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Abstract

Medical imaging is widely used in the diagnosis and treatment of cancer, and artifi-

cial intelligence (AI) has achieved tremendous success in medical image analysis. This

paper reviews AI-based tumor subregion analysis in medical imaging. We summarize

the latest AI-based methods for tumor subregion analysis and their applications.

Specifically, we categorize the AI-based methods by training strategy: supervised

and unsupervised. A detailed review of each category is presented, highlighting

important contributions and achievements. Specific challenges and potential applica-

tions of AI in tumor subregion analysis are discussed.
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1 | INTRODUCTION

In current research and clinical practice, solid tumors are usually

assumed to be homogeneous (or heterogeneous with similar distribu-

tion) throughout their volumes.1–5 However, recent studies have

shown that, for some histologies, discrete tumor regions may be more

biologically aggressive than others and may play a dominant role in

disease progression.6–8 Neglecting such tumor heterogeneity at vari-

ous spatial and temporal scales can lead to failures in prognosis and

treatment.6 Medical imaging has been shown to be able to reveal and

quantify the heterogeneity within tumors.9–11 Individual tumors can

then be divided into subregions based on detected regional varia-

tions. Diagnosis, prognosis, and evaluation of treatment response can

be performed individually within these subregions and have proved

superior to a simple analysis of the whole tumor.12,13 Tumor subre-

gions may also be utilized in imaging-based “dose painting,” delivering

a specific dose to a subregion target to provide better treatment out-

comes.14,15 Therefore, accurate detection and analysis of tumor sub-

regions are of great clinical and research interest.

Over the last few years, artificial intelligence (AI) has been applied

wtih tremendous success in the field of medical imaging.16–24 Many

AI-based methods have been proposed to locate and analyze tumor

subregions for a variety of imaging modalities and clinical tasks. In

this study, we review the applications of supervised and unsuper-

vised AI models in imaging-based tumor subregion analysis. With

this survey, we aim to summarize the latest developments of AI

applications in imaging-based tumor subregion analysis and highlight

contributions, identify challenges, and outline future trends.

2 | ARTIFICIAL INTELLIGENCE

AI is a field that seeks to enable machines to learn from experience,

think like humans, and perform human-like tasks. Machine learning (ML)

is a discipline within AI, in which computers are trained to automatically

improve performance on specific tasks based on experience. Training

methods in ML are broadly composed of supervised, semi-supervised,

or unsupervised strategies, each with decreasing need for human input.

Within ML, deep learning (DL) employs multilayer (“deep”) networks of

mathematical functions initially intended to imitate the structure and

function of the human brain, thereby fundamentally creating a mapping

from one representational domain to another (e.g., categorizing photos
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to names of the objects they contain). Both supervised and unsuper-

vised methods are commonly used in DL for medical image analysis.

3 | LITERATURE SEARCH

The scope of this review is limited to the applications of AI in tumor

subregion analysis. Peer-reviewed journal publications appearing

between January 1, 2017, and May 30, 2020, were collected from

various databases including Google Scholar, PubMed, and Web of

Science. The search was conducted by keyword, including machine

learning, deep learning, intratumor, subregion, subvolume, voxel-

based, overall survival, and clustering. Publications describing the

methods of the top three performers in the Brain tumor segmenta-

tion (BraTS) challenge from 2017 to 2019 were included. For all

other body sites, the included publications are listed in tables accom-

panying each dedicated section. A total of 88 papers were identified

discussing AI applications in imaging-based tumor subregion analysis.

The number of publications is plotted by year in Fig. 1.

4 | AI IN TUMOR SUBREGION ANALYSIS
OF MEDICAL IMAGES

Figure 2 shows a general workflow of AI in tumor subregion analysis

of medical images.

4.A | Supervised learning in tumor subregion
analysis of medical images

In supervised learning, an algorithm is trained to approximate a

hypothetical function f �ð Þ which maps an input (x) to an output (Y),

that is, Y ¼ f xð Þ without error. The goal is to formulate a reasonable

approximation of this function so that the output (Y 0) that would

result from new inputs (x0) can be accurately predicted. The least-

absolute-shrinkage-and-selection-operator (LASSO), random forest

(RF), support vector machine (SVM), and artificial neural network

(ANN) are algorithms widely used for this task. The Lasso is a shrink-

age and feature selection method for linear regression25 which mini-

mizes the sum of squared errors and the sum of the absolute value

of coefficients. RF is an ensemble learning algorithm that boosts per-

formance by combining the results of many weaker algorithms,

effectively reducing overfitting and building a model that is robust

for discrete values in the feature space.26 The objective of the SVM

algorithm is to find a decision boundary that maximizes the separa-

tion of different classes of data in the feature space.27

The multilayer perceptron (MLP) is a class of feedforward ANN

wherein the biological unit of the brain, the neuron, is modeled by the

mathematical unit of a network node.28 An MLP consists of at least three

layers of nodes: an input layer, one or more “hidden layers,” and an out-

put layer. All nodes except the inputs employ nonlinear activation func-

tions. MLPs use a supervised learning technique called backpropagation

to update the parameters of each node. The multilayer structure and non-

linear activations of MLPs distinguish them from linear perceptrons and

allow them to categorize data that are not linearly separable. Although

MLPs have been successfully applied to practical problems in many fields,

these models must be carefully trained and thoughtfully deployed to

avoid overfitting or, conversely, failure of convergence during inference.

Convolutional neural networks (CNN) have been widely applied

in many tasks.29–36 A typical CNN may be composed of several lay-

ers performing discrete computational tasks including convolution at

various scales of resolution, maximum or other forms of pooling, and

batch normalization. The outputs of these layers may be selectively

omitted as in dropout or passed as inputs to all subsequent layers

when fully connected layers are employed. In order to improve the

performance of deep CNNs, various architectures have been pro-

posed. U-Net adopts symmetrical encoding and decoding paths with

skip connections between them and is widely used in medical image

segmentation. The residual network (ResNet) architecture employs a

shortcut connection which reduces the likelihood of “vanishing” gra-

dients during training, allowing the development of deeper networks.

Supervised learning has been widely used in tumor subregion

analysis for the prediction of outcomes including overall survival

(OS) or progression-free survival (PFS), identification of recurrence

volume, and subregion segmentation. Sixty-four papers related to

supervised learning are considered in this paper.

4.A.1 | Head and neck

CT and 18F-FDG PET are often used in staging, radiation therapy

treatment planning, and evaluation of treatment response in patients
F I G . 1 . Number of publications in AI-based tumor subregion
analysis. “2020” only covers the first five months of 2020

F I G . 2 . Workflow of a general AI in
tumor subregion analysis of medical images
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with cancers of the head and neck.37,38 PET provides detailed func-

tional and metabolic information, while CT reveals the precise

anatomical position of the tumor. Table 1 shows a list of selected

studies that used supervised learning for tumor subregion analysis in

the head and neck. Ding et al. investigated the clinicopathological

characteristics of different supraglottic subregions and their correla-

tion with the prognosis of patients with squamous cell carcinoma.39

Supraglottic squamous cell carcinomas were divided into four types

based on subregion: epiglottis, ventricular bands, aryepiglottic fold,

and ventricle. A Cox proportional hazards model was used to gener-

ate a biomarker. They found that there were significant differences

in the regional control rate, overall survival rate, and cancer-specific

survival rates among different subregions, indicating that patients

with carcinoma of the epiglottis or ventricular bands had an

increased survival rate relative to those with the disease in the

aryepiglottic fold or ventricle. Radiomics is a quantitative method to

extract medical image features, such as shape, and texture, that cap-

tures tumor heterogeneity.40–42 Beaumont et al.43 developed a

voxel-wise ML radiomics model to identify subregions with tumor

recurrence and to predict their location based on pretreatment PET

images. An RF model was trained with voxel-wise features. Voxel-

wise analysis based on radiomic features and spatial location within

the tumor was shown helpful in determining the location of recur-

rence and providing guidance to tailor chemoradiation therapy (CRT)

through dose escalation within the area of radiation resistance.

4.A.2 | Gliomas

Gliomas are the most common primary brain tumor and can be clas-

sified into two groups by histopathologic features: high-grade glio-

mas (HGG) and low-grade gliomas (LGG). Magnetic resonance

imaging (MRI) provides high soft tissue contrast and is the primary

imaging modality to noninvasively diagnose brain tumors.44 Dividing

gliomas into substructures played an important role in glioma diagno-

sis, staging, monitoring, and treatment planning for patients. Table 2

shows a list of selected studies using supervised learning in tumor

subregion analysis in glioma.

Kazerooni et al.45 developed a model to discriminate glioma tis-

sue subregions based on multiparametric MRI (mpMRI). Based on

histopathologic results, subregions were categorized into active

tumor (AT), infiltrative edema (IE), and normal tissue (NT). Fischer’s

linear discriminant analysis (LDA), quadratic discriminant analysis

(QDA), and SVM57 were applied to distinguish the three tissue sub-

types from each other based on selected features derived from

subregions. All three classifiers achieved high classification perfor-

mance (AUC ~ 90%) with a combination of the following features:

characterization of active (CBV), mean diffusivity (MD), high-

resolution T2w image (T2_ISO), fluid-attenuated inversion recovery

image (FLAIR). This approach might be advantageously employed to

locate tissue subregions prior to image-guided biopsy procedures.

Some studies further predicted OS or PFS based on tumor subregion

analysis.46,47

Zhou et al.46 developed a framework to identify tumor subre-

gions based on pretreatment MRI for patients with glioblastoma

(GBM), correlating the image-based spatial characteristics of subre-

gions with survival time Two datasets were included in this study.

Habitat-based features were extracted from GBM subregions

derived from intratumoral grouping and spatial mapping. The results

revealed that habitat-based features were effective for predicting

two survival groups with great accuracy (87.5% and 86.36%, respec-

tively). These two survival groups include 32 and 22 GBM patients

who did not undergon resection, respectively. The results generated

by classifiers (SVM, k-nearest neighbors (KNN), and naϊve Bayes)

showed that the spatial correlation features between the signal-

enhanced subregions can effectively predict survival group (P < 0.05

for all classifiers). GBM is further characterized by infiltrative growth

at the cellular level that cannot be completely resected. Diffusion

tensor imaging (DTI) has been shown to potentially detect tumor

infiltration by reflecting microstructural destruction. To investigate

the incremental prognostic value of infiltrative patterns over clinical

factors and identify specific subregions that may be suitable for tar-

geted therapy, Li et al.47 explored the heterogeneity of GBM infiltra-

tion using joint histogram analysis in DTI. The prognostic value of

covariates for OS and PFS at 12 and 18 months were tested using a

logistic regression model. The results showed that joint histogram

features have incremental prognostic value when combined with

clinical factors, suggesting that patients may benefit from adaptive

radiation therapy strategies based on prognostic data obtained dur-

ing and after treatment if these high-risk tumor subregions can be

identified.

CNNs have achieved tremendous success in tumor subregion

analysis and can be used to extract features and segment tumor sub-

regions. Small sample size is one problem encountered with the

application of CNNs to limited medical images. Transfer learning and

fine-tuning may be employed to ameliorate small sample problems,

making CNNs more useful in medical image tasks.58 Lao et al.

extracted features from manually segmented tumor subregions based

on multimodality MR images and used these features to generate a

TAB L E 1 Overview of supervised learning for tumor subregions analysis based on medical imaging for HN.

Reference Year Model Task Modality
# of patients in training/
testing datasets Validation method

39 2017 Cox proportional

hazards model

Predict OS MRI, CT 111 (N/A) P value

43 2019 RF Recurrence volume

identification

18F-FDG PET/CT 26, LOOCV AUC

Abbreviations: indicating that the paper only provides the total number of samples; LOOCV, leave-one-out cross-validation; N/A, not available.
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proposed signature based on LASSO.48 The extracted features were

of two types: hand-crafted features and those extracted by a pre-

trained DL model. The study demonstrated features extracted by

pretrained deep learning (e.g., transfer learning) were able to gener-

ate imaging signatures for OS prediction and risk stratification for

GBM, indicating the potential of DL feature-based biomarkers in the

preoperative care of patients with GBM. CNNs can also be used to

segment tumor subregions to facilitate their further study. Based on

multiparametric MRI, Kazerooni et al.49 constructed a multiinstitu-

tional radomics model that supports up-front prediction of PFS and

recurrence pattern (RP) in patients diagnosed with GBM at the time

of initial diagnosis. The proposed framework included subregion

identification (DeepMedic59), feature extraction, sequential forward

feature selection, biomarker generation, and classification. All steps

were completed by using the Cancer Imaging Phenomics Toolkit

(CaPTk) open-source software. The area under the receiver operating

characteristic curve (AUC) for PFS prediction was 0.88 and 0.82–
0.83; AUC for RP was 0.88 and 0.56–0.71 for the single-institution

and multiinstitutional analyses, respectively. The results suggest that

the biomarkers included in the radiomics models as implemented in

CaPTK could predict PFS and RP in patients diagnosed with GBM.

Isocitrate dehydrogenase 1 (IDH1) is established as a prognostic and

predictive biomarker for patients with GBM.60–65 Li et al.50 devel-

oped a model to predict IDH mutation status in GBM preoperatively

based on multiregion radiomic features derived from mpMRI. The

proposed model was tested on an independent validation cohort.

IDH1 mutation was predicted by the RF model after using Boruta66

for feature selection. The multitumor subregions were automatically

segmented using a CNN.67 The model achieved 97% accuracy with

AUC 0.96, and an F1 score of 0.84. The multiregion model built

using all-region features performed better than single-region models.

The multiregion model achieved the best performance when combin-

ing age with all-region features. The results showed that the pro-

posed model based on multiregional mpMRI features has the

potential to detect IDH1 mutation status in GBM patients prior to

surgery.

4.A.3 | BraTS challenge

Glioma subregion segmentation may play an important role in future

glioma diagnosis, staging, and treatment planning. Most of the

research described here uses nonpublic or institutional datasets,

TAB L E 2 Overview of supervised learning for tumor subregions analysis based on medical imaging for gliomas.

Reference Year Models Task Modality
# of patients in train-
ing/testing datasets Validation method

45 2018 LDA, QDA,

SVM

Predict active and

infiltrative tumorous

subregions

T1W, T2W, FLAIR, T2-

relaxometry, DWI, DTI, IVIM,

and DS-MRI

10, LOOCV AUC

46 2017 SVM, KNN,

Naı̈ve Bayes

Predict overall survival T1W-ce, FLAIR, T2W 79, LOOCV Accuracy

47 2019 logistic

regression

Identify specific

subregions for targeted

therapy

DTI 115, (N/Aa) P values from log-

rank test.

48 2017 CNN, LASSO Predict OS T1W, T1-Gd, FLAIR, T2W 75/37 C-index

49 2020 DeepMedic,

SVM

Predict PFS and RP T1W, T1-Gd, FLAIR, T2W, DWI,

DS-MRI

Scheme 1 and 3:80, 10

fold, Scheme 2: 56/24

AUC

50 2018 RF Predict isocitrate

dehydrogenase 1 genes

(IDH1)

T1W, T1-Gd, FLAIR, T2W 118/107 AUC, F1-score, and

accuracy

51 2018 RF Predict survival time T1W-ce, FLAIR 73, LOOCV AUC

52 2018 RF Predict OS and PFS T1W, FLAIR 40, 5 folds AUC

53 2019 SVM Glioma grading DTI, T1W-ce, FLAIR, T2W-FSE,

DSCE-RAW, 1H-MRS

40, LOOCV Sensitivity,

specificity,

accuracy, and AUC

54 2019 LASSO stratify

glioblastoma patients

based on survival

T1W, T1W-CE, FLAIR, T2W 70/35 C-index

55 2019 Cox

proportional

hazards model

stratify

glioblastoma patients

based on survival

post-T1W 85/42 AUC

56 2018 CNN Tumor subregions

segmentation

T1W-CE 186/47 DSC

Abbreviations: CNN, convolutional neural networks; KNN, k-nearest neighbors; LASSO, least-absolute-shrinkage-and-selection-operator; LDA, linear dis-

criminant analysis; QDA, quadratic discriminant analysis; RF, random forest; SVM, support vector machine.

aExact training and testing datasets are not available.
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making it difficult to compare methods or results against other pub-

lished work. The BraTS challenge stands in contrast to these, provid-

ing preoperative mpMRI scans sourced from multiple institutions to

evaluate the reproducibility of state-of-the-art methods for glioma

brain tumor segmentation.68–72 The dataset includes images of four

MR sequences: T1, T1-Gd, T2, and FLAIR and four class labels (0:

healthy tissues, 1: necrotic core, 2: edema, 3: nonenhancing core 4:

enhancing tumor). The evaluation system divides the tumor into

three regions for performance evaluation according to practical clini-

cal application: (1) the whole tumor region with labels 1, 2, 3, and 4;

(2) the tumor core with labels 1, 3 and 4; (3) the enhancing tumor

region (label 4). The nonenhancing core label (label 3) has been elimi-

nated and combined with necrotic core (label) since BraTS 2017.

Table 3 contains a list of selected references using supervised

learning methods in tumor subregion analysis of BraTS challenge

data. Most are based on DL with various architectures and attention

gates are commonly adopted to improve performance by automati-

cally highlighting informative elements of intermediate feature

maps.73 Hu et al. proposed a novel 3D refinement module that can

aggregate local detail information and 3D semantic context directly

within the 3D convolutional layer.74 Kamnitsas et al. developed a

3D-CNN with a dual pathway and 11 convolutional layers.59 In order

to cope with the computational burden of the 3D network, the pro-

cessing of adjacent image paths was combined into a single channel

through the network during training, while automatically adapting to

the inherent class imbalances existing in the data. A dual-path archi-

tecture was used to simultaneously process multiscale input images

to obtain multiscale context information. A 3D fully conditional ran-

dom field (CRF) was used in postprocessing and proved effective in

mitigating false positives. Havaei et al. developed a novel CNN with

TAB L E 3 Overview of supervised learning in tumor subregion analysis of BraTS challenge data.

Reference Year Models Task # of patients in training/testing datasets

75 2017 Cascade CNN Tumor subregion segmentation 60, 7 fold

59 2017 Efficient Multi-scale U-Net with CRFs Tumor subregion segmentation 253, 5 fold

74 2020 3D refinement

U-Net

Tumor subregion segmentation 274/110

87 2020 Attention Gate ResU-Net Tumor subregion segmentation 285/46, 285/66, 335/125

88 2018 Ensemble CNN Tumor subregion segmnetation 285 (N/A)

89 2019 multi-cascaded CNN with CRFs Tumor subregion segmentation 40, 274, 285

90 2019 3D dilated multifiber U-Net Tumor subregion segmentation 285/66

91 2020 Cross-task Guided Attention U-Net Tumor subregion segmentation 274/110, 285/46, 285/66

92 2019 2D-3D context U-Net Tumor subregion segmentation 235/50/46

93 2018 CNN Tumor subregion segmentation 240/34

94 2019 Inception-based U-Net Tumor subregion segmentation 165/55/54, 171/57/57

95 2018 FCNN with CRFs Tumor subregion segmentation 30/35, 274/110, 274/191

96 2018 SVM, RF, Logistic regression Glioma grading 285, 5 fold

97 2020 U-Net, RF Tumor subregion segmentation Predict OS 268/67, 76/29

98 2019 LASSO Predict OS 163, 5 fold

99 2020 Heterogeneous CNN

with CRFs- Recurrent Regression

Tumor subregion segmentation 60 (N/A)

100 2019 2.5D cascade CNN Tumor subregion segmentation 285/46/146, 285/66/191

101 2020 IOU 3D symmetric fully CNN Tumor subregion segmentation 134/33

102 2020 CNN Tumor subregion segmentation 20/10, 192/82, 285/146, 285/191

103 2020 CNN, SVM Tumor subregion segmentation 274, 10 fold

104 2018 CNN Tumor subregion segmentation 274/110

105 2019 CNN Tumor subregion segmentation 285/46, 285/66

106 2020 U-Net Tumor subregion segmentation 285/46, 285/66

107 2018 Hybrid pyramid

U-Net

Tumor subregion segmentation 285, 5 fold

108 2019 CNN Tumor subregion segmentation 285 (N/A)

109 2020 CNN Tumor subregion segmentation 27/254,285

110 2020 CNN Tumor subregion segmentation 85/200

111 2020 CNN Tumor subregion segmentation 68/8, 50/6

Abbreviations: CNN, convolutional neural networks; CRF, conditional random field; N/A, exact training and testing datasets are not available; RF, ran-

dom forest; SVM, support vector machine.
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a two-pathway architecture which simultaneously extracted both

local and global contextual features75. They modeled local label

dependencies by cascade-CNN rather than CRF. This method

improved computational speed by using convolution operations

rather than CRFs. The success of attention mechanisms in computer

vision generally76–81 and in medical image analysis in particular73,82–

86 prompted Zhang et al. to integrate an attention gate into a U-Net

architecture, generating an Attention Gate Residual U-Net (AGResU-

Net) model for brain tumor segmentation.87 Several attention gate

units were added to the skip connection of the U-Net to highlight

contrast information while minimizing irrelevant and noisy feature

responses.

Table 4 lists the three top-performing studies from 2017 to

2019 with their results. Ensemble learning, cascade learning, and

multiscale operations are commonly added to CNNs to improve the

accuracy of brain tumor subregion segmentation. In statistics and

machine learning, ensemble learning combines models to surpass the

performance of anyone constituent model and is commonly used to

improve classification, prediction, and segmentation performance.

Kamnitsas et al.112 developed an ensemble of multiple models and

architectures (EMMA) which combines several DL models for robust

segmentation. EMMA independently trained constituent DeepMe-

dic,59 FCN,113 and U-Net114 models, combining their segmentation

predictions at test time. Myronenko et al. proposed a semantic seg-

mentation CNN with asymmetric large encoders to segment tumor

subregions.115 A variational autoencoder (VAE) branch was added to

the network to reconstruct the input images jointly with the seg-

mentation and regularize the shared encoder. Finally, they assembled

10 models trained from scratch to further improve performance.

Zhao et al.116 developed a self-ensemble U-Net, combining multi-

scale prediction to boost accuracy with a slight increase in memory

consumption. They also used the average of all models in the final

ensemble and averaged the prediction of overlapping patches to

obtain a more accurate result. Cascade learning is a particular case

of ensemble learning based on the concatenation-in-series of several

models, using preceding model outputs as inputs for the next model

in the cascade. Wang et al. trained three networks for cascade learn-

ing, each with a similar structure, including a large encoder with

dilated convolutions and a basic decoder.117 The whole tumor was

segmented first and a bounding box for the result was used to local-

ize the tumor core. The enhancing tumor was then localized and seg-

mented using the bounding box surrounding the tumor core. The

3 × 3 × 3 convolutional kernel was decomposed into 3 × 3 × 1 and

1 × 1 × 3 kernels to reduce the number of parameters and cope

with anisotropic receptive fields. Jiang et al.118 developed a two-

stage cascaded U-Net to segment brain tumor subregions from

coarse to fine-scale. In the first stage, a U-Net predicts a coarse seg-

mentation result based on the multimodal MRI. The coarse segmen-

tation provides the rough locations of tumors and is used to

highlight contrast information. The coarse segmentation results are

combined with raw input images prior to input into a second U-Net

with two decoder paths (one using a deconvolution, the other using

trilinear interpolation) to generate a fine segmentation map. Zhou

et al.85 proposed an ensemble framework combining different net-

works to segment tumor subregions with more robust results. The

framework considered multiscale information by segmenting three

tumor subregions in cascade with a shared backbone weight and an

attention block. Multiscale and deeper networks may achieve better

segmentation results because brain tumors have a highly heteroge-

neous appearance on MR images. Mckinly et al.119 proposed a U-

Net-like network containing a DenseNet with dilated convolutions

which also introduced a new loss function, a generalization of binary

cross-entropy, to solve label uncertainty. In another study, Mckinly

et al.120 used a similar structure but replaced batch normalization

with instance normalization and added a simple local attention mech-

anism between dilated dense blocks. This study included more data

for training to further improve network performance. Isensee et al.

made minor modifications to U-Net, replacing ReLU and batch nor-

malization with leaky ReLU and instance normalization to achieve

competitive performance.121 They also supplemented with data from

TAB L E 4 Overview of the top 3 segmentation performance of the last three BraTS (2017–2019).

Reference Year Ranking

DSC HD95 (mm)

WT TC ET WT TC ET

112 2017 1 0.886 0.785 0.729 5.01 23.10 36.00

117 2017 2 0.874 0.775 0.783 6.55 27.05 15.90

122 2017 3 0.858 0.775 0.647 N/A N/A N/A

123 2017 3 N/A N/A N/A N/A N/A N/A

115 2018 1 0.884 0.815 0.766 3.77 4.81 3.77

121 2018 2 0.878 0.806 0.779 6.03 5.08 2.90

119 2018 3 0.886 0.799 0.732 5.52 5.53 3.48

85 2018 3 0.884 0.796 0.778 5.47 6.88 2.94

118 2019 1 0.888 0.837 0.833 4.62 4.13 2.65

116 2019 2 0.883 0.861 0.810 4.80 4.21 2.45

90 2019 3 0.890 0.830 0.810 4.85 3.99 2.74

Abbreviations: ET, enhancing tumor; HD95, Hausdorff distance (95%); N/A, not available; TC, tumor core; WT, whole tumor.
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their own institution to achieve a 2% increase in Dice similarity coef-

ficient (DSC) on the enhancing tumor training data.

In the past 3 yr, BraTS has also focused on the prediction of OS.

Table 5 lists the top three results. RF regression was a popular

method for this task. Shboul et al.124 extracted 1366 textures and

other features, selecting significant features in three steps. The 40

most significant features were used to train the RF regression model

and predict OS. Puybareau et al.125 extracted features from the seg-

mented tumor region and introduced patient age into the feature

space. Principal component analysis (PCA) was performed to normal-

ize the training set. The feature-wise mean, standard deviation, and

projection matrix (W) were computed and stored during the rescaling

phase of the PCA. The RF regression model was trained based on

the normalized data. The feature vector of the test set was also nor-

malized by the feature-wise mean and standard deviation derived

from the training phase, and was then projected in the principal

component space with W. The rescaled vectors were fed into the

trained RF classifiers and the final prediction was obtained by major-

ity voting. Sun et al.126 extracted 4526 tumor features based on

prior segmentation results. Important features were selected by deci-

sion tree and cross-validation. Finally, they trained an RF regression

model to predict OS. MLP was another popular method for this task.

Jungo et al.127 computed 26 geometrical tumor features and added

age to complete the feature space. The four most important features

were selected before being fed into a fully connected neural net-

work with one hidden layer and a linear activation function. Baid

et al.128 extracted tumor features and excluded high-correlation fea-

tures by Spearman testing. An MLP was trained using variables cor-

related with OS. Wang et al.129 selected seven features as input for

a fully connected neural network with two hidden layers. Their linear

regression model also achieved good results. Feng et al.130 used

imaging features and clinical variables in a linear regression model.

They used two-dimensional feature vectors to represent clinical

resection status and compensate for sparse data. They used a linear

regression model to fit the training data after feature normalization.

Weninger et al.131 measured the volume of subregions based on

segmentation results. The volume information, the distance between

centroids representing tumor and healthy brain, and patient age

were used as input to linear regression for prediction of OS. In addi-

tion to radiomic features, Wang et al.132 also considered biophysical

modeling of tumor growth and calculated the ratio of second semi-

axis length between tumor core and whole tumor to define a novel

relative invasiveness coefficient (RIC). Following feature selection,

RIC, age and radomic features were fed into the epsilon-support

vector regression. The method achieved an accuracy of 0.56 in OS

prediction by incorporating RIC.

4.B | Unsupervised learning in tumor subregion
analysis of medical images

Supervised learning requires time-consuming and labor-intensive

manual data annotation. In contrast, unsupervised techniques learn

the distribution of input data and divide samples into clusters with-

out a labeled training dataset. Unsupervised learning has been

widely used in tumor subregion analysis. Of the twenty-four papers

employing unsupervised techniques in Table 6, most focus predic-

tion on OS, PFS, or identification of tumor recurrence. Common

unsupervised learning algorithms include level set methods (LSM),

thresholding, active contour modeling (ACM), hidden Markov ran-

dom fields (HMRF), the K-means, and expectation-maximization

(EM) algorithms, principal component analysis (PCA), individual- and

population-level clustering and hybrid hierarchical clustering. ACM

works to segment objects in an image by evolving a curve accord-

ing to the constraints in the image.136 The HMRF model is a ran-

dom process generated by MRF. Its state sequence cannot be

directly observed, but can be indirectly estimated through observa-

tion.137 The EM algorithm is an iterative method that searches the

(local) maximum likelihood or maximum a posteriori (MAP) estimate

of the parameters in a statistical model.138 PCA is an orthogonal

linear transformation that reduces the dimensionality of the input

TAB L E 5 Overview of the studies and results with top 3 OS prediction performance of each year from 2017 to 2019.

Reference Year Ranking Accuracy MSE Median-SE Std-SE

124 2017 1 0.579 245779.5 24944.4 726624.7

127 2017 2 0.568 213000.0 28100.0 662600.0

133 2017 3 N/A N/A N/A N/A

130 2018 1 0.612 231746.0 34306.4 N/A

125 2018 2 0.605 N/A N/A N/A

126 2018 2 0.605 N/A 32895.1 N/A

128 2018 3 0.558 338219.4 38408.2 939986.8

131 2018 3 0.558 277890.0 43264 N/A

134 2019 1 0.579 374998.8 46483.36 1160428.9

132 2019 2 0.56 N/A N/A N/A

135 2019 3 0.551 N/A N/A N/A

129 2019 3 0.551 41000.0 49300.0 123000.0

Abbreviations: MSE, mean square error; N/A, not available.
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data while retaining its most significant parts.139 K-means identifies

k centroids and assigns each data point to the nearest centroid by

minimizing the sum of the squared Euclidean distances between

each point and its assigned centroid.140 Hybrid hierarchical cluster-

ing combines the advantages of bottom-up hierarchical clustering

and top-down clustering, so it is applicable to large and small

TAB L E 6 Unsupervised learning for tumor subregions analysis.

Reference Year Models Modality Task ROI

# of patients
in training/
testing
datasets

145 2016 Level set, MRF, EM Post-T1W, FLAIR Predict OS Brain 46/33

146 2017 level set T1W-ce, DWI Predict OS Brain 62/46

147 2019 Threshold,

Cox proportional hazards

(11)C-MET-PET, T1W-Gd,

FLAIR

Recurrence tumor identification,

predict PFS

Brain 37 (N/A)

148 2014 Threshold, SVM, Naı̈ve Bayes,

decision tree, wrapper, CFS

DCE-MRI Estrogen receptor (ER)

classification

Chest 20, LOOCV

149 2016 Individual- and population-level

clustering

18F-FDG PET/CT Predict OS and OFD Chest 44 (N/A)

150 2020 Individual- and population-level

clustering

18F-FDG PET/CT Assess early response and

predict PFS

HN 162, 10 fold

151 2018 Individual- and population-level

clustering

DCE-MRI Predict RFS Chest 60/186

152 2019 Individual- and population-level

clustering LASSO

18F-FDG PET/CT Predict PFS HN 85/43

153 2017 Individual- and population-level

clustering

PDG PET, CT, DCE-MRI,

HX4 PET

Predict OS Chest 36 (N/A)

154 2019 K-means, LASSO CT Predict OS HN 87/46

155 2016 k-means DCE-MRI Recurrence tumor

identification

Pelvis 81 (N/A)

156 2020 K-means, PCA DCE-MRI Tumor subregion

segmentation

Abdomen 14 (N/A)

157 2016 ACM Post-T1W, FLAIR, T2W Tumor subregion

segmentation

Brain 4 (N/A)

13 2018 K-means DCE-MRI Predict prognosis Chest 77, LOCCV

158 2019 FCM, CAM DCE-MRI Predict OS and RFS Chest 61/173/87

159 2014 GIRLFC DCE-MRI Predict tumor progression

after RT

Abdomen 20 (N/A)

160 2019 FLAB 18F-FDG PET/CT Tumor subregion segmentation HN 54 (N/A)

143 2012 GIRLFC DCE-MRI Predict subvolume related

to treatment outcome

HN 14 (N/A)

161 2019 3D Level set 18F-FDG PET/CT Predict OS Chest 30 (N/A)

162 2018 PCA DCE-MRI, DWI, PET/CT Predict neoadjuvant therapy

response

Chest 35 (N/A)

163 2019 CAM, RF DCE-MRI Predict breast cancer subtypes Chest 211. LOOCV

164 2020 TTP, SVM, LASSO DCE-MRI Predict HER2 2+ status in

breast cancer

Chest 76, LOOCV

165 2020 FLAB 18F-FDGPET/CT Recurrence tumor

identification

Plevis 21 (N/A)

166 2019 K-means DWI, PET Segmentation and

Predict PFS

Chest 18, LOOCV

Abbreviations: CAM, convex analysis of mixtures; FCM, fuzzy C-means; FLAB, fuzzy locally adaptive Bayesian; GIRLFC, global-initiated regularized local

fuzzy clustering; HN, head and neck; LASSO, least-absolute-shrinkage-and-selection-operator; PCA, principal component analysis; RF, random forest;

SVM, support vector machine; TTP, time to peak.
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datasets alike.141 Fuzzy C-means clustering (FCM) is a data cluster-

ing method which allows each data to belong to each cluster to a

certain degree.142 Global-initiated regularized local fuzzy clustering

(GRELFC) is a method first globally initiates training to identify

fuzzy clustering of physiological imaging parameters in the feature

space, and then classifies each tumor volume into sub-volumes by

local regularization based on global feature clustering.143 GRELFC

choose FCM as the fuzzy clustering method. Fuzzy local adaptive

Bayesian (FLAB) is an unsupervised statistical method based on the

Bayesian framework144

4.B.1 | Level set methods

Level set methods are commonly used for unsupervised segmenta-

tion tasks. Cui et al.145 developed and validated prognostic imaging

biomarkers to predict OS in GBM based on multiregion quantitative

image analysis. Each tumor was semi-automatically segmented by

the level set algorithm and then further divided into subregions using

the hidden Markov random field (MRF) model and EM algorithm.137

The biomarker was generated based on LASSO to predict the OS,

and the model was tested on an independent institutional cohort.

The concordance index and stratification of OS using the log-rank

test were 0.78 and P = 0.018 for the proposed method, outperform-

ing conventional prognostic biomarkers such as age (concordance

index: 0.57, P = 0.389) and tumor volume (concordance index: 0.59,

P = 0.409). In a later study, Cui et al.146 defined a high-risk volume

(HRV) based on mpMRI images for predicting GBM survival and

investigated its relationship and synergy with molecular characteris-

tics. Each tumor was delineated by the level set algorithm. The man-

ual correction was performed for eight failed cases. The patients

with an unmethylated MGMT promoter and high HRV had signifi-

cantly shorter OS (median 9.3 vs 18.4 months, log-rank; P = 0.002),

indicating the volume of the high-risk tumor subregion identified on

mpMRI can predict survival and complement genomic information.

4.B.2 | Threshold-based methods

Threshold algorithms are also suitable to separate tumor subregions

based on imaging characteristics. Miller et al.147 investigated

whether three month treatment response of newly diagnosed GBM

based on C-methionine-positron emission tomography (MET-PET)

could predict prognosis better than baseline MET-PET or anatomic

magnetic resonance imaging alone. A threshold set at 150% of mean

cerebellar uptake was used to automatically segment the metabolic

tumor volume (MTV). Persistent MTV at three months was defined

as the overlap of the three month MTV and the pre-treatment MTV.

Cox proportional hazards were used in multivariate analysis of PFS

and OS. Results showed that most patients (67%) with gross total

resection (GTR) of newly diagnosed GBM have measurable postoper-

ative MTV and that the total and persistent MTV three months

post-CRT were predictors of PFS. GTV-Gd at recurrence encom-

passed 97% of the persistent MET-PET subvolume, 71% of the base-

line MTV, 54% of the baseline GTV-Gd, and 78% of the three

month MTV. Persistent MET-PET subvolume best predicts the loca-

tion of tumor recurrence.

Estrogen receptor (ER) status is a recognized molecular feature

of breast cancer correlated with prognosis and its early detection

can significantly improve treatment efficacy by guiding selection of

targeted therapies.167 Chaudhury et al. developed a novel framework

to classify ER status by extracting textural kinetic features from

peripheral and core tumor subregions.148 The whole tumor was seg-

mented using automatic threshold selection168 combined with mor-

phological dilation and connected component analysis. The whole

tumor was divided into two subregions according to tumor geome-

try. Two feature selection methods (wrapper169 and correlation-

based feature subset selection (CFS)170) and three classifiers (naϊve

Bayes,171 SVM,27,172 decision tree173) were adopted in this study

and each feature selector followed a classifier, for a total of six

model composition combinations. The best classification accuracy

approached 94%, indicating that subregion texture feature extraction

can accurately classify ER status.

4.B.3 | Individual- and population-level clustering

Individual- and population-level clustering are used to assign each

pixel or voxel to suitable clusters in order to divide a tumor into sub-

regions. After tumor subregions are obtained, the relationship

between tumor subregions, OS and PFS can be investigated.

Wu et al. used individual- and population-level clustering in three

works related to tumor subregion analysis. In one of their studies,149

they developed a robust tumor partitioning method to identify high-

risk subregions in lung cancer. The method divided the tumor using

a two stage process: each tumor was first divided into homogeneous

subregions (i.e., super pixels) at the patient-level on PET and CT

images via K-means clustering. 140 These superpixels were then

merged into subregions via population-level hierarchical cluster-

ing.174 High-risk subregions predicted OS and out-of-field progres-

sion (OFP) over the entire cohort with a C-index of 0.66–0.67. For
patients with stage III disease, the C-index reached 0.75 (HR 3.93,

log-rank P < 0.002) and 0.76 (HR 4.84, log-rank P < 0.002) for pre-

dicting OS and OFP, respectively. In contrast, the C-index was lower

than 0.60 for traditional imaging markers. The volume of the most

metabolically active and heterogeneous solid components of the

tumor predicted OS and OFP better than conventional imaging

markers. In a second study, Wu et al.150 developed an imaging bio-

marker to assess early treatment response and predicted outcomes

in oropharyngeal squamous cell carcinoma (OPSCC). Based on 18F-

FDG PET and contrast CT imaging, the primary tumor and involved

lymph nodes were divided into subregions by individual- and

population-level clustering. The proposed imaging biomarker was

generated by the LASSO algorithm. The C-index was 0.72 for the

training set and 0.66 for the validation set, suggesting the proposed

biomarker can accurately predict disease progression and provide

patients with better risk-adapted treatment. In a third study investi-

gating risk-stratification in breast cancer, Wu et al. divided each

tumor into spatially segregated, phenotypically consistent subregions
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based on individual- and population-level clustering, and used a net

strategy to construct an imaging biomarker based on image features

derived from the multiregional spatial interaction (MSI) matrix.151

This revealed three intratumoral subregions with distinct perfusion

characteristics, with results suggesting tumor heterogeneity may be

an independent predictor of recurrence-free survival (RFS), indepen-

dent of traditional predictors.

In order to predict PFS in patients with nasopharyngeal carci-

noma (NPC), Xu et al. extracted subregion features via individual-

and population-level clustering to generate a biomarker by

LASSO.152 Three subregions (S1, S2, S3) with distinct PET/CT imaging

characteristics were obtained. The C-index and log-rank test for

imaging biomarker S3 and whole tumor are 0.69 and 0.58, and

P < 0.001 and P < 0.552, respectively, indicating S3 is superior to

whole tumor in terms of prognostic performance. Imaging biomarker

S3 and American Joint Committee on Cancer (AJCC) stages III–IV
were identified as independent predictors of PFS based on multivari-

ate analysis (P¼0:011 and P¼0:042, respectively). When combined

to form a scoring system, imaging biomarker S3 and AJCC stages III-

IV outperformed AJCC staging alone (log-rank test P< 0.0001 vs

0.0002; P < 0.0021 vs 0.0277 for the primary and validation

cohorts, respectively). The results demonstrated that PET/CT subre-

gion radiomics was able to predict PFS in NPC and provide prognos-

tic information to complement other established predictors.

Even et al.153 designed a subregion analysis for nonsmall cell lung

cancer (NSCLC) using multiparametric imaging. The multiparametric

images were divided into subregions in two steps: each tumor was

first divided into homogeneous subregions (i.e., super voxels) before

being segregated into phenotypic groups by hybrid hierarchical clus-

tering.141 Patients were clustered according to the absolute or rela-

tive volume of super voxels. The results showed that hypoxia, FDG

avidity, and an intermediate level of blood flow/volume indicated a

high-risk tumor type with poorer survival (P¼0:035), providing evi-

dence of the prognostic utility of subregion classification based on

multiparametric imaging in NSCLC.

4.B.4 | K-means

K-means is a popular unsupervised learning method that partitions

samples into k clusters. Xie et al. developed a survival prediction

model for patients with esophageal squamous cell carcinoma prior to

concurrent CRT.154 Tumors were divided into subregions by K-

means clustering. Radiomic features were then extracted from these

subregions to construct a biomarker based on the LASSO algorithm

and predict OS. Independent patient cohorts from another hospital

were used to validate the model. The C-indices were 0.729 (0.656–
0.801, 95% CI) and 0.705 (0.628–0.782, 95% CI) in the training and

validation cohorts, respectively. AUC for the 3-yr survival ROC were

0.811 (0.670–0.952 95% CI) and 0.805 (0.638–0.973, 95% CI),

respectively. Such a model may facilitate personalized treatment

through accurate prediction of early treatment response.

Torheim et al. used K-means in MRI imaging of cervical cancer

to divide voxels into two clusters based on relative signal increase

(RSI) time series. Clusters of hypo-enhancing voxels demonstrated a

significant correlation with locoregional recurrence (P¼0:048).155

Tumors with poor treatment response exhibited this characteristic in

several regions, indicating a potential candidate for targeted radio-

therapy.

Franklin et al. developed a method to semi-automatically seg-

ment viable and non-viable tumor regions in colorectal cancer based

on DEC-MRI and compared these with histological subregions of

viable and non-viable tumor, analyzing extracted pharmacokinetic

parameters between them.156 The whole tumor was manually delin-

eated and four subregions were automatically obtained by PCA, fol-

lowed by K-means. These four subregions were manually merged

into two: viable and non-viable tumors. For viable tumor subregions

defined by imaging and histology, DSC = 0.738 indicating the consis-

tency of viable tumor segmentation between pre-operative DCE-

MRI and postoperative histology. This technique may facilitate non-

invasive assessment of treatment response in clinical practice.

4.B.5 | Fuzzy clustering

Fan et al. developed a framework to assess tumor subregion hetero-

geneity in breast cancer based on the decomposition of DCE-MR

images.158 The whole breast tumor was segmented by the FCM

algorithm.175 A convex analysis of mixtures (CAM) method was then

used to differentiate heterogeneous regions. Imaging features

extracted from these regions were used to predict prognosis and

identify gene signatures. Tumor heterogeneity was negatively corre-

lated with the presence of genetic markers of breast cancer and sur-

vival.

Wang et al. studied primary and secondary intrahepatic malig-

nancies to determine whether an increase in tumor subvolume with

elevated arterial perfusion during RT can predict tumor progression

following treatment.159 The arterial perfusion of tumors prior to

treatment was clustered into low-normal and elevated perfusion by

GIRLFC.143 The tumor subvolumes with elevated arterial perfusion

were extracted from the hepatic arterial perfusion images. The

changes in tumor sub-volumes and arterial perfusion averaged over

the tumors from pre-treatment baseline to mid-treatment were

investigated for prediction of tumor progression following treatment.

The results showed that an increase in intrahepatic subvolume with

elevated arterial perfusion during RT may be a predictor of post-

treatment tumor progression (AUC = 0.9).

Lucia et al. 165 developed a framework to evaluate the overlap

between the initial high-uptake sub-volume (V1) on baseline 18F-

FDG PET/CT images and the metabolic relapse (V2) after chemora-

diotherapy in locally advanced cervical cancer. CT images of recur-

rence were registered with baseline CT using the 3D Slicer Expert

Automated Registration module176 to obtain the deformation fields

by optimizing the Mattes mutual information metric,177 and the cor-

responding PET images were registered using the corresponding

deformation fields. The FLAB algorithm 144 was used to determine

the sub-volumes V1 and V2 for baseline and follow-up PET images.

The overlaps between the baseline high-uptake sub-volume and the
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recurrent metabolic volume were moderate to good (range (mean �
std)): 0.62–0.81 (0.72 � 0.05), 0.72–1.00 (0.85 � 0.10), 0.55–1.00
(0.73 � 0.16) and 0.50–1.00 (0.76 � 0.12) for DSC, overlap fraction,

X X¼ V1∩V2
V1

� �
and Y Y ¼ V1∩V2

V2

� �
, respectively.

4.B.6 | Active contour modeling

Seow et al.157 segmented the solid subregion of high-grade gliomas

in MRI images by active contour modeling (ACM) and reported a dif-

ference ratio ((sACM�Smanual)/sACM, where sACM and smanual are ACM

and manual segmentation areas, respectively) of 1.3. This algorithm

produced segmentations in under 20 min, while manual segmenta-

tion required an hour.

5 | PUBLICLY AVAILABLE TOOLBOXES

There are several publicly available toolboxes that are useful for

tumor subregion analysis. Python packages include pyradiomics,

used to extract radiomic features,178 Scikit-learn, a general purpose

machine learning toolkit179; and NiftyNet, a convolutional neural

network platform based on TensorFlow for medical image analysis

and image-guided treatment research.180 In C++, LIBSVM includes

various SVMs, which can be used for classification and regres-

sion.27

6 | PREVALENCE OF METHODS

We have analyzed the prevalence of selected study characteristics,

including disease site, learning strategy (supervised/unsupervised),

technique (deep learning/others), and imaging modalities (single/mul-

ti) (Fig. 3). Brain and thorax are the most studied disease sites, likely

secondary to clinical uncertainty in assessing treatment response in

the brain and in diagnosis based on thoracic screening imaging. The

brain’s anatomic position, which is approximately fixed by the sur-

rounding calvarium, facilitates multimodal image registration and is

an additional contributor to the brain’s popularity as the most com-

mon study site in medical imaging. The BraTS challenge further

encourages study by providing public data as well as ground-truth

for nonpublic data against which to analyze results. Supervised learn-

ing accounts for 73% of works reviewed, owing to the greater relia-

bility and interpretability of training when ground truth is available.

Non deep-learning strategy is employed in 60% of the summarized

studies while deep learning strategy accounts for 40%. The category

of multimodal studies accounts for 85% of all works while single-

modality studies account for 15%. Magnetic resonance spectroscopy

(MRS) plays an important role in detecting visible or invisible meta-

bolic abnormalities181 and may be useful for tumor subregion analy-

sis. MRS is adaptable and can be applied to relevant metabolic

profiles across different tissues. MRS is currently finding primary use

in investigations of the brain but may be used for detection,

F I G . 3 . Pie charts for the distribution of various methods in AI-based tumor subregion analysis in medical imaging. HN, head and neck; DL,
deep learning
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localization, staging, evaluations of tumor aggressiveness, and

response for many cancers such as those of the prostate and breast.

7 | SUMMARY AND OUTLOOK

AI methods from the field of computer vision have been widely

adopted for tasks in tumor subregion analysis. The choice of meth-

ods is often based on dataset size and the task at hand. For small

sample sizes, support vector machines and random forests are often

used for classification and regression problems. Cox proportional

hazards models and LASSO are commonly used in regression, and

can also aid in feature selection before classification or regression to

prevent overfitting. If enough data are available, deep learning

approaches are a popular choice for many tasks. As reviewed here,

brain is the most commonly studied site followed by thorax. Because

brain tumor datasets are generally accompanied by ground-truth

data, supervised learning methods are most commonly employed.

For other sites, unsupervised methods are popular due to the lack of

ground truth contours of tumor subregions.

Currently, there is no universal image acquisition protocol for

subregion analysis in any imaging modality in clinical practice and

images acquired from different sites using different protocols may

affect the performance of these models. Fave et al. showed that

image texture may not be significantly affected by the choice of

peak tube voltage of CT, while is affected by a decrease in tube cur-

rent.182 In order to address this issue, the quantitative imaging

biomarkers alliance (QIBA)183 and the quantitative imaging network

(QIN)184 have been working to formalize standard imaging protocols.

Sample sizes in the reviewed studies were small to intermediate

(median n = 230, range n = 4-626). For supervised learning, a large

training set is required to train a reliable model. A large validation

set is also essential for rigorous evaluation. Except for the BraTS

studies, most reviewed here used institutional data and may lack

generalizability. Many studies on tumor subregions demonstrate cor-

relations to survival, as well as treatment response and recurrence.

To validate these findings, significant time must be invested in

follow-up especially in diseases with low overall mortality. Validation

may also be confounded by adjuvant treatment during the follow-up

period, complicating the analysis of any relationships that are discov-

ered. The establishment of universal benchmark datasets would

solve many of these problems, providing a standard against which to

measure the performance of new techniques.

Deep learning has demonstrated clinical utility in many tasks in

medical imaging. At the time of writing, deep learning is primarily in

use for brain tumor subregion segmentation but is rarely used in non-

segmentation tasks or in other body sites. Great potential remains for

DL applications in tumor subregion analysis. A CNN might be used to

automatically extract useful features rather than relying upon hand-

crafted features, which may be biased by the crafter’s prior knowledge

of the training data and fail to capture detail that may be observed in

test data, or later in inference. Deep features learned from CNNs, on

the other hand, maybe more robust to unseen data as they are

objectively selected from the feature space through iterative optimiza-

tion. For clinical tasks for which it is difficult to obtain manually-

annotated ground truth data, unsupervised CNNs have been ap-

plied to solve the segmentation problem. Zhou et al. proposed a deep

image clustering model to assign pixels to different clusters by updat-

ing cluster associations and cluster centers iteratively.185 CNN could

also be used to generate radiomic signatures for various clinical appli-

cations based on tumor subregions and be used in OS prediction,

treatment response prediction, and clinical risk stratification. In order

to realize the full potential of DL applications in tumor subregion anal-

ysis, models must be trained on large datasets with external cross-site

validation. Contrastive learning approaches, wherein traditional cross-

entropy losses are supplanted by maximization of mutual information,

have gained popularity in the last year because they effectively utilize

unlabeled data for unsupervised learning. Many of these have

achieved good results.186–188 Few-shot learning comprises two stages:

a meta training and a testing stage. In the meta training stage, the data

is decomposed into discrete tasks to encourage the generalizability of

the model robust to category changes. In the meta testing stage, when

facing a new category, classification can occur without changing the

existing model. Few-shot learning may be useful in tumor subregion

analysis, a classification problem wherein the sample size is typically

small.14,188

Although most of the papers included in this review did not

report or discuss time for training or testing, this is a critical variable

in the real-world deployment of these technologies as “Big Data”

gets bigger: training time may exceed 24 h in the setting of 3D,

rather than 2D, tumor segmentation while inference may occur in

less than 1 min in production. The development of ever lighter and

faster networks offers the opportunity to effectively shorten training

time and may outpace hardware-based innovations.
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