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Abstract: Worldwide, drought affects crop yields; therefore, understanding plants’ strategies to
adapt to drought is critical. Chloroplasts are key regulators of plant responses, and signals from
chloroplasts also regulate nuclear gene expression during drought. However, the interactions between
chloroplast-initiated retrograde signals and ion channels under stress are still not clear. In this review,
we summarise the retrograde signals that participate in regulating plant stress tolerance. We compare
chloroplastic transporters that modulate retrograde signalling through retrograde biosynthesis or as
critical components in retrograde signalling. We also discuss the roles of important plasma membrane
and tonoplast ion transporters that are involved in regulating stomatal movement. We propose how
retrograde signals interact with ion transporters under stress.
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1. Introduction

The world will need to feed more than 9 billion people by 2050 [1], thus food production needs to
increase by at least 70% [2]. However, because of the decrease of land available for agriculture and of
climate change, this will be a substantial challenge [3]. To meet this challenge, a better understanding
of crop agronomy and physiology is needed together with the development of new germplasm
allowing sustainable crop production under adverse environmental conditions such as drought.
About half of earth’s land area is susceptible to drought [4], which is regarded as a sunstantial threat
to global food security [5]. During evolution, plants have adopted many mechanisms to counteract
drought. One significant mechanism is stomatal regulation, and highly responsive stomata have
been suggested as key factors for the success of grasses in adverse environments [6]. During drought
plants close their stomata, thereby reducing water uptake, which affects their normal physiological
functioning and nutrient uptake from the soil and reduces their growth and yield [7]. Plants protect
themselves in the short term by closing stomata [8] and in the long term by increasing the root/shoot
ratio [9], root hydraulic conductance [10], thickness of leaf cuticle [11], stomatal development [12],
and cuticular wax [13]. If these drought avoidance mechanisms are not successful, mechanisms to
tolerate dehydration may be switched on. These mechanisms include ways of maintaining cell water
content through ion accumulation [8], cell wall stiffening [14], production of protective compounds [15],
metabolic changes, and detoxification of reactive oxygen species (ROS) [16]. However, to respond to
drought, a plant must first perceive the stress and then transduce the related recognition events via
signalling networks. As a result, the transcription of specific drought stress response genes occurs, leading
to changes in physiological processes and systemically transducing further signals throughout the plant.

Apart from the dominant function of photosynthesis, chloroplasts also function as sensors of
environmental stimuli such as drought stress and initiate signals that induce nuclear gene expression
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(NGE) across a range of evolutionarily important plant species [16]. The endosymbiotic theory suggests
that a plant cell is the result of hundreds of millions of years of co-evolution of cyanobacteria and
early eukaryotic cells, i.e., the host [17]. From this stable endosymbiotic relationship, cyanobacteria
evolved into modern chloroplasts, and large numbers of cyanobacterial genes were transferred to
the host nucleus during evolution [18]. However, around 100 genes involved in photosynthesis have
been retained in chloroplasts [19]. Therefore, the expression of nuclear and chloroplast genes must
be combined and coordinated for the cells to function efficiently [20]. Nucleus to plastid signalling
is termed anterograde signals [21], and plastid-derived signals that target the regulation of NGE are
called retrograde signals [22]. In addition to coordinating chloroplast functioning, there is evidence that
retrograde signalling has a role in adaptation to stress. The progenitors of plastids would have contained
functions helping plants respond to the environment through the expression of stress response genes [23].

Stomata evolved from early land plant species like mosses, function in regulating water potential
and CO2 fixation and regulate drought tolerance [24]. A chloroplast-initiated retrograde signalling
pathway has been identified as having a significant role in regulating stomatal movement, which greatly
affects plant drought tolerance [25,26]. Plants have a complex signalling system to control stomatal
opening that is driven by the uptake and intracellular generation of solutes, which decrease guard cell
water potential and create a driving force for water uptake into guard cells. In contrast, during stomatal
closure, a reduction of solute contents regulated by membrane transport systems in the guard cells
leads to cell deflation and a narrowing of the stomatal aperture [27]. Stomata have evolved an abscisic
acid (ABA)-dependent network from the last common ancestor of mosses and vascular plants for
drought response [28,29]. The ABA signal transduction system consists of PYR/PYL/RCAR-type ABA
receptors, group A 2C-type protein phosphatases (PP2C), and SNF1-related protein kinase 2 (SnRK2)
family of proteins, which are key negative regulators of ABA signalling [30]. Once bound to ABA,
the receptor complex inactivates PP2C, thereby activating protein kinase SnRK2 [31], which induces
the production of ROS [32] and nitric oxide (NO) [33]. Hydrogen peroxide (H2O2) can activate
Ca2+ channels in the plasma membrane (PM) of Arabidopsis guard cells and inhibit inward K+

channels [34,35]. Nitric oxide has also been identified to regulate K+ and Cl− channels through a subset
of ABA-evoked signalling pathways in guard cells [33]. Guard cell anion channels are activated by
Ca2+ and become permeable, allowing the efflux of anions [36], and K+ outwardly rectifying channels
(GORK) are activated by K+ loss [37], leading to stomatal closure.

Despite the advancements in understanding retrograde signals and plant membrane
transport [22,27], the interactions between retrograde signalling pathways and ion transport across
the plasma membrane, tonoplast, and chloroplast membranes are poorly understood. Chloroplasts are
also involved in other signalling networks such as sulphate metabolism and signalling. For instance,
sulphate transporters play important roles in plant drought and salinity tolerance [38]. Accumulation
of sulphate in the leaves enhances ABA biosynthesis in the leaves, ABA sensitivity causing stomatal
closure [39]. Newly synthesised ABA is then transported to the roots for signal transduction and
the expression of drought stress-responsive genes [40]. Therefore, sulphate and its transporters are
suggested as important components in long-distance signalling under drought [38,39]. A compound
associated with sulphate metabolism, 3′-phosphoadnenosine 5′-phosphate (PAP), is thought to act
as a typical retrograde signal. PAP is produced in chloroplasts under drought stress to induce the
expression of nuclear-encoded stress response genes, leading to stomatal closure [25,26]. Whether
the PAP signal joins the ABA signalling pathway or whether PAP is part of a separate pathway from
ABA is still unclear. In this review, we summarise the progress towards a better understanding of the
relationships between retrograde signals and ion transport in adverse environments. We illustrate
the possible roles for retrograde signalling in plant stress response using the recently discovered PAP
signalling pathway. We also propose a potential interaction whereby chloroplasts sense drought and
produce signals (e.g., PAP) which regulate stomatal movement to maintain water potential in plant
cells and to guarantee a stable photosynthesis rate under drought.
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2. Typical Retrograde Signals in Chloroplasts

Retrograde signalling refers to communications from organelles to the nucleus. Chloroplasts,
whose primary function is photosynthesis, are also critical for other aspects of plant development
and physiology, including the synthesis of amino acids, nucleotides, fatty acids, phytohormones,
and the assimilation of sulphur [16]. Several chloroplastic secondary metabolites also function as
retrograde signals that are responsible for plant defence against pathogens and for plant adaptation
to heat, drought, and high light [20]. Some abiotic stress responses in plants are likely to share
common signalling mechanisms or components [41]. For example, 69% of drought-induced genes
are also induced by high-light stress, suggesting a strong interconnection between the responses
to these two types of stress [42]. This makes abiotic stress defence systems more efficient in plants
because genes induced by one type of stress would be efficient also in response to other stress
signals. Tremendous progress has been made in identifying retrograde signalling components and
their corresponding pathways in chloroplasts. Retrograde molecules include carotenoid oxidation
products [43], ROS such as H2O2 [44], tetrapyrroles [45], phosphoadenosines [25], carbohydrate
metabolites [46,47], and isoprenoid precursor methylerythritol cyclodiphosphate (MEcPP) [23].
Retrograde signals include metabolite by-products [48], transcription factors [49], and thylakoid
redox state [50] (Table 1).

Table 1. Source of typical retrograde signals in plants.

Group Typical Member References

β-Carotene β-cyclocitral [43]

ROS
1O2 [50]

H2O2 [44]

Tetrapyrrole Mg-ProtoIX [51]
heme [48]

Sulfation PAP [25]

Kinases MAPK6 [47]

Methylerythritol isoprenoid MEcPP [23]

Transcription factors AP2 [49]
Whirly1 [52]

Chloroplast envelop proteins PTM/PHD [53]

2.1. Reactive Oxygen Species

Plastid ROS molecules can regulate specific proteins and plastid redox-associated nuclear genes
(PRANGs) [16] and usually cause oxidation of biomolecules and act as signal molecules in plants [43].
ROS occur as singlet oxygen (1O2), superoxide anions (O2

−), H2O2, or hydroxyl radicals (OH−),
and excessive ROS can lead to programmed cell death (PCD). Plants have developed efficient and
versatile scavenging systems to keep ROS under control. Compared with other ROS, H2O2 appears most
likely to be a retrograde signal, because of its small size, lower toxicity, longer half-life, relatively high
concentration in cells, and ability to cross cell membranes and move between cell compartments [54].

During plant evolution, ROS have developed many functions associated with plant development
and stress tolerance. For instance, H2O2 is involved in ABA-induced stomatal closure by regulating
Ca2+, K+, and Cl− channels [36,55]. H2O2 regulates a mitogen-activated protein kinase-like enzyme
(MAPK) in Arabidopsis thaliana [44], indicating a role for H2O2 in retrograde signalling. The MAPK
gene family has been found to co-operate with ABA in plant abiotic stress responses [56]. Experimental
evidence suggests a role for 1O2 in addition to H2O2 in retrograde signalling. The transient nature
of 1O2and its localised production suggest that it may act via more stable second messengers [57].
Accumulation of 1O2 occurred in the fluorescent (flu) mutant of Arabidopsis during a shift from dark
to light, resulting the differential expression of 70 nuclear genes [57]. FLU is a negative regulator
of tetrapyrrole metabolism which over-accumulates the photosensitiser protochlorophyllide in the
dark and consequently generates 1O2 under light [57]. Over-accumulation of singlet oxygen leads to
PCD in flu leaves but does not occur in double-mutant ex1 flu (execute 1) [58]. Interestingly, 1O2 still
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over-accumulates in ex1 flu but stops PCD in leaves, indicating that 1O2 and EX1 have roles in a
retrograde pathway that regulate programmed cell death.

2.2. Tetrapyrrole and Mg-Protoporphyrin

With different structures, along with a variety of ring substituents, tetrapyrroles show different
functions [59]. In Arabidopsis, the role of tetrapyrroles in retrograde signalling was first identified
in studies of genomes uncoupled (gun) mutants [60]. Tetrapyrrole-controlled gene expression is
evolutionarily conserved in many plant species [51]. GUN1 is located in chloroplasts and functions to
impair plastid gene expression [60]. Mg-protoporphyrin (Mg-ProtoIX) acts between the chloroplast
and the nucleus in the tetrapyrrole signalling pathway [45]. Accumulation of Mg-ProtoIX regulates
the expression of many nuclear genes encoding photosynthesis-associated chloroplast proteins,
such as heat shock protein HSP81-2 [45]. The heat shock protein gene HSP70 can be induced by
either exogenous hemin (an oxidized form of heme that is reduced to heme in vivo) and Mg-ProtoIX
treatment or light incubation, suggesting that these chemicals may converge in the same pathway [61].
Further evidence shows that heme is produced by plastid ferrochelatase 1 (FC1) in chloroplasts
from which heme is exported to regulate gene expression of photosynthesis-related nuclear genes
(PhANGs) [48,61].

2.3. Transcription Factors

Transcription factors also have roles in retrograde signalling. The APETALA 2/ethylene-responsive
element binding protein (AP2/EREBP) family of transcription factors has been implicated in
hormone, sugar, and redox signalling in relation to abiotic stresses [62]. Members of the
Ethylene-Responsive Factor (ERF) subfamily, the largest group of transcription factors among the
AP2/EREBP family, were first identified through their regulation of ethylene responses [63]. Among
the ERF group, the AP2-like transcription factor Abscisic Acid Insensitive 4 (ABI4) functions in three
retrograde signalling processes [64]: tetapyrrole synthesis [45], plastid gene expression (PGE) [65],
and photosynthesis electron transfer chain (PET), affecting both photosynthesis- and stress-related
genes [65,66]. The pathways associated with ABI4 also involve PHD-type transcription factor
with transmembrane domains (PTM), which is located in the chloroplast envelope. In response to
retrograde signals, the accumulated mature form of PTM modifies histones, thereby regulating ABI4
transcription [53,67]. Moreover, AP2/EREBP family has also been implicated in retrograde signalling
by interacting with redox signalling in abiotic stresses such as cold and drought [49]. A typical
example is plastid redox-insensitive 2 (PRIN2), which is a chloroplast component located in the
nucleus and which functions in redox-mediated retrograde signalling, specifically by interacting with
plastid-encoded RNA polymerase (PEP). PEP functions as a retrograde signal synchronizing nuclear
and plastid genomes for the expression of photosynthesis-associated nuclear genes (PhANGs) [51].

WHIRLY (WHY) proteins are activators of nuclear gene transcription [68] and are required for
plastid genome stability [69]. WHY1 proteins with the same molecular weight have been found in
both chloroplasts and nucleus of the same cell [70]. This suggests that the mature forms of these
proteins are intracellularly mobile [52]. Salicylic acid (SA) is a phenolic compound that is involved
in plant responses to stresses [71]. WHY1 in Arabidopsis participates in both SA-dependent disease
resistance and SA-induced expression of systemic acquired resistance (SAR) responsive genes [72],
which suggests that WHY1 may act as a retrograde signal. It was proposed that WHY1 may be sensitive
to the redox state of the chloroplast, which may cause changes in the polymerisation of WHY1 allowing
monomers to translocate to the nucleus to trigger NGE [73].

2.4. 3′-Phosphoadenosine 5′-Phosphate (PAP)

PAP is produced in secondary sulphur assimilation as a by-product of the transfer of sulphate
from 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to acceptor molecules in a reaction catalysed
by sulphotransferases (SOTs) [74]. It was reported that there is a 20-fold increase of PAP levels in
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Arabidopsis under drought stress, and a PAP-accumulating mutant, altered expression of APX2 (alx8)
shows considerably improved drought tolerance [75]. Contrasting results were shown concerning the
location of the phosphatase SAL1, which functions in dephosphorylating PAP to AMP (Adenosine
Monophosphate) to reduce PAP concentrations [25]. Cellular SAL1 has been localized to the
chloroplast [76], cytosol [77], and nucleus [78]; however, detailed and more convincing data has
confirmed that SAL1 accumulates in the mitochondria and chloroplasts and that PAP is present in
chloroplasts [25], which suggests that PAP is transported to the cytosol by a thylakoid ADP/ATP
(Adenosine diphosphate/Adenosine triphosphate) carrier such as PAPST1 [79]. Once in the nucleus,
PAP regulates drought stress-responsive gene expression (such as the expression of APX2, ZAT10,
DREB2A) [25]. All this evidence suggests there is a SAL1–PAP retrograde pathway that alters NGE
during drought stress.

2.5. Methylerythritol Cyclodiphosphate (MEcPP)

In plants, isoprenoids such as MEcPP are synthesised via two different pathways, i.e., the cytosolic
mevalonate pathway and the 2-C-methyl-D-erythritol 4-phosphate pathway [80], and regulate a
specific set of stress-responsive nuclear-encoded plastidial proteins [23]. Hydroperoxide lyase (HPL)
is a stress-inducible nuclear gene encoding a plastid-localised protein in the oxylipin pathway
that produces compounds for plants’ response to biotic and abiotic stresses [81]. SA has broad
roles in regulating important plant physiological processes such as photosynthesis [82], antioxidant
defence [83], and water maintenance under drought stress [71]. MEcPP causes high levels of SA and
HPL, so that plants under stress have higher levels of MEcPP. Thus, MEcPP acts as a retrograde
signalling molecule that induces expression of stress-related genes [23].

3. Linking Retrograde Signals to Chloroplastic Ion Transporters under Stress

Since chloroplast-initiated retrograde signals are involved in transducing various environmental
stresses, and chloroplastic ion transporters are significant in regulating chloroplast status [84],
do chloroplast ion transporters affect the generation of retrograde signals? Three general categories of
proteins have been classified as ions transporters, i.e., channels/porins, primary transporters/pumps,
and secondary transporters [85]; these have been shown to have important roles in photosynthesis.
Here, we focus on the chloroplastic ion transporters that are involved in retrograde signalling.
For details of channels or transporters related to photosynthesis, readers are directed to two excellent
reviews [84,86].

3.1. Ion Transport, Retrograde Signalling and ROS-Regulated Photosynthesis in Chloroplasts

Chloroplastic ion transporters may participate in retrograde signalling via the synthesis of
retrograde signals or of intermediates such as ROS and chloroplasts are the source and target of
cellular redox regulation [87]. Many chloroplastic transporters affect chloroplast redox status and,
therefore, determine the photosynthetic rate. ROS production from chloroplasts has been regarded
as a key retrograde signal, affecting NGE [16,88,89]. It was suggested that accumulation of H2O2

specifically in the chloroplasts induces the expression of nuclear-encoded genes, such as cytoplasmic
ascorbate peroxidase 2 (APX2) [90]. Silencing a thylakoid membrane-bound APX (tAPX) gene regulates
H2O2, resulting in increased levels of oxidized proteins in chloroplasts. However, the expression of
ROS-responsive genes was negatively regulated in a tAPX silenced mutant, which suggests H2O2

triggered retrograde signalling from chloroplasts under stress [91]. Indeed, photosynthetic redox state
and ROS production have been proposed to be modulated by the status of plastoquinol (PQH2) and
plastoquinone (PQ) in chloroplasts [92] as well as by chloroplastic ion transporters [84].

The natural light environment of plants changes rapidly and has driven to the evolution of sensing
mechanisms that allow the efficient acclimation of plants to light conditions [93]. In chloroplasts, thylakoids
are packed to occupy a small volume with a large surface area, and thylakoid membranes also have the
highest known protein-to-lipid ratio among all membranes. They contain six major protein complexes,
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namely, light-harvesting complexes I (LHCI) and II (LHCII), photosystems I (PSI) and II (PSII), Cytochrome
b6f, and ATP synthase CF0F1 [94]. Electron transport should be balanced among these two photosystems
(PSI and PSII) for NADPH and ATP production; an imbalance in electron flow can occur during stress
conditions. This imbalance can lead to excess electron excitation, photoinhibition, and elevation of ROS.
Under high light, induced adaptive structural changes, such as the swelling of thylakoids and an increase
in the partition gaps between the thylakoids, can occur [95]. Therefore, the chloroplastic ion channels and
transporters located in thylakoids become important, as these transporters are responsible for preventing
membrane depolarization or hyperpolarization due to the excessive accumulation of cations and anions
via ion transporters [96]. Light energizes H+-ATPase in thylakoid membrane to generate the H+-motive
force necessary for ion and solute transport during photosynthesis [97]. However, the H+ concentration
in the different compartments of chloroplasts needs to be well regulated; for example, stromal pH is
maintained at pH 8.0 while the luminal pH is around pH 5.5–6.2 [98]. The luminal acidification is
necessary to activate non-photochemical quenching (NPQ), which alters LHCII and allows part of the
excitation energy to be dissipated to prevent ROS production [84]. All these processes are likely to require
ion and solute homeostasis regulated by ion channels, pumps, and co-transporters to maintain the balance
between chloroplasts and the rest of the cell (Figure 1).

Figure 1. A schematic diagram of typical retrograde signalling pathways in plant cells. High-light
stress could induce 1O2 accumulation which causes the accumulation of β-cyclocitral in the chloroplast.
β-cyclocitral is exported to the nucleus to regulate expression of defense genes [43]. Elements in the
tetrapyrrole pathways act as retrograde signals. Mg-ProtoIX and heme can both be regulated by FC1 and
then transported from the chloroplasts to the nucleus to regulate photosynthesis-related genes [48,61].
Methylerythritol 4-phosphate (MEP) pathways also participate in retrograde signalling pathways, and high
light could also induce methylerythritol cyclodiphosphate (MEcPP) production in chloroplasts and then
regulate nuclear HPL gene expression [23]. PAP (3′-phosphoadnenosine 5′-phosphate), induced by drought
and high light, could be transferred from the chloroplasts to the nucleus and regulate the expression of a
set of genes [25]. Abbreviations: Protop IX, Protoporphyrin IX; FC1, ferrochelatase 1; TPK3, Tandem-pore
K+ selective channel3; KEA 3, Cation/proton antiporter 3; CLC, anion channel of Cl− channel (CLC)
family; ROS, reactive oxygen species; PSI and PSII, Reaction centres of photosystem I and II; HMA,
P-type ATPase of Arabidopsis/Heavy-metal-associated; bf6, cytochrome b6f complex; PC, plastocyanin;
LHCII, Light harvesting complex; SULTR, phloem-localized sulphate transporter; ATPs, ATP sulphurylase;
APS, Adenosine 5′-phosphosulfate; APK, APS kinase; PAPS, 3′phosphoadnosine 5′-phosphosulfate;
SOT, Sulfotransferase; PAP, 3′-Phosphoadnenosine 5′phosphate; APX, Ascorbate peroxidase 2; DREB2A,
Drought responsive element binding 2A; ZAT10, Salt tolerance Zinc Finger.
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3.2. Direct Modulation of Chloroplastic Retrograde Signalling by Ion Transporters

Some ion transporters have roles in regulating ion homeostasis and balancing ROS production,
but their direct interaction with retrograde signals is still elusive. In Arabidopsis, a thylakoid
membrane two-pore potassium channel, i.e., TPK3, was shown to regulate H+ concentration through
ion counterbalancing [99]. TPK3-silenced plants display impaired CO2 assimilation and reduced
non-photochemical dissipation of excessively absorbed light [99]. The K+/H+ and antiporter KEA3
is responsible for the recuperation of luminal K+ concentration during the night [100] and for
optimizing photosynthesis [101]. A member of the Cl− channel (CLCs) family, CLCe, has been
identified in thylakoid membranes for ion counterbalancing in chloroplasts during light-driven
proton transfer across the thylakoid [102]. However, under environmental stresses such as drought,
the balance is disrupted, resulting in high ROS production in chloroplasts. Photosynthetic electron
transport-generated redox signals in chloroplast also control PhANGs [103] (Figure 1).

3.3. Indirect Regulation of Chloroplastic Retrograde Signalling by Ion Transporters

Other chloroplast-located ion transporters responsible for transporting specific ions for the
biosynthesis of retrograde signals have been identified by proteomic studies [104]. Since Cu is critical
for electron transport and ROS scavenging in chloroplasts, undoubtedly, chloroplast-located Cu
transporters play critical roles in reducing ROS production. Copper in chloroplasts has two forms:
reduced and oxidized. Cu2+ is the redox cofactor of plastocyanin (PC), the protein required for
transferring electrons from the cytochrome b6f complex to PSI [105], leading to lower ROS production
in chloroplasts. Cu is also one of the components of Cu/Zn superoxide dismutase (Cu/Zn-SOD),
which functions in scavenging ROS produced during photosynthesis under stress conditions [100].
In Arabidopsis, three proteins (HMA1, HMA6, and HMA8) are involved in Cu homeostasis. HMA1 and
HMA6 are located in the chloroplast envelope and are involved in importing Cu into the chloroplast
for Cu/Zn-SOD synthesis [106,107], while HMA8 is found in the non-appressed fractions of thylakoid
membrane required for PC biosynthesis [108] (Figure 1). The Arabidopsis mutant hma1 has lower
chloroplast copper content and a diminution of the total chloroplast SOD activity, which is essential
for ROS reduction under stress [106].

Being a component involved in all photosystems and an important redox-active metal ion critical
for photosynthetic electron flow, iron is involved in various chelation and oxidation/reduction steps
that affect ROS production [109]. However, Fe homeostasis must be fine-tuned because excessive free
Fe promotes the formation of free radicals via the Fenton reaction in plants. Ferritins are ion-storage
proteins, responsible for either sequestering or releasing iron upon demand [110]. Transgenic plants
overexpressing the wheat ferritin gene TaFER-5B exhibited enhanced temperature, drought, oxidative,
and iron stress tolerance associated with ROS scavenging [111]. Most importantly, chloroplastic
Fe transporters may participate in retrograde signalling by importing Fe into chloroplasts for the
biosynthesis of heme, a key retrograde signaling molecule [48,61] (Table 1 and Figure 1). Biosynthesis
of heme needs ferrochelatse I (FC I), which catalyses the insertion of Fe2+ into protoporphyrin IX
(ProtoP IX) to form heme [112]. The Arabidopsis Permease Chloroplasts 1 (PIC1), which contains four
predicted α-helices targeted to the inner envelope, is involved in iron transport in chloroplast [113].
Moreover, Multiple Antibiotic Resistance 1 (MAR1), which is a homolog of the ferroportin efflux
transporters, was also identified as mediator of the transport of Fe or Fe-chelating polyamines such as
nicotianamine into chloroplasts [114].

Magnesium (Mg) is another element essential for heme retrograde signalling via Mg2+ insertion
into ProtoP IX by Mg-chelatase from Mg-protoporphyrin, the precursor of chlorophyll and heme
biosynthesis [61]. In Arabidopsis, a putative Mg2+ transporter, MRS2-11, is located in the chloroplast
envelop and is responsible for Mg transport [115]. Mg-protoporphyrin can also be regarded as
a retrograde signaling molecule, regulating the expression of PhANGs [116]. Moreover, sulphate
transporters are also likely to participate in the biosynthesis of retrograde signals by importing ions
into chloroplasts. The sulphate transporter SULTR3;1 is located in the chloroplast membrane and is
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responsible for sulphate uptake into chloroplasts [117]. For instance, another retrograde signal PAP
is synthesised from sulphate [74,118] and is capable of moving between chloroplasts and cytosol to
upregulate APX2 and drought-responsive element binding protein 2A (DREB2A) under high-light and
drought stress [25,41,75].

In summary, chloroplastic ion transporters are coordinated to regulate ion fluxes and electron
transport between all the photosystems in chloroplasts. These transporters may also participate
in retrograde signalling pathways either through affecting ROS production or through delivering
the components required for the synthesis and regulation of the retrograde molecules. As a
balanced electron flux needs to be maintained in chloroplasts, we propose that chloroplast-derived
retrograde signals are potential feedback signals that regulate chloroplastic ion transporters. However,
few studies have addressed whether retrograde signals like ROS regulate ion transporters in chloroplast
membranes. Patch clamp measurements on chloroplasts and membrane patches will be essential to
explore the interactions between retrograde signals and membrane transport.

4. Linking Retrograde Signals to Ion Transport for Stomatal Regulation

The retrograde signal PAP regulates stomatal closure, enhancing drought tolerance [25,26].
In addition, drought tolerance is partially controlled by the activity of pumps, ion channels,
and cotransporters located in the plasma membrane and tonoplast of guard cells, which generate
ion gradients, regulating stomatal opening and closure [6,12] (Figure 2). Are there any links between
retrograde signals and these membrane transporters? Published reports showing direct links between
retrograde signals and ion transporters at the plasma membrane and tonoplast are still limited. Here,
we focus on a key component of drought tolerance, i.e., membrane transporters that regulate stomatal
opening and closure. We illustrate the potential interactions between retrograde signals and ion
transporters in the context of stomatal guard cells and drought tolerance.

Figure 2. A schematic diagram of chloroplast-located ion transporters and retrograde signal molecule
3′-phosphoadnenosine 5′-phosphate (PAP), and their roles in stomatal regulation. PHOT1 and PHOT2
sense blue light, which activates plasma membrane proton pump AHAs, and this leads to the efflux of



Int. J. Mol. Sci. 2018, 19, 963 9 of 23

H+ from cytosol [119]. The accumulated electrons on the cytosolic side lead to activation of plasma
membrane-located potassium inward-rectifying channels [120], leading to K+ influx. However,
these potassium inward-rectifying channels can be inhibited by cytosolic Ca2+ accumulation [121].
CNGCs and CAXs are responsible for cytosolic Ca2+ accumulation [36], and CAX can be inactivated
by ABA, which increases cytosolic Ca2+ accumulation [122]. ABA also inhibits blue light-induced
H+-ATPase activation, which leads to stomatal closure [123]. Sulphate can be transported into chloroplasts
by SULTR for the biosynthesis of PAP [117,118]. PAP is degraded by SAL1/ALX8 to AMP [25].
Under drought stress, ROS production in chloroplasts reduces SAL1 activity, which leads to PAP
accumulation in the protoplast [25]. PAP is then transported into the cytosol by PAP transporter,
PAPST1 [79], from where it moves to the nucleus to bind to the stress response genes XRNs,
which potentially leads to CDPKs expression [26]. CDPKs activate SLAC1 channels, which leads
to anion efflux [26]. Cytosolic Ca2+ also has a role in regulating CDPKs [124]. Besides, CDPKs and
protein 14-3-3 have a role in regulating vacuole potassium channels activity [125,126]. ABA-induced
stomatal closure depends on OST1 activity. OST1 has a role in activating anion efflux and inhibits water
aquaporin channel PIP2;1 activity [127,128], which leads to stomatal closure. Abbreviations: PHOT,
phototropins; AHA, Plasma membrane H+-ATPase; ATP, adenosine triphosphate; ADP, Adenosine
diphosphate; KAT1, K+ channel 1 in Arabidopsis; KAT2, K+ channel in Arabidopsis 2; AKT, Arabidopsis
Thaliana Rectifying channel ; ACA, Ca2+-ATPase; CNGC, Arabidopsis Cyclic nucleotide-gated ion
channels; NRT1.1, Nitrate Transporter 1.1; STP1, Sugar Transporter 1; ABA, Abscisic acid; ALMT,
Aluminium-activated malate transporter; VHA, vacuolar H+-ATPase; AVP, vacuolar H+/K+-PPase;
TIPs, Tonoplast Intrinsic Proteins; CAX, Cation Exchanger; CLCa, Chloride Channel a; NHX,
Na+,K+/H+ antiporters; AMP, Adenosine Monophosphate; SAL1, Altered expression of APX2;
PAP, 3′-phosphoadnenosine 5′-phosphate; SULTR, phloem-localized sulphate transporter; PAPST1,
3′-Phosphoadenosine 5′-Phosphosulfate Transporter 1;ABI, ABA Insensitive; OST1, Open Stomata 1;
TPC, Two-pore Ca2+ channel; TPK, Two-pore K+ channel; CDPKs, Ca2+ dependent protein kinases;
SLAC1, Slow Anion channel-associated 1; PIP2;1, Plasma Membrane Intrinsic Protein 2; GORK,
Guard Cell Outwardly Rectifying K+ channel.

5. Plasma Membrane Transport in Stomatal Guard Cells

5.1. Plasma Membrane Pumps

The plasma membrane H+-ATPase (AHA) protein family has many members in different plant
species [6], and these proteins are responsible for H+ movement by coupling with ATP hydrolysis,
which is the primary motive force for stomatal movement [129]. In guard cells, blue light, ABA,
auxin, and exogenous Ca2+ play roles in H+-ATPase regulation [130–132]. For instance, the blue light
receptor phototropins (PHOT1 and PHOT2) [133] sense blue light and activate plasma membrane
H+-ATPases, which results in an efflux of H+ from the cytosol [119]. The activated H+-ATPase
induces hyperpolarization which in turn induces K+ uptake via inward-rectifying K+ channels [120].
Conversely, ABA strongly inhibits blue light-induced H+-ATPases activation, which leads to stomatal
closure. ABA-induced Ca2+ accumulation in the cytosol also inhibits H+ pumping and ATP hydrolysis
in guard cells [123]. For example, Mg-chelatase H subunit (CHLH), which was found to mediate
chlorophyll biosynthesis, regulates stomatal closure in part through dephosphorylating and inhibiting
guard cell H+-ATPase [134]. Ca2+-ATPases (ACAs) regulate Ca2+ homeostasis on different membranes
in a range of plant cell types in response to stress [135–138]. Ca2+-ATPases ACA8 and ACA10 were
found to be targeted to guard cells in Arabidopsis. The expression of ACA8 was found to be upregulated,
while that of ACA10 was downregulated by cold treatment, and the promoter of ACA8 has been shown
to contain cold-responsive C-repeat/dehydration-responsive element motif [136]. BONZAI1 (BON1)
interacts with the autoinhibitory domains of ACA10, ACA8, and ACA10/8, and it functions in the
generation of cytosol calcium signatures that are critical for stomatal movement [137].
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5.2. Plasma Membrane Ion Channels

Potassium (K) participates in plant growth and development [139] and also affects the homeostasis
of other processes [140]. Potassium channels located in guard cell plasma membranes play a critical role
in K+ uptake and release, thus modulating guard cell turgor and volume [141]. In Arabidopsis, inward
K+ channels (e.g., KAT1, KAT2, AKT1, AKT2) and outward K+ channels (e.g., GORK) were identified
as responsible for the K+ fluxes during stomatal movement [142]. For example, the Arabidopsis mutant
gork, that has a non-functional gated outward-rectifying K+ channel, showed impaired stomatal
closure [37]. In addition, overexpressing KAT1 impaired stomatal movement in Arabidopsis [143],
but stomatal behaviour of a knockout mutant kat1 was little affected [144]. Guard cell K+ channels can
be regulated by ABA, cytosolic Ca2+, pH, protein kinases, and phosphatases [121,142,145]. All these
results suggest that potassium channels are downstream in guard cell signalling pathways and directly
affect stomatal movement by changing cell turgor.

Ca2+ accumulation in the cytosol is one of the most important processes in ABA-induced
stomatal closure, and many voltage-dependent Ca2+-permeable channels were identified in the
plasma membrane of different types of plant cells [6,146]. Cyclic nucleotide-gated ion channels
(CNGC)-mediated cytosolic Ca2+ rise contributes to the dynamic regulation of guard cell anion
channels and stomatal closure [36,147]. Arabidopsis CNGC5 and CNGC6 have been identified as
plasma membrane Ca2+ channels that are highly expressed in guard cells. Guard cells in the cngc5cngc6
double mutant exhibited dramatically impaired cGMP-activated currents. Moreover, the guard cells of
the double mutant exhibited functional ABA-activated hyperpolarization-dependent Ca2+-permeable
cation channel currents, intact ABA-induced stomatal closing responses, and whole-plant stomatal
conductance responses to darkness and changes in CO2 concentration [148]. It has been reported
that Ca2+ functions downstream of ROS, and, for instance, a Ca2+ current is activated by ROS in
ABA-induced stomatal closure [149].

There are two major types of anion channels located in the plasma membrane: rapid (R-type)
and slow (S-type) anion channels [6,147,150]. An anion efflux is essential for stomatal closure through
both R-type [151] and S-type [152,153] anion channels. Both types of anion channels can be activated
by cytosolic Ca2+ and are permeable to a range of anions, including Cl−, malate2−, and NO3− [27].
Plasma membrane Aluminium-activated malate transporter (ALMT12) is highly expressed in Arabidopsis
guard cells, and plants lacking ALMT12 are impaired in ABA-induced stomatal closure. ALMT12 is
capable of transiently depolarising guard cells to trigger membrane potential oscillations and initiates
long-term anion and K+ efflux via slow anion channel 1 (SLAC1) and GORK, respectively [151].

Water channels, or aquaporins, have varied functions in stomatal regulation and transport of H2O,
CO2, and H2O2 [154]. For instance, knocking out the plasma membrane Intrinsic Protein (PIP) PIP2;1 in
Arabidopsis leads to a defect in ABA-induced stomatal closure in pip2;1 plants. In addition, work using
Xenopus laevis oocytes has shown that PIP2;1 water transport activity is increased when open stomata
1 (OST1) phosphorylates a cytosolic PIP2;1 peptide at Ser-121. ABA-triggered stomatal closure
requires an increase in guard cell permeability to water and possibly H2O2, through OST1-dependent
phosphorylation of PIP2;1 [128].

5.3. Plasma Membrane Cotransporters

Many plasma membrane cotransporters regulate stomatal movement and play a role in stress
tolerance [6,155]. Here, we only present three key examples of cotransporters. The dual-affinity nitrate
transporter gene, NRT1.1/CHL1, is expressed in Arabidopsis guard cells, and the chl1 mutant shows
enhanced drought tolerance. It was reported that chl1 mutants showed reduced nitrate accumulation
in guard cells during stomatal opening and failed to show nitrate-induced depolarization of guard
cells [156]. The guard cells of several plant species were shown to accumulate sucrose as an osmoticum
that drives water influx to increase stomatal aperture, and an Arabidopsis H+-monosaccharide
symporter, STP1, was identified in guard cells. A transient increase in STP1 expression correlates in time
with the described guard cell-specific accumulation of sucrose, and a role for STP1 in monosaccharide
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import into guard cells has been reported [157]. Moreover, the ATP-binding cassette (ABC) transporter
gene MRP4 is highly expressed in stomata and MRP4 is localized to the plasma membrane in Arabidopsis.
Stomatal aperture in three independent mrp4 mutant was larger than in wild-type plants, indicating
the involvement of MRP4 in the complex regulation of stomatal aperture [158].

5.4. Tonoplast Transport in Stomatal Guard Cells

5.4.1. Tonoplast Pumps

Vacuolar acidification requires the combined activity of vacuolar type H+-ATPase (V-ATPase)
and tonoplast inorganic pyrophosphatase (V-PPase), both of which are key determinants for stomatal
regulation and stress response [147,159,160]. V-ATPase maintains a proton electrochemical gradient
across endomembrane compartments, including the vacuole [147,161]. V-ATPase is highly abundant,
representing 6.5–35% of the total tonoplast proteins in different species [162]. This enzyme is composed
of several polypeptide subunits that are located in two major domains, a membrane peripheral domain
(V1) and a membrane integral domain (V0) [162]. The expression of all V-ATPase subunits can be
increased in response to salt stress [162], and expressing Arabidopsis VHA-C in Hordeum vulgare
improved plant performance under saline conditions [163]. Further evidence showed that ABA
significantly increases V-ATPase H+-transport activity [164]. This suggests an important role of
V-ATPase in regulating plant stress tolerance. V-PPase activity in guard cells is involved in stomatal
regulation [165]. Guard cell protoplasts of Vicia faba exhibited hydrolytic activity characteristic
of tonoplast-localized V-PPase. The activity was inhibited by a specific V-PPase inhibitor and by
cytosolic Ca2+ and stimulated by K+. V-PPase AVP1 controls auxin transport and, consequently,
auxin-dependent development [159,166]. Expression of an Arabidopsis AVP1 in cotton improves
drought and salt tolerance [167]; however, the role of Ca2+-ATPases in stomatal regulation is
still elusive.

5.4.2. Tonoplast Ion Channels

Stomatal closure requires the release of large amounts of K+ from guard cells, mostly from
the vacuoles [168]. Therefore, vacuolar K+ channels are key components in regulating stomatal
closure. The Arabidopsis genome contains five genes that encode two-pore K+ channels (TPK), and TPK1
is located in vacuolar membranes where it mediates K+-selective currents between the cytosol and
the vacuolar compartments. TPK1 plays a role in intracellular K+ homeostasis, slows stomatal closure
kinetics [169], and is activated by 14-3-3 proteins [125] and calcium-dependent protein kinases
(CDPKs) [126]. In vacuoles, the Arabidopsis two-pore channel 1 gene, TPC1, encodes a slow vacuolar
channel with high affinity for Ca2+ permeation [170]. A tpc1 knockout mutant was shown to lack
functional slow vacuolar channel activity and to be defective in ABA-induced stomatal closure
because of a poor Ca2+ efflux from guard cell vacuoles, which suggests a critical role for intracellular
Ca2+-release channels in the physiological processes of plants [171,172]. Aluminum-activated malate
transporters (ALMTs) are malate channels involved in vacuolar malate accumulation and in
tolerance to aluminum [173,174]. In Arabidopsis, ALMT9 is a malate-activated vacuolar chloride
channel required for stomatal opening [175], whereas ABA-induced stomatal closure involves the
phosphorylation-dependent vacuolar anion channel ALMT4 [176] and the vacuolar malate channel
ALMT6 in guard cells, both of which are subject to multiple regulation processes [177]. Moreover,
the Arabidopsis nitrate transporter CLCa is localized in the tonoplast and is able to accumulate nitrate in
the vacuole to regulate stomatal movement [178]. While much effort has substantiated the importance
of water channel PIPs, comparably little is known about the function of intracellular aquaporins,
such as tonoplast intrinsic proteins (TIPs) [179]. For instance, sunflower SunTIP7 and SunTIP20 are
guard cell-localized aquaporins, and their expression in Xenopus oocytes caused a marked increase
in water permeability. The transcript levels of SunTIP7 were markedly and systematically increased
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during drought-induced stomatal closure, suggesting that SunTIP7 regulates guard cell volume and
stomatal aperture [180].

5.4.3. Tonplast Cotransporters

Many vacuolar cotransporters regulate stomatal movement and play a role in stress
tolerance [6,181,182]. Here, we only present a couple of key examples: Na+, K+/H+ antiporters
(NHXs) and vacuolar cation exchangers. NHXs are involved in K+ homeostasis, pH regulation,
and salt tolerance [182]. Tonoplast-localized NHX1 and NHX2 are highly expressed in guard cells,
but nhx1/nhx2 mutant plants showed defective stomatal function and had reduced ability to maintain
the vacuolar K+ pools. Thus, NHX proteins are essential for active K+ uptake into the tonoplast,
for turgor regulation, and for stomatal function [183,184]. Vacuolar cation exchangers CAX1 and
CAX3 are involved in mediating calcium transport from the cytosol to the vacuoles using the proton
gradient across the tonoplast [122]. Inhibition of ABA-induced stomatal closure by indole-3-acetic
acid (IAA) is impaired in the cax1/cax3 double mutant. The cax1/cax3 mutant exhibited constitutive
hyperpolarisation of the plasma membrane with a higher apoplastic pH than the wild-type plant.
Lower extracellular pH fully restored IAA inhibition of ABA-induced stomatal closure in the cax1/cax3
mutant [185].

6. Retrograde Signals and Ion Transport in Drought-Induced Stomatal Closure

Stomatal guard cell turgor is regulated by cell solute concentration, thus ion channels or
transporters in cells determine stomatal movement. Each membrane is equipped with a unique
set of ion transporters that enables transport of nutrients, solutes, and metabolites [84]. Furthermore,
retrograde signals are regulators that enable plants to survive adverse environments. The substantial
knowledge of ion transport in stomatal guard cells and the deep understanding of many retrograde
signals summarised above have enabled the dissection of these two types of processes and allowed the
identification of their complex interactions (e.g., ABA signalling). Here, we present some emerging
evidence of these potential interactions.

In a recent report, chloroplast-derived PAP accumulation induced stomatal closure in
Arabidopsis [26]. PAP increased K+ and Cl− efflux from stomatal guard cells, suggesting a role for
potassium and anion channels in PAP-induced stomatal closure [26]. Therefore, potential interactions
may occur between a drought-related retrograde signal PAP and plasma membrane-located ion
transporters. The SAL1–PAP signalling pathway has been identified as a typical retrograde signal
with multiple roles, such as regulating programmed cell death [186], and also functions in drought
and high-light signalling [25]. Drought-induced ROS production in chloroplasts inhibits SAL1
activity [187], which leads to PAP accumulation and transport to the nucleus. PAP accumulation could
activate downstream signalling through binding to nuclear exoribonucleases (XRNs), transcriptionally
up-regulating multiple signalling proteins. These proteins, including four CDPKs, activate SLAC1
anion channel activity for stomatal closure under drought [26] (Figure 2). This discovery opens the
door to future research on retrograde signals and membrane transport in plant stress tolerance.

7. Concluding Remarks and Future Perspectives

In this review, we summarised some retrograde signals that participate in the regulation of plant
stress tolerance (Figure 1 and Table 1). We compared the chloroplastic transporters that modulate
retrograde signalling through retrograde biosynthesis or as critical components in retrograde signalling
(Figure 1). We also discussed the roles of important plasma membrane and tonoplast ion transporters
that are involved in regulating stomatal movement (Figure 2). Moreover, we illustrated that chloroplast
retrograde molecules and plasma membrane- or tonoplast-located ion transporters may interact to
regulate plant drought tolerance (Figure 3).
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Figure 3. A schematic diagram of retrograde signals and potential mechanisms in regulating plant
drought tolerance. Drought can be perceived by chloroplasts. Chloroplast-located ion channels
participate in biosynthetic processes of retrograde signals, such as Mg-Protop IX [45], heme [48],
ROS [100], and PAP [117], which target either nuclear genes expression (NGE) [48,54,116] or secondary
messengers [55]. Secondary messengers and NGE regulate plasma membrane or tonoplast ion
transporters [171], triggering the root and shoot responses to drought. Dotted blue arrows: potential
interactions. Abbreviations: see legends of Figures 1 and 2.

This review highlights some significant questions that need to be addressed. Do chloroplast-
initiated retrograde signals and chloroplastic ion transporters regulate each other, and if so, how? How
do plant cells establish the interactions between retrograde signals and ion transporters at the plasma
membrane and tonoplast? Research is obviously required to identify additional proteins located in
the three chloroplast membranes and to study the effects of retrograde signals on transporters in
these membranes.
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