9 protein.
In addition, these two SNPs formed two haplotypes, Hap1 and Hap2 (Figure 3C). The
BOP_blup and D_SPAD_blup values of the Hap1 are significantly higher than those of the
Hap2. These results suggest that Hap1 is a favorable haplotype for delaying senescence and
that the GhMKK9 gene may play an important role in the regulation of cotton senescence.

The function of the GhMKK9 gene was further verified. By qRT-PCR analysis, it was
found that the expression level of GhMKK9 was significantly higher in old cotton leaves
than that in young cotton leaves, and overexpression of GhMKK9 gene in Arabidopsis thaliana
promoted the senescence process of Arabidopsis leaves, indicating that GhMKK9 is a positive
regulator of plant senescence, which is consistent with the results of a previous study [43,56].
In Rosa hybrida, RhMKK9 silencing significantly delayed petal senescence in flowers [57].
The MKK9–MPK6 module was reported to play an important role in the regulation of the
senescence process [43], in which MPK3/MPK6 could be activated by MKK9 to induce
ethylene biosynthesis [56–58]. Furthermore, the endogenous GhMKK9 gene in cotton
was silenced using VIGS. GhMKK9 gene-silenced plants were found to have enhanced
drought tolerance compared with the control plants (CK), indicating that GhMKK9 may
be involved in drought-stress-induced senescence in cotton. MKK9 is widely involved in
the transmission of environmental signals, but its effects on plant stress tolerance remain
controversial. For example, Yoo et al. [59] and Shen et al. [60] showed that AtMKK9 is a
positive regulator of salt tolerance in Arabidopsis, which is contrary to the results reported
by Alzwiy and Morris [61] and Xu et al. [56]. Similarly, although there is no obvious
difference between WT and mkk9 mutant Arabidopsis plants under drought stress [61], this
study shows that the silencing of GhMKK9 enhances drought tolerance in cotton. These
discrepant results may be attributed to different experimental methods and functionally
redundant genes [60].

4. Materials and Methods
4.1. Plant Materials

The association mapping panels consisted of 355 upland cotton accessions
(Supplementary Table S6), and the germplasm resources were obtained from the Insti-
tute of Cotton Research of Chinese Academy of Agricultural Sciences (ICR-CAAS). These
materials are geographically widespread across China, including in the Yellow River Re-
gion (YRR), the Yangtze River Region (YZRR), the Northwest Inland Region (NIR), and the
Northern Specific Early-Maturity Region (NSER), and a few were from abroad (e.g., the
United States) [62]. In 2016 and 2017, 355 upland cotton accessions were planted in Anyang
(AY), Henan (36◦08′ N, 114◦48′ E), and Huanggang (HG), Hubei (31◦14′ N, 114◦78′ E),
respectively. Three replicates were planted in each environment, except Anyang in 2017,
where two replicates were used.

4.2. Phenotyping and Data Analysis

The relative chlorophyll level (SPAD) of association panels was measured with the
chlorophyll meter SPAD-502 (Konica Minolta, Japan) in four environments in the flowering
and boll-setting period (FBP) and boll-opening period (BOP). The third parietal leaf from
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the top was selected after topping to measure the chlorophyll level, and the average SPAD
of at least three individuals for each accession was recorded. The absolute chlorophyll
concentration of the materials planted in Anyang in 2017 was also measured. Three discs
of 0.6 cm diameter were cut by punch from the third parietal leaf, and these leaf discs
were mixed from at least three individuals for each accession. Chlorophyll concentration
was estimated using the method described by Arnon [63]. Four chlorophyll concentration
indices were obtained: chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll (To-
tal_ab), and chlorophyll a/b (Ratio_ab). In addition, the diurnal variation of chlorophyll
content was calculated using the following formulae: D (%) = (chlorophyll content of
BOP − chlorophyll content of FBP)/(chlorophyll content of BOP × days between FBP
and BOP) × 100%, which included D_SPAD, D_chla, D_chlb, D_total_ab, and D_ratio_ab.

The best linear unbiased predictions (BLUPs) and broad-sense heritability (H2) of
SPAD values in the four environments were calculated using the R package sommer [64].
Broad-sense heritability was defined as H2 = σg

2/(σg
2 + σgl

2/l + σgy
2/y + σe

2/rly), where
σg

2 is the genotypic variance; σgl
2 is the interactions of genotype with location; σgy

2 is the
interactions of genotype with year; σe

2 is the error variance; and l, y, and r are the number
of locations, years, and replications, respectively. Statistical and correlation analyses were
performed using the R package Hmisc [65] and visualized using the package corrplot [66].

4.3. SNP Genotyping

The resequencing data of 355 upland cotton accessions were reported in a previous
study [62]. The quality of paired-end reads from 355 accessions was evaluated using
FastQC v.0.11.9 [67] and was controlled using Trimmomatic v.0.39 [68]. All high-quality
clean reads were mapped to the Gossypium hirsutum v1.1 reference genome [69] with
BWA mem v.0.7.17 [70]. The mapping results were sorted and converted to the BAM
format using Picard tools (http://broadinstitute.github.io/picard). GATK v.4.1.8 [71]
was used to detect variants following the best-practice workflows. High-quality SNPs
were filtered with: “QD < 2.0 QUAL < 30.0 FS > 60.0 MQ < 40.0 MQRankSum < −12.5
ReadPosRankSum < −8.0”, missing rate < 50%, and MAF > 0.05.

4.4. GWAS and Identification of Genomic Regions

A linear mixed model was used to perform GWAS on 355 upland cotton accessions,
implemented in the EMMAX software [38]. Before conducting the GWAS, the SNPs were
imputed using Beagle v.5.1 [72]. Both trial values of the single environment and BLUPs were
used for the GWAS. Because a high correlation between SNPs always leads to information
redundancy, PLINK was used to detect the number of genome-wide, effective SNPs. The
parameters for pruning were as follows: within a 500 bp sliding window, r2 ≥ 0.2, and
a step of 100 bp. After pruning, 925,819 SNPs were obtained, and the genome-wide
significance cutoff for GWAS was selected as p = 1 × 10−6 (1/925819). Significant SNPs
were then determined using the following criteria: (1) p < 10−6 or (2) p < 10−5 in at least two
environmental trail values owing to the stability. To identify senescence-related genomic
regions (SGRs), we selected independent, significant SNPs (r2 < 0.6). If r2 > 0.1, the SNP
with p < 10−3 and independent significant SNP were merged into the same genomic region.
In addition, if the distance between two genomic regions was less than 900 kb, they were
merged into one genomic region. The R packages CMplot [73], LDheatmap [74], and
ggplot2 [75] were used to visualize the GWAS results.

4.5. Prediction of Candidate Genes

All genes located in SGRs were selected as putative candidate genes based on the
Gossypium hirsutum v1.1 reference genome [69]. Homologs of these genes in Arabidop-
sis thaliana were determined using BLAST [76], and GO enrichment was performed on
the database for annotation, visualization, and integrated discovery (DAVID) to identify
enriched biological themes [77,78].

http://broadinstitute.github.io/picard
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4.6. RNA Extraction and qRT-PCR

To determine the expression level of GhMKK9, the cotton accession “CRI 10” was
planted in a greenhouse, and two-week-old (young) and eight-week-old (old) leaves were
sampled from eight individuals with three biological replicates in each group. Total
RNA was extracted using an RNA Purification Kit (Tiangen, Beijing, China), and the
RNA was reverse transcribed using the PrimeScript RT Reagent Kit (TAKARA, Dalian,
China) following the manufacturer’s instructions. Quantitative real-time PCR (qRT-PCR)
was performed on a Roche Applied Science LightCycler 480 using the NovoStart® SYBR
qPCR SuperMix Plus (Novoprotein, Shanghai, China). The qRT-PCR was conducted
as follows: pre-denaturation at 95 ◦C for 60 s; 40 cycles of 95 ◦C for 20 s and 60 ◦C
for 60 s. Three technical replicates were performed for each sample, and the relative
expression of genes was calculated using the 2−∆∆Ct method [79]. The primers are listed in
Supplementary Table S7.

4.7. VIGS

For the VIGS assays, one fragment of GhMKK9 amplified from the cDNA of “CRI
10” was integrated into the pTRV2 vector (pTRV2-GhMKK9) using the nimble cloning
method [80] and then the recombinant vector was introduced into Agrobacterium tumefa-
ciens GV3101. Agrobacterium strains harboring the pTRV2-GhMKK9 and pTRV2 (negative
control) vectors combined with strains harboring the pTRV1 vector were co-transferred into
the cotyledons of 2-week-old cotton plants following previously described methods [81].
The injected plants were kept in darkness for 24 h and transferred to a greenhouse at 25 ◦C
with 16 h light/8 h dark cycle. Four weeks after injection, plants injected with pTRV2
and pTRV2-GhMKK9 were subjected to drought treatment, and SPAD values were deter-
mined. The primers used for the construction of the VIGS vector and qRT-PCR are listed in
Supplementary Table S7.

4.8. Genetic Transformation of Arabidopsis Thaliana

The ORF of GhMKK9 was inserted into the binary expression vector pNC-Cam2304
to generate the 35S::GhMKK9 construct using the nimble cloning method [80]. The
35::GhMKK9 construct was introduced into Agrobacterium tumefaciens GV3101 and then
transformed into Arabidopsis ecotype Columbia using the floral dip method [82]. The posi-
tive plants were screened out using 1/2 MS medium containing kanamycin (100 mg/L) and
confirmed via qRT-PCR. The T3 homozygous generation plants were used for phenotypic
observation of senescence. To observe the performance of transgenic plants under normal
conditions, seeds of WT and two independent 35S::GhMKK9 lines (OE7 and OE14) were
germinated on 1/2 MS agar medium. After two weeks, the seedlings were transplanted
into the soil. Phenotypic characteristics were observed, and the rosette leaves at position
six from six-week-old plants were sampled for qRT-PCR. Primers used for the construction
of 35::GhMKK9 and qRT-PCR are listed in Supplementary Table S7. The primer specificity
of GhMKK9 were confirmed (Supplementary Figure S8).
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