
Frontiers in Immunology | www.frontiersin.

Edited by:
Bikul Das,

KaviKrishna Laboratory, India

Reviewed by:
Mohan Gupta,

Iowa State University, United States
Amandine Rovini,

Centre Hospitalier Universitaire de
Limoges, France

*Correspondence:
Tessy Thomas Maliekal

tessy@rgcb.res.in
Suparna Sengupta

ssengupta@rgcb.res.in

Specialty section:
This article was submitted to

Microbial Immunology,
a section of the journal

Frontiers in Immunology

Received: 15 February 2022
Accepted: 05 May 2022
Published: 26 May 2022

Citation:
Maliekal TT, Dharmapal D and

Sengupta S (2022) Tubulin
Isotypes: Emerging Roles in

Defining Cancer Stem Cell Niche.
Front. Immunol. 13:876278.

doi: 10.3389/fimmu.2022.876278

REVIEW
published: 26 May 2022

doi: 10.3389/fimmu.2022.876278
Tubulin Isotypes: Emerging Roles in
Defining Cancer Stem Cell Niche
Tessy Thomas Maliekal 1,2*, Dhrishya Dharmapal1,3 and Suparna Sengupta1,2,3*

1 Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India, 2 Regional Centre for Biotechnology,
Faridabad, India, 3 University of Kerala, Department of Biotechnology, Thiruvananthapuram, India

Although the role of microtubule dynamics in cancer progression is well-established, the
roles of tubulin isotypes, their cargos and their specific function in the induction and
sustenance of cancer stem cells (CSCs) were poorly explored. But emerging reports urge
to focus on the transport function of tubulin isotypes in defining orchestrated expression of
functionally critical molecules in establishing a stem cell niche, which is the key for CSC
regulation. In this review, we summarize the role of specific tubulin isotypes in the transport
of functional molecules that regulate metabolic reprogramming, which leads to the
induction of CSCs and immune evasion. Recently, the surface expression of GLUT1
and GRP78 as well as voltage-dependent anion channel (VDAC) permeability, regulated
by specific isotypes of b-tubulins have been shown to impart CSC properties to cancer
cells, by implementing a metabolic reprogramming. Moreover, bIVb tubulin is shown to be
critical in modulating EphrinB1signaling to sustain CSCs in oral carcinoma. These tubulin-
interacting molecules, Ephrins, GLUT1 and GRP78, are also important regulators of
immune evasion, by evoking PD-L1 mediated T-cell suppression. Thus, the recent
advances in the field implicate that tubulins play a role in the controlled transport of
molecules involved in CSC niche. The indication of tubulin isotypes in the regulation of
CSCs offers a strategy to specifically target those tubulin isotypes to eliminate CSCs,
rather than the general inhibition of microtubules, which usually leads to
therapy resistance.

Keywords: tubulin, tubulin-interacting proteins, cancer stem cell niche, metabolic reprogramming, immune
evasion, GLUT1, GRP78, EphrinB1
INTRODUCTION

Microtubules, a major class of the cytoskeleton of cells, are formed of heterodimers of a and b
tubulins (1). In addition to the heterogeneity of the tubulin isotypes forming the dimers, their post-
translational modifications and interacting proteins influence the dynamics of microtubules (2, 3).
As microtubules regulate plethora of cellular processes, their deregulation is associated with
diseases, including cancer. As the field evolves, it appears that the tubulin isotypes might have
unique functions specified by their interacting molecules, which again is defined by their unique C-
terminal end sequence and the post translational modifications (PTMs) therein (2). Deregulation of
some of the tubulin isotypes in cancer suggests their involvement in cancer progression. Though
microtubule targeting agents (MTA) have been used in cancer treatment for a long time, the role of
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the tubulin isotypes in the cancer stem cell (CSC) context was not
explored extensively. Some of the recent findings suggest that
specific tubulin isotypes have some important roles in regulating
certain functionally essential molecules involved in the induction
and maintenance of CSCs (4–8). This review focuses on the
molecules that are shown to interact with tubulin isotypes,
probably their cargos. We discuss the recent reports portraying
the role of tubulin isotypes and their plausible cargos in
metabolic reprogramming, induction of CSCs and modulation
of immune evasion
THE TUBULIN CODE

Several isotypes of tubulin are found for both a- and b-tubulins in
different species. So far, mammals are known to have nine a-
tubulin and nineb-tubulin genes, (Figure 1) (for nomenclature see:
www.genenames.org/cgi-bin/genefamilies/set/778). The isotype
composition, differing majorly in the 20 amino acids of their
extremely acidic C-terminals, plays a critical role in imparting
structural conformation, motor activity and tunes the
microtubule dynamics (1, 3), which turns out to be the reason for
the unique functions of particular tubulin isotype combinations.
The concept that molecular patterns generated by combinations of
tubulin isotypes andPTMs is termed the ‘tubulin code’. The tubulin
molecule with highly conserved core can have slightly different
structures with different isotype incorporation affecting
microtubule assembly, dynamics and mechanical properties. Also,
the isotypes with unique flexible tails that protrude outward from
the surface of microtubules affect the interaction with microtubule
associating proteins (MAPs) and thus can cause unique PTMs.
Further, this variation is multiplied by a plethora of PTMs such as
acetylation, tyrosination, detyrosination, glutamylation,
polyglutamylation, glycation, phosphorylation etc (2). Isotype
overexpression or down-regulation can bring in several diseases
including neuronal disorders (9), cancer (10), drug resistance (11,
12) etc. So far it was not possible to assign the sequence difference of
specific isotypes to different functions but it can be assessed that the
variable stretch of negative charges over the C-terminus along with
PTMs incorporated might play a significant role in defining the
unique functions.
MICROTUBULE-MEDIATED TRANSPORT

Microtubules act as tracks for long-range intracellular transport of
many important vesicles and organelles through its motor proteins
kinesins and dyneins (Figure 2). They are critical in the positioning
of golgi complex (13), endoplasmic reticulum motility (14), long-
distance transport ofmitochondria (15) as well as the translocation
and clustering of endosomes and lysosomes (16, 17). Microtubules
mediated trafficking has negative effects also. For example,
pathogenic viral cargos require microtubules to transport them to
and from their intracellular replication sites. The microtubule-
mediated transport of cargo with spatiotemporal specificity and
efficiency demands the involvement of a set of other proteins. Some
Frontiers in Immunology | www.frontiersin.org 2
of the MAPs, identified initially as the proteins that bind to and
stabilize microtubules, specifically Tau, MAP1B, MAP2, MAP4,
MAP6, and MAP7, are now considered to be the regulators of
intracellular traffic (18). The MAPs, specifically the plus-end-
tracking proteins (+TIPs) that respond to various cellular signals,
regulate the dynamic behavior and organization of themicrotubule
tracks (19). While the motor proteins power the transport,
modifications of adapter proteins-the molecules that recruit
cargos to the motor- fine tunes the specificity of transport (20).
At the same time, some cargos can directly interact with their
motors (21). Septins are multimeric GTPases that function as
adapter proteins, which brings about the selective recruitment of
microtubule motors to their respective cargo (22). Another such
adapter molecule is c-jun NH2-terminal kinase (JNK)–interacting
proteins (JIPs), which are scaffolding proteins for the JNK signaling
pathway (23). JIP1, the kinesin-1 cargo, is localized only to a subset
of neurites in cultured neuronal cells. This polarized protein
trafficking appears to involve the preferential recognition of
kinesin-1 motor domain to microtubules containing specific
posttranslational modifications (PTMs) such as a-tubulin
acetylation at Lys-40 (24). However, this PTM alone is not
sufficient to affect kinesin-1 velocity and run length (25). It is
becoming increasingly evident that the tubulin code with different
isotype composition and posttranslational modifications plays an
extremely important role in controlling motor behaviors and the
dynamicity ofmicrotubules (1, 26).Yet, despite decades of extensive
research, our knowledge on the spatiotemporal regulation of
microtubule is incomplete (27). The mechanism of cargo
specificity during microtubule transport is still a mystery, as there
are fewer known adapters than the number of cargos (27). In this
context, some of the recent reports of the direct interaction of some
functional proteins, like VDAC, N-Cadherin, GLUT1 and
EphrinB1, to specific tubulin isotypes, suggests additional
mechanism of implementing specificity of transport (4–6, 28).
TUBULINS IN CANCER

Consistent with the divergent role of tubulins in cell cycle
regulation, apoptosis and drug resistance, their deregulation has
been reported in a wide range of cancers. Aberrant expression of
certain isotypes of tubulins in cancer tissue specimens are reported
to regulate cancerprogression,metastasis, aggressive behavior, drug
resistance or poor prognosis, as summarized in Table 1. The
upstream signaling leading to this aberrant expression is not well-
characterized except for bIII-tubulin (44). As summarized in a
recent review, several factors including hormones, bromodomain
and extraterminal (BET) proteins, factors like hypoxia and
hypoglycemia can up-regulate the expression of bIII-tubulin (44).
While several upstream signaling pathways like AKT, K-RAS and
EGFRupregulate its expression, tumor suppressorPTENnegatively
regulates the gene expression (44). The upstream pathways that
regulate the PTMs of the rest of the tubulin isotypes are yet to
be unraveled.

The role of different isotypes of tubulins in cancer progression
is reviewed recently (45, 46). It is well-established that
May 2022 | Volume 13 | Article 876278
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microtubule network and their dynamics are important
regulators of mitosis and cell proliferation (45). Since
microtubule dynamics also plays a role in cell migration,
tubul ins , more specifical ly the ir post-translat ional
Frontiers in Immunology | www.frontiersin.org 3
modifications, regulate invasion and metastasis (34, 45, 47).
Further, tubulins also play a critical role in the regulation of
drug resistance (45). The most studied post-translational
modification of tubulins that regulate different cancer
FIGURE 1 | Tubulins and their PTMs. Tubulin isotypes depicting the varying C-terminal sequences, showing probable post translational modification sites.
Microtubules are formed with varying isotype composition.
FIGURE 2 | Representation of probable theory that microtubule isotype composition contributes to specificity in tubulin-mediated transport. Cargos (Vesicle bound
proteins or Organelles) are transported in retrograde and anterograde directions by motor proteins Dyneins and Kinesins respectively. Many of the motor proteins
bind to the vesicles through adaptor proteins. Isotype composition of the microtubule influences preferential binding of microtubule-associated proteins (MAPs),
motor proteins, and ultimately the cargo is transported. The cartoon shows two representative microtubules with different isotype compositions. The varied relative
abundance of different isotypes imparts the microtubules with diverse affinities towards different kinesins, dyneins, as well as MAPs. Due to the difference in isotype
composition, the two microtubules carry different cargoes owing to the different motor proteins and adaptor proteins that bind to them. The association of different
tubulins with different MAPs imparts varied microtubule kinetics.
May 2022 | Volume 13 | Article 876278

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Maliekal et al. Tubulin Isotypes Define CSC Niches
properties is acetylation. Acetylation of different isotypes of
tubulin is shown to regulate the invasive property, metastatic
ability and resistance to chemotherapy (30, 48). The role of
different posttranslational modifications, including acetylation,
detyrosination, tyrosination, polyglutamylation, and
polyglycylation in the regulation of cancer properties are
extensively reviewed elsewhere (49).

The classical research on the role of tubulins in cancer
revolves around the microtubule dynamics that change the
biophysical properties of the cancer cell. But recent evidences
implicate that tubulins can indirectly regulate many cancer
properties including drug resistance, metastasis and immune
evasion by the transport of important molecules necessary for the
maintenance of cancer stem cells (CSCs) and their niche (4–8).
Majority of the studies in the field were focused on the tubulin-
interacting molecules that regulate the dynamics of microtubules
like motor proteins and MAPs (50). Yet, there are some studies
that showed that molecules other than microtubule associated
proteins and motor proteins co-immunoprecipitates with
specific tubulins, suggesting the specificity of isotypes for
selecting the cargo (Table 2). So far, there is only one study
reported using proteomic approach to identify the interacting
partners of bIII-tubulin, which revealed that the molecule forms
complexes with important regulators like GRP78, Vimentin and
GSTM4 in cancer cells (56). Interestingly, nuclear bII-tubulin is
shown to associate with Notch1 intracellular domain (55).
Recently, it is also shown that S100A6 binds to alpha and beta
tubulins, and the secretion of S100A6 is dependent on its
tubulin-binding (7). Another important observation linking
tubulins to mitochondrial bioenergetics function is the
regulation of voltage-dependent anion channel (VDAC)
permeability by bII-tubulin and bIII-tubulin (4, 57). Also, it
was found that bIVb-tubulin interacts with GLUT1 in the CSC
Frontiers in Immunology | www.frontiersin.org 4
context (6). Moreover, we recently reported the involvement of
bIVb-tubulin in the possible transport of EphrinB1 in the CSC
niche (5). Table 2 gives a summary of the known interacting
molecules of tubulins, which might have a role in the regulation
of cancer properties. Though the role of respective tubulins in
their transport is not well-established in certain cases, it opens up
the possibility of tubulins playing a role in specific transport of
important intermediates of proliferation, apoptosis,
chemoresistance, CSC properties and immune evasion. In the
following sections, we will elaborate on how the transport
function of tubulins can possibly regulate the cancer properties.
TUBULINS AND THEIR INTERACTING
PROTEINS IN THE REGULATION OF
CANCER PROGRESSION

Given the role of tubulins in the regulation of mitosis, a number
of chemically diverse substances are developed that bind to
tubulin and inhibit cell proliferation by disrupting the
microtubule dynamics, activating spindle assembly checkpoints
and mitotic arrest (58). The recent advances in the field suggest
that tubulin isotypes other than g-tubulins might have a
microtubule-mediated spindle assembly-independent role in
proliferation (54). Although the voltage-gated potassium
channel EAG2 is shown to interact with a-tubulin and b-
tubulin, the possible role of this interaction in its trafficking
and function in tumor progression is yet to be studied (54).
However, EAG2 plays a role in cancer progression, as shown in
medulloblastoma (59). It is shown to be up-regulated in
medulloblastoma tissues and its knock-down impairs
medulloblastoma cell growth in vitro, reduces tumor burden in
TABLE 1 | Tubulin deregulation in cancer.

Isotype Alteration Cancer Outcome Reference

a-tubulin* Loss of expression Breast cancer Metastasis (29)
Increased acetylation Breast cancer Metastasis, Aggressive behavior (30)

aIa-tubulin, aIb-tubulin Over-expression Breast cancer Taxane resistance (31)
bI-tubulin Over-expression Breast cancer Docetaxel resistance (32)

Over-expression Breast cancer Taxane resistance (31)
bII-tubulin* Increased mRNA Nasopharyngeal carcinoma Cancer progression (33)

Over-expression Colorectal cancer Poor outcome (34)
Nuclear localization Variety of cancers Metastasis (35)

bIIa-tubulin Expression Breast cancer Metastasis (36)
bIIb-tubulin mRNA expression Colorectal cancer Poor survival (37)

mRNA expression Renal cancer Poor survival (38)
Down-regulation Breast cancer Taxane resistance (31)

bIII-tubulin Over-expression Breast cancer Docetaxel resistance (32)
Over-expression Breast cancer Taxane resistance (31)
Over-expression Clear cell renal carcinoma Poor prognosis (39)
Over-expression Prostate cancer Docetaxel resistance (40)
Over-expression Colorectal cancer Poor prognosis (41)
Over-expression HNSCC Unrelated to clinical outcome (42)

bIVb-tubulin High mRNA Expression HNSCC Unrelated to clinical outcome (5)
bV-tubulin Over-expression NSCLC Prolonged progression-free survival (43)

Down-regulation Breast cancer Taxane resistance (31)
May 2022 | Volume 13 | Art
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vivo and enhances survival in xenograft studies (59). Connexin43
is a gap junction protein shown to be associated with tubulins,
and it is involved in cancer progression by modulating MAPK
and JNK pathways (60–63). One of the other properties
attributed to tubulins is cell migration. Hence, it is implicated
in metastasis and tubulin inhibitors are shown to block
metastasis in various cancers (47, 64, 65). Now there are
accumulating evidences to show that tubulins can regulate
cancer properties other than proliferation and metastasis. Some
of the recent studies show that certain isotypes of tubulins are
associated with CSCs, and the knock-down of those isotypes can
deplete CSCs (5, 6, 39).
TUBULINS IMPLICATED IN THE
REGULATION OF CSCS AND
THEIR NICHE

As summarized in Table 1, specific isotypes of tubulins are
enriched in certain cancers, which lead to the acquisition of
resistance to tubulin-binding agents. Thus, several studies have
investigated the role of different isotypes in imparting resistance,
which revealed that the dynamics of bIII tubulin comprising
microtubule are quite different from the ones composed of
mixed b tubulins (10, 46). Further, binding efficiencies of
different microtubule-targeting agents (MTA) to microtubules
comprising bIII tubulins are lower compared to their efficiencies
to bind to microtubules consisting of different b tubulins (10, 46).
Though the expression profiles of tubulin isotypes in cancer and
chemoresistance are well-explored, the significance of tubulin
isotypes in the regulation of CSCs is poorly studied. However, a
recent study using several glioblastoma cell lines has shown that
there was a reduction in the detyrosinated form of a-tubulin,
Frontiers in Immunology | www.frontiersin.org 5
acetylated a-tubulin and phosphorylated bIII-tubulin with a
concomitant up-regulation of polyglutamylated a and b-
tubulins in MTA-resistant cells compared to sensitive cells. Also,
the MTA-tolerant cells expressed stemness markers, suggesting
that CSCs exhibit resistance to MTA (66). The MTA-resistant
glioblastoma cell lines had a relative enrichment of bII and bIII
tubulins, while the detyrosination and the change in D-2 a-tubulin
levels were not correlated to resistance (66). Shortly after that, a
more direct evidence of the role of bIII tubulins in clear cell renal
cell carcinoma stem cells was reported (39). They showed that
there is a positive correlation between the expression of bIII
tubulin and stem cell markers (39). In accordance with that, the
depletion of bIII tubulin resulted in the loss of CSC properties
(39). Recently, our studies in oral cancer have shown that bIVb-
tubulin is indispensable for the maintenance of CSCs, specifically
in defining the CSC niche (5). Further, it was found to be critical
for the maintenance of glioblastoma stem cells (6). A detailed
analysis of the recent literature suggest that different tubulin
isotypes are involved in the regulation of CSCs and their niche,
possibly by the transport of essential molecules that regulate CSC
properties. The important CSC-regulating molecules that are
suggested to be transported by tubulins are signaling molecules
like, Ephrins and Notch; regulators of metabolism like, GLUT1,
GRP78 and VDAC (Table 2). Many of these molecules present in
CSC niche are important in establishing metabolic
reprogramming, imparting self-renewal ability and to some
extent, to facilitate immune evasion (Figure 3).

Metabolic Reprogramming in CSC Niche
In order to meet the requirements of exponential growth and
proliferation, cancer cells adapt to aerobic glycolysis, glutamine
catabolism, de novo lipid synthesis and nucleotide synthesis,
which is generally known as metabolic reprogramming (67). The
switch of tumor cellular bioenergetics from an oxidative
TABLE 2 | Tubulin interacting proteins.

Tubulin type Interacting
Molecule

Interaction context Reference Relevance of interacting molecule in cancer

a-tubulin Vimentin Colon cancer migration (51) Metastasis
VDAC1 Lung cancer cells (52) Metabolic reprogramming in cancer

a-tubulin and bI-tubulin RAMP1 Mouse TSA cells and Human SH-SY5Y neuroblastoma
cells

(53) Increase proliferation

a-tubulin and b-tubulin EAG2 Human brain medley (54) Increase proliferation and cancer progression
a-tubulin and b-tubulin S100A6 Regulates secretion of S100A6 in

mesenchymal stem cells, WJMS
(7) Metastasis

aIa-tubulin, and bIVb-
tubulin

Connexin43 Mouse brain (8) Increase proliferation, metastasis, inhibit
apoptosis

b-tubulin Connexin43 HeLa cells (8) Increase proliferation, metastasis, inhibit
apoptosis

bII-tubulin Notch1-NIC Nuclear translocation of Notch in Leukemia cells (55) Regulate CSCs
bIII-tubulin Vimentin Ovarian cancer cells (56) Metastasis

GRP78 Ovarian cancer cells (56) Regulate CSCs
GRP75 Ovarian cancer cells (56) Regulate proliferation, survival and CSC

properties
GSTM4 Ovarian cancer cells (56) Drug resistance

bIII-tubulin and bIVa-tubulin N-Cadherin Endothelial cells (28) Metastasis
bIVb-tubulin GLUT1 Glioblastoma stem cell niche (6) Regulate CSCs

EphrinB1 Oral cancer stem cell niche (5) Regulate CSCs
The table enlists molecules that are reported to interact with tubulins, confirmed by immunoprecipitation.
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phosphorylation to aerobic glycolytic pathway is now recognized
as one of the hallmarks of cancer (68). At the same time, it is also
shown that CSCs have metabolic plasticity, and can switch
between mitochondrial respiration and glycolysis (69) Research
on this topic for the last two decades has shown that metabolic
reprogramming is the key to the induction of CSCs (70, 71). The
most convincing link between tubulins, cellular bioenergetics
and CSCs is the role of tubulin-VDAC axis in the metabolic
reprogramming in cancer cells (72). VDACs are located in the
mitochondrial outer membrane, which function as a metabolic
link between glycolysis and oxidative phosphorylation (72). Both
Frontiers in Immunology | www.frontiersin.org 6
bII and bIII tubulins are found to regulate VDAC channel
permeability in normal and cancer cells (57). The dynamic
regulation of free and dimerized tubulins regulate VDAC
opening and closing to modulate mitochondrial metabolism,
reactive oxygen species formation, and the intracellular flow of
energy (72). In accordance with that, cytoskeleton-mitochondrial
interactions through VDACs are implicated in the regulation of
CSCs (73).

One of the first reports that link microtubules to glucose
metabolism is the observation that D-glucose induces
tyrosination of tubulins (74). The tyrosination of tubulins, in
turn, has been shown to regulate the motor protein-mediated
transport in the nervous system (75, 76). Following up the research
on the transport function of tubulins unraveled the role of tubulins
in the transport of many molecules involved in the regulation of
glucose metabolism in CSCs and their niche. Hypoxia, the most
important factor leading to the metabolic reprogramming and
induction of CSCs, is shown to induce GLUT1, the transporter of
glucose into cells (77, 78). The metabolic reprogramming in CSCs
is shown to be dependent on GLUT1 in many cancer types (6, 79–
81). Remarkably, GLUT1 is shown to interact with bIVb-tubulin
in glioblastoma specimens using mass spectrometric analysis,
which was confirmed again by proximity ligation assay and
immunoprecipitation (6). Of note, this depletion of the tubulin
reduced the surface expression of GLUT1, and resulted in the loss
of CSC properties (6), thereby highlighting the role of bIVb-
tubulin in the membrane transport of GLUT1 and the regulation
of stem cells thereby. Like GLUT1, another important regulator of
metabolic reprogramming, GRP78, is shown to associate with
tubulins. It is shown that bIII tubulin interacts with GRP78, and
this interaction is critical for the survival of cancer cells in the
glucose starved condition by adapting to use other nutrient
supplies present in the tumor microenvironment (82). This
GRP78-mediated survival is shown to be dependent on the
enhanced glutamine catabolism (83). Thus, GRP78, more
specifically the cell surface GRP78, regulates metabolic
reprogramming, which depends on several other molecular
players (84, 85). Whether the reported interaction of tubulins to
GRP78 plays any role in its cell surface function is yet to
be studied.

Regulation of Self-Renewal of CSCs
The over-expression of bII tubulin and its nuclear localization is
reported as a marker for poor prognosis in colorectal cancer (34).
The importance of this bII tubulin-nuclear localization in the
aggressive nature of the malignancy was explained by another
study that demonstrated the involvement of tubulin bII in the
nuclear transport of Notch1 and its CBF-dependent transcriptional
activity (55). Notch1 is supposed to be a master-regulator of stem
cell properties, as it controls a variety of molecules that regulate
CSCs and their niche in various malignancies (86–89). Notch
signaling is important in the maintenance of stem cells in
intestinal crypts, by regulating the expression of EphrinB1, where
the reciprocal gradients of EphB2 and EphrinB1 define the balance
of intestinal stem cell self-renewal and differentiation (90). In
cancer context also Notch1 is reported to regulate EphrinB1
signaling, as shown in osteosarcoma (91). Notably, another
FIGURE 3 | The role of tubulins in CSC niche. Different tubulin isotypes
regulate metabolic reprogramming important for the induction of CSCs. While
hypoxia is a critical factor that activates the expression of GLUT1-the regulator
of aerobic glycolysis and metabolic reprogramming, its surface localization is
controlled by bIVb tubulin. Also, other isotypes of tubulin, bII and bIII, regulate
the opening and closing of VDACs, which also is a crucial regulation of
metabolic reprogramming. The endoplasmic reticulum residing GRP78 is shown
to surface localize during cellular stress, the transport of the molecules is
thought to be modulated by bIII tubulin. The surface localized GRP78 enhances
glutamine intake and its metabolism, which also contributes to the metabolic
reprogramming. In parallel, certain master regulators of self-renewal, like Notch1
leads to transcriptomic regulation for the induction of stemness. The nuclear
transport of the active cleaved Notch1 is facilitated by bII tubulin. EphrinB1, a
target gene of Notch 1, leads to Eph/Ephrin bidirectional signaling. The surface
transport of EphrinB1 is shown to be dependent on bIVb tubulin. Eph/Ephrin
signaling regulates the fate of cancer cells and immune infiltrates. When PD1 on
T-cells is engaged by its ligand PD-L1, it leads to the inhibition of T-cell activity.
The aberrant expression of PD-L1 on cancer cells leads to immune evasion.
While the expression of PD-L1 is indirectly regulated by GLUT1 activity through
unknown mechanism (shown as dotted arrow and question mark), stabilization
of its surface localization is shown to be mediated by GRP78. Thus different
specific isotypes of tubulins are involved in the transport of critical molecules
involved in metabolic reprogramming, induction of stemness and immune
evasion in CSC niche.
May 2022 | Volume 13 | Article 876278
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tubulin isotype, bIVb is shown to directly regulate EphrinB1
surface localization in oral cancer stem cells and their niche (5).
Also, abrogation of bIVb tubulin or EphrinB1, which reduced the
surface expression of EphrinB1 or the active EphrinB1 signaling,
depleted the CSC population (5). Thus different tubulin isotypes
play specific roles in the maintenance of CSCs by transporting
unique signaling molecules involved in the regulation of stemness.

Modulation of Immune Evasion
In spite of the ability of immune cells to actively eliminate
transformed cells, cancer cells survive in our body by
manipulating the immune response machinery (92). This
machinery, including CD4+ and CD8+ T cells, dendritic cells
(DCs), and natural killer (NK) cells, is usually inhibited by certain
checkpoint molecules, as a part of natural feedback inhibition, to
prevent excessive immune reactivity (92). Cancer cells cleverly
overexpress these checkpoint molecules including programmed
death receptor ligands (PD-L1/PD-L2), and cytotoxic T cell-
associated antigen-4 (CTLA-4) to evade the immune response
(92). A growing body of evidence has demonstrated the active
cross-talk of CSCs and immune infiltrates within the CSC niche
(92). While the activity of some immune cells supports the
expansion of CSCs, this subpopulation of cancer cells actively
elicit immune evasion through a number of distinct mechanisms
(92, 93). The metabolic reprogramming leading to the generation
of CSCs can also regulate the immune evasion, as some of the
metabolites produced by the alternative metabolism in the tumor
microenvironment, like lactic acid and extracellular adenylate can
regulate the fate of infiltrating immune cells (94). A more
important aspect of metabolic reprogramming is the enhanced
glycolytic activity-dependent up-regulation of PD-L1 that leads to
the inhibition of cytotoxic T-cells (94). So tubulins as a mediator of
metabolic reprogramming might regulate immune evasion also.

A recent study identifying immune related gene signatures in
pancreatic cancer identified bIII tubulin as a critical immune
regulator, closely linked to the T-cell receptor signaling pathway
(95). This observation is in accordance with the earlier reports
showing the importance of tubulin dynamics and molecular
motors in immune synapse of T-cells and antigen presenting
cells (96). Microtubule inhibitors, either anti-depolymerization
agents such as the taxane family, or anti-polymerization agents
such as colchicine and vinca alkaloids, have different effects on
immune cell isotypes (97). Majority of the reports showing the
effect of taxanes on immunemodulation attributes the activity of
the drug on T-cells (97). Likewise, a widely used anti-
polymerization agent, colchicine, down-regulates most immune
cell types (97). Even though these reports showed the importance
of tubulins and their cargos in T-cells for its function, there are
some evidences to show that tubulins of the cancer cells, more
specifically their inhibitors, can play a role in modulating
immune response. One of the recent reports has shown that
microtubule targeting agents, like vinca alkaloids and colchicine,
can up-regulate the expression of PD-L1, a critical regulator of
immune evasion (98). In clear cell renal cell carcinoma tissues
the expression of bIII tubulin was associated with PD-L1 (39).
Mechanistically, this correlation might be dependent on some of
the tubulin interacting molecules. In agreement to the critical
Frontiers in Immunology | www.frontiersin.org 7
role of GLUT1 in glycolysis and metabolic reprogramming, the
expression of PD-L1 is shown to depend on the activity of
GLUT1 (99). Further, GRP78 is shown to physically interact
with PD-L1 to increase its stability (100). Consistent with that,
the enhanced expression of both PD-L1 and GRP78 is correlated
with poor relapse-free survival in triple-negative breast cancer
(100). As the different Ephrin ligands can engage the Eph
receptors on immune cells and modulate their activity, Eph/
Ephrin signaling is considered as a mediator of tumor immunity.
More importantly, Eph/Ephrin signaling within the cancer cells
can up-regulate the expression of PD-L1 (101). Since tubulins are
shown to interact with these molecules, possibly regulating their
localization and activity, specific tubulin isotypes present in the
tumor microenvironment and/or CSC niche might be critical in
the regulation of immune evasion.
CONCLUSION

Given the importance of the niche in the regulation of properties
of stem cells or cancer stem cells, the mechanism involved in the
generation of a niche is of prime importance. When we merge
recent studies in the CSC field with tubulin research, a hypothesis
of tubulin-mediated transport in defining stem cell niches
emerge. Tubulins might be playing a role in the orchestrated
expression of ligands and receptors to facilitate active signaling.
On a broader concept, this transport mechanism might be
critical in several scenarios, where coordinated localization of
functional molecules is required. As this aspect of tubulins are
poorly explored, extensive research on this is warranted to
understand the mechanism behind establishing niches. In the
cancer context, understanding the central players in defining
CSCs has immense therapeutic potential. If we identify the
specific isotype of tubulins responsible for defining CSC niche,
strategies can be developed to target only those isotypes instead
of inhibiting the whole cytoskeleton, which generally leads
to chemoresistance.
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