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Spin‑Hall conductivity and Hall 
angle in a two‑dimensional system 
with impurities in the presence 
of spin–orbit interactions
Hemant Kumar Sharma1, Shreekantha Sil2 & Ashok Chatterjee1*

We investigate the spin-torque-dependent Spin Hall phenomenon in a two-dimensional tight-
binding system in the presence of Rashba and Dresselhaus spin–orbit interactions and random static 
impurities. We employ the Matsubara Green function techniques to calculate the relaxation time 
caused by the scattering of electrons by impurities. The longitudinal and transverse conductivities 
are next calculated with the help of the Kubo formalism. We have also calculated the spin Hall angle 
for the present model and studied its dependence on spin–orbit interactions and impurity strength. 
Finally, we explore the effect of interplay between the Rashba and Dresselhaus interactions on the 
spin-Hall effect.

With recent development in the field of spin-based devices, the subject of Spintronics has become an active area 
of research in low-dimensional physics for its potential applications in spin filters, field-effect spin transistors, 
information processing, and mass storage1,2, magnetic recording, sensors and so on. Spin transport plays a key 
role in spintronic devices and causes a spin current in a similar manner the charge transport gives the charge 
current. Methods like injecting ferromagnetic atoms in a non-ferromagnetic material3–10 have been used widely 
in the past to get spin current. However, this method is efficacious only when the magnetic field is strong. An 
alternative approach has been proposed by Sharma et al.11 to produce spin current in the GaAs/AlGaAs hetero-
structure. Here the basic idea is that in the GaAs/AlGaAs hetero-structure cavity, the spin–orbit interaction 
couples the electron’s spin and orbital motion making the electrons of the system spin-polarized11. The study 
of intrinsic Spin-Hall effect in p-doped semiconductors by Murakami et al.12 and in a two-dimensional (2D) 
electron gas by Sinova et al.13 with a substantial Rashba spin–orbit coupling has brought the subject of spintron-
ics to the forefront of current research. The intrinsic spin-Hall effect refers to a non-dissipative spin current 
flowing normal to the driving electric field when the spin–orbit interaction (SOI) dominates over the quantum 
collisions caused by the disorder. This is in contrast to the extrinsic Spin-Hall effect proposed by Hirsch14 and 
Zhang15, where the spin current is generated by the spin–orbit dependent scattering from the impurity. Also, 
the effect of random disorders on the spin-Hall effect has been widely studied over time. The impurities consid-
ered have mainly been magnetic16–19, and also static random impurities20–29. Inoue et al.30,31 have shown that in 
a two-dimensional electron gas, spin accumulation can be achieved by applying a bias and have calculated the 
diffusive conductance tensor. They have also demonstrated that vertex correction in SHC causes SHC to vanish.

In most of the earlier works on spin transport mentioned above, the spin current has been defined in the 
conventional way and is given by �4 {v, σ }13,31 In the presence of SOIs, this definition suffers from two fundamental 
drawbacks. First, the conservation of spin magnetic moment no longer holds and secondly, the spin current is 
found to be finite even in a localized state. To avoid these difficulties, Shi et al.32,33 have put forward an alternative 
definition for the current. They define the current as a time derivative of the polarization operator, which differs 
from the conventional definition by the torque dipole term. Here the torque dipole term in the case of spin cur-
rent is given by the expectation value of the rate of change of spin and arises when the spin magnetic moment 
of the system is not conserved. Recently, we have studied the effect of disorder on the longitudinal charge and 
spin currents in a 2D system described by the tight-binding model (TBM) incorporating the Rashba SOI (RSOI) 
effect34. Later we have also studied the same model taking into account the effects of both RSOI and Dresselhaus 
SOI (DSOI)35. DSOI arises because of the breaking of bulk inversion symmetry and its strength (which is not 
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tunable) is of the same order as RSOI’s and is usually present in almost all systems. Therefore, the incorporation 
of DSOI is important for the proper understanding of any SOI effect.

In this paper, we purport to examine the role of RSOI, DSOI, and the static random disorder on the longitudi-
nal spin conductivity (LSC) and the transverse spin conductivity in a 2D TBM system using Shi’s approach. The 
transverse spin conductivity is usually referred to as the spin Hall conductivity (SHC). For the sake of complete-
ness, we shall also calculate the corresponding charge conductivities. We finally calculate the ratio: SHC/LCC 
which is known as the spin-Hall angle36 and study its dependence on various parameters.

Model and formalism
We consider a 2D TBM for a system of electrons with RSOI and DSOI34,37 in the presence of static impurities 
which will be considered random. The total Hamiltonian is given by

with

where c†i =
(

c†i↑ c†i↓
)

 , and ci =
(

ci↑
ci↓

)

 denote the creation and annihilation operators for the spin up and spin 

down electrons,  ε0 and t refer respectively to the onsite energy and the hopping integral, 
〈

i, j
〉

 runs over all the 
nearest neighbors sites, σ x , σ y , σ z are the Pauli matrices, αR and βD denote the RSOI and DSOI strengths respec-
tively, Ri and rl refer to the electron and impurity positions respectively and the electron–impurity strength is 
measured by v . When Himp = 0 , the Hamiltonian H can be diagonalized by a unitary transformation and spin 
degeneracy is lifted by the spin–orbit coupling leading to two non-degenerate states corresponding to two types 
of electrons. To show this, we perform the transformation:

with

and write the Hamiltonian in terms of the new operators as:

Energetics of the two types of electrons are given by

with

Relaxation time
The effect of impurity is studied by calculating the relaxation time involved in the scattering of electrons by the 
impurities. To simplify, we first write the impurity Hamiltonian in terms of the transformed operators α1,k and 
a2,k as

where

(1)H = H0 +Himp,

(2)

H0 = ε0
∑

i

c†i ci + t
∑

�i,j�

[

c†i cj + h.c.
]

− iαR
∑

�i,j�

[

c†ix,iyσ
ycix+1,iy + h.c.

]

+ iαR
∑

�i,j�

[

c†ix,iyσ
xcix+1,iy + h.c.

]

+ iβD
∑

�i,j�

[

c†ix,iyσ
xcix+1,iy + h.c.

]

− βD
∑

�i,j�

[

c†ix,iyσ
ycix,iy+1 + h.c.

]

,

(3)Himp =
∑

i

ǫic
†
i ci =

∑

i

vδ(Ri − rl)c
†
i ci .

(4)U(k)

(

ck↑
ck↓

)

=
(

α1,k
a2,k

)

= αk ,

(4a)U(k) =
(

1 pk
−p∗

k
1

)

, pk = ζ (k)/|ζ |,

(5)H0 =
∑

k

[

ǫ1,kα
†
1,kα1,k + ǫ2,kα

†
2,kα2,k

]

(6)ǫ1,2,k = ǫk ± 2|ζ (k)|,

(6a)ζ (k) =
(

αRsinky + βDsinkx
)

+ i
(

αRsinkx + βDsinky
)

, ǫk = ǫ0 + 2t
(

coskx + cosky
)

.

(7)Himp =
∑

kk
′

[

V11
kk

′α
†
1,kα1,k′ + V12

kk
′α

†
1,kα2,k′ + V21

kk
′α

†
2,kα1,k′ + V22

kk
′α

†
2,kα2,k′

]

,

(7a)V11
kk

′ = 1

2N
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′).rl

(

1+ pkp
∗
k
′
)
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kk
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′).rl

(

pk − pk′
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In the presence of impurities, the charge carrier will acquire a relaxation time. The relaxation time can be 
calculated from the imaginary part of the self-energy. The relevant Green function for the electron-impurity 
system is given by

Here we will calculate Green function to the second order, as the first order i.e. l = 1, give a constant shift in energy. 
Second order Green function for our Hamiltonian is given by

Using Wicks theorem, the Green function Eq. (9) reduces to

As the impurities are randomly distributed, we perform impurity averaging over all possible configurations. 
Considering the distributions of impurities to be uncorrelated in space, we write it as the product of the individual 
impurity distributions. Since the factor which depends on position is Vkk1Vk1k and we can write

Substituting Eq. (11) in (10) the Green functions reduces to

In Eq. (12) we have contributions to the Green functions from two terms, one from ℵ and another from ℵ2 
as shown in Fig. 1 where ℵ is the number of impurities present in the system. The contribution from ℵ2 (Fig. 1a) 
will be cancelled as it represents a reducible diagram. The contribution from Fig. 1b is given as

(7b)V21
kk

′ = 1

2N

∑

l

vei(k−k
′).rl

(

p∗k′ − p∗k
)

, V22
kk

′ = 1

2N

(
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)(

1+ pk′p
∗
k

)

.

(8)G(k, τ ) =
∞
∑

l=1

(−1)l
β
∫

0

dτ1 . . . . . . . . .

β
∫

0

dτn ∗ Tr
[

α
†
1,k(τ )V(τ1)V(τ2) . . . . . . . . .V(τl)α1,k(0)

]

(9)
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∑
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β
∫

0

β
∫
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dτ1dτ2

〈
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(
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+V21
k2k′α

†
2,k2

(τ2)α1,k′(τ2)+ V22
k2k′α

†
2,k2

(τ2)α2,k′(τ2)
)

α
†
1,k(0)
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∑
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(
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)
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(
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(
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)
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(
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(
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Figure 1.   Feynman diagrams for G
(

k, ipn
)

 for orders n = 2.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14201  | https://doi.org/10.1038/s41598-022-18042-w

www.nature.com/scientificreports/

With further simplification, the Green function equation can be rewritten as

where �
(

ipn
)

 is the self-energy and is given by

In Eq. (15),  g01
(

k1, ipn
)

 and g02
(

k1, ipn
)

 denote the Green functions for an electron in the absence of the 
impurities and having a particular spin

The next step is to perform the analytical continuation: ipn → ǫ + iη . The self-energy is thus given by

and the imaginary part of the self-energy gives relaxation time.

In the dilute-impurity regime, the average-configuration relaxation times for the two types of elec-
trons may be assumed to be equal. Defining a characteristic time scale τ0 given by: τ0 = �/t  and introduc-
ing:y′i = yi/t,α

′
R = α′

R = αR/t,β
′
D = βD/t, v

′ = v/t,µ′ = µ/t, ǫ′0 = ǫ0/t , we finally obtain:

where y′i is given by

(a) Charge current
When SOIs are present, the charge current operators Jc can be obtained by differentiating the charge polarization 
operator with respect to time: Pc = e

∑

jx ,jy

Rjx ,jy c
†
jx ,jy

Icjx ,jy where Rjx ,jy denotes the position observable. Here we 

work in the Heisenberg picture to calculate the currents. The charge current along the x and y axis is given in 
terms of the transformed operators as:

which can be written as

(13)

G
(

k, ipn
)

= g01
(

k, ipn
)
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v2

4N
n
(
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k1

)(
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)
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(
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)
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(
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)
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(
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)

∑

k1
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4N
n
(

pk − pk1
)

×
(
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)
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(
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)
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(
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)

.

(14)G
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k, ipn
)
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(
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(

ipn
)

g01
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)

(15)

�
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n
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n
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.
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1
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=
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.
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n
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)]]

ǫ − ǫ2,k1 + isgn
(

pn
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η
,
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1
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∣
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∣
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ǫ − ǫ1,2,k1
)

+
[

∣

∣pk
∣

∣
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∣
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∣

∣
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(
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))−1
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(

z′i
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,

(20)
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√
C
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α′2
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Rβ

′
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) , C =
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α′
R
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D
2
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R
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D
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Rβ
′
D
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, h′1,2
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α′
R
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D
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8z′i
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i
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(21)Jcx,y =
∂Pc

∂t
= i
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H0, e
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


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f
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1 (k)α

†
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where

(b) Spin current.  Similarly, to calculate the spin current density, we define spin polarization operator 
P
sz = 

∑

jx ,jy

Rjx ,jy szc
†
jx ,jy

cjx ,jy , and the spin current is given by

where dszdt ≡ τ̂ = 1
i� [ŝz ,H0] , τ̂ being related to the spin torque density Tz through the relation: Tz = ψ†(r)τ̂ψ(r) . 

So the spin current is zero if the spin torque density is zero. Thus spin current introduced here arises from the spin 
torque caused by the spin–orbit interaction. To calculated the spin current we have used relation (23). Therefore, 
the x-component of the spin current in terms of operators αk and α

†
k , can be written as:

Spin hall and charge conductivity
Next, to study the effect of Rashba and Dresselhaus SOIs and the static random impurities on the currents, we 
employ the Green function formalism of Kubo38,39. In this technique, the longitudinal charge conductivity is 
obtained from the imaginary part of the charge current–current correlation function

Conductivity is calculated using imaginary part of �(iω).

where ωn represent the Matsubara frequency, Tτ is the imaginary time ordering, β = 1/κBT is the Boltzmann 
factor, the brackets … represent the thermodynamic average and N is the number of lattice sites. The charge 
current at two different times can be obtained from Eq. (21) as

(22a)f x1,2(k) = 2tsinkx ∓ cos kx
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iαR

(

p∗kx ,ky − pkx ,ky

)
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y
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(

p∗kx ,ky + pkx ,ky
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,
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,
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∑
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∑
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∑
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∑
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R
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†
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∗
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The expression for the current–current correlation function is calculated by substituting Eqs. (27) and (28) 
in Eq. (25):

Equation (29) is solved in parts. We first calculate the correlation function corresponding to the first term of 
Eq. (29). Using Wick’s theorem, the current–current correlation function for the first term in the Fourier basis 
is given by:

where G
(

k, ipn
)

 and G
(

k, ipn + iωn

)

 are the single particle Green functions which are represented by the lower 
and upper lines of the loop of the bubble diagram for the current–current correlation function shown in Fig. 2. It 
can be seen that at the vertices where the electrons lines meet, the momentum is conserved. Here the two electron 
lines differ by the Matsubara frequency iωn . In order to calculate the charge conductivity (CC) we calculate the 
imaginary part of the current–current correlation function and perform analytic continuation (iωn → ω+ iδ) 
and write the Green functions in terms of spectral functions. Finally, we divide the correlation function by ω and 
in the limit ω → 0, CC for the first part of current–current correlation function is given by

Similarly, we can evaluate correlation functions for the other terms of Eq. (29) and the total CC assumes the 
following expression:

where A1(k, ǫ) and A2(k, ǫ) represent the spectral functions for the electrons. In the case of low impurity con-
centration, the spectral function is given by:

Using Eq. (33) in Eq. (32), the expression for longitudinal CC reduces to

Similarly, from the Kubo formalism, the expression for the spin Hall conductivity (SHC) is given by
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τ ′
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τ ′
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Figure 2.   Bubble diagram for the current–current correlation function.
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where Jszx  is the x-component of the spin current and Jcy is the y-component of charge current. Using the value of 
Jcy and Jszx  from Eqs. (22) and (23), the final expression for SHC is given by

w here  fE
(

ǫ1,2,k − µ′) i s  t he  Fer mi  d is t r ibut ion  and  at  zero  temp i t  i s  g iven  by 
fE(ǫ1,2,k − µ′) = heaviside (ǫk ± 2|ζ(k)| − µ′).

Numerical results discussion
We measure all energies in units of t  . Numerical computations have been done using the software GNU Octave 
version 6.3.040. Figure 3 shows the energy dispersion along the kx-direction in the presence and absence of SOI. 
The splitting of bands and the renormalization of the ground state energy (GS) are clearly visible.

The effect of this splitting and the renormalization can be seen in Fig. 4, where SHC is plotted with respect to 
chemical potential. Initially SHC increases with µ (Fig. 4a), reaches a maximum at some crucial μ-value and then 
decreases with a further increase in μ to zero (Fig. 4b). When studied in the presence of the DSOI (Fig. 4a), SHC 
increases with μ at a lower rate as it counters the Rashba effect. This increase in SHC with chemical potential can 
be easily understood from Fig. 5. At low μ, the density of states is high which gives rise to more scattering events 
leading to a lower value in SHC. As μ increases, DOS decreases and we observe an increase in SHC. However, 
as μ increases beyond a certain value, DOS becomes very small (Fig. 5), and then not any states are available for 
conduction and SHC decreases with μ at large value of μ (Fig. 4b). As a result, SHC exhibits a maximum with 
respect to μ (Fig. 4b). Figure 4c shows the nature of the variation of SHC with respect to μ for different values of 
the impurity strength (v). As expected, with an increase in impurity strength, SHC decreases.

In Fig. 6, we present the behaviour of SHC as a function of αR with different values of SMT parameters. Fig-
ure 6a describes the behavior of SHC versus RSOI strength αR . One can see that at βD = 0 , SHC is zero up to a 
certain value of αR . For βD  = 0, SHC has a finite value finite at αR = 0 . This shows that the difference in the spin 
states is minimum at smaller value of αR for βD = 0, while for finite βD , there is an appreciable difference in the 
spin states that causes a larger spin current. As αR increases, RSOI counters the effect of DSOI and concomitantly, 
SHC decreases. SHC becomes zero when αR becomes equal to βD . As αR increases further, SHC increases with 
αR (Fig. 6a). With the increase in αR beyond αR = βD , the spin up and down bands move apart, causing a higher 
spin imbalance and hence a rise in SHC. As αR is increased further, SHC exhibits an asymmetric peak at a critical 
αR , and then decreases with further increase in αR and finally reaches a constant saturation value (Fig. 6b). This 
peak mentioned above gives the maximum value of SHC for the system. As βD is increased, the spin imbalance 
decreases leading to a decrease in spin current. Figure 6c displays the behaviour of SHC as a function of αR for a 
few values of µ . The plot exhibits a similar nature as in Fig. 6a. SHC increases with the increase in µ , which is also 
evident from Fig. 4. In Fig. 6d we examine the behaviour of SHC versus αR for different values of the impurity 
strength. The figure shows that as the impurity strength increases, SHC decreases. In Fig. 7, SHC is considered 
as a function of impurity strength for various system parameters. When the strength of impurity scattering coef-
ficient is very small, SHC remains essentially unaffected by impurity. As the impurity coupling increases, one 
can observe a gradual decrease in SHC. Figure 7a,b shows that with an increase in DSOI strength and chemical 
potential, SHC has a lower value and higher decreasing rate.

Finally In the last segment, we present our results for the spin-Hall angle (SHA) which is measured by the 
ratio: SHC/LCC. The effect of RSOI, DSOI and the impurity on LCC was thoroughly investigated by us in our 
earlier works34,35. Figure 8a,b shows the plot of SHA versus αR for different values of the chemical potential and 
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Figure 3.   (a) Energy dispersion along the x-direction in k space. (b) For different values of αR and βD . (Plotted 
using octave − 6.3.0).
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impurity strength. SHC increase with increase in chemical potential while decrease with increase in impurity 
strength similar to SHC. And for higher value of Rashba strength once again one can observe a peak-like struc-
ture, which is maximum for a lower value of βD (Fig. 8c).

In Fig. 9, we show the three-dimensional and contour plots for the ratio of the spin Hall to charge conduc-
tivities as a function of αR and βD . As anticipated, when αR and βD are small, the ratio of SHC to LCC is almost 
zero. As we increase any one of the SOI strengths (keeping the other constant), the ratios initially increase but 
beyond a critical value of αR or βD  they decrase. This gives rise to peak structures in SHC/LCC. When αR and βD 
are both increased together, the ratio remains zero, and as one becomes more effective than the other, we witness 
a measurable value. The Rashba strength can be adjusted up to 50% by varying the gate voltage41–43. Figure 10 
shows the SHC/LCC ratio for Indium arsenide for which αR and βD can take values in the range: 0. 07–1.6 meV 
and µ can be in the range: 20–50 meV39,44. It can be seen that when impurity strength is low, SHA increases. This 
is because at low impurity concentration, SHC remains constant (Fig. 7) while LCC decreases35. From Fig. 10, 
one can see that for InAs, SHA can be in the range: 0.00001–0.00015.

Figure 4.   SHC versus µ/t for different values of: (a, b) β ′
D , (c) v′ . (Plotted using octave − 6.3.0).

Figure 5.   Density of state (ρ) vs µ/t . (Plotted using octave − 6.3.0).
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Conclusion
We have explored the nature of spin-torque-induced transport properties of a two-dimensional tight-binding 
system in the presence of Rashba and Dresselhaus spin–orbit interactions and random static impurities. In the 
absence of impurity scattering, the system admits an exact solution with two degenerate electron states. We have 
treated the electron-impurity scattering by the Matsubara Green function technique using the diagrammatic 
perturbation theory. The randomness of the impurities has been taken into account by performing configuration 
averaging. Finally, the Kubo formalism is used to calculate spin-Hall conductivity.

Our results suggest that as a function of the chemical potential, the spin-Hall conductivity increases mono-
tonically for the smaller values has a peak structure for higher values. The peak values of these quantities, however 

Figure 6.   SHC versus  αR/t for different value of: (a, b) βD/t , (c) µ/t and (d) v/t . (Plotted using octave − 6.3.0).

Figure 7.   SHC versus  v/t for distinct: (a) βD/t,and (b) µ/t values. (Plotted using octave − 6.4.0).
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decrease with the increase in the Dresselhaus coupling, as the DSOI broadens the bands. Similar nature is also 
observed with respect to the RSOI coefficient.

We have also studied the effect of the electron-impurity interaction strength v on SHC in the presence of 
both the RSOI and DSOI effects and observed that for low impurity strength, SHC remains almost negligible, 
but with an increase in the impurity strength, SHC decreases rapidly and the rate of decrease depends on the 
difference between αR and βD.

Finally, the spin-Hall angle has been calculated and it is shown that when one of the two spin–orbit interac-
tions dominates, the spin-Hall angle increases and it vanishes whenever the Rashba and Dresselhaus interactions 
become equal. As an example, the variation of SHA as a function of the impurity coupling strength is shown 
for InAs.

Figure 8.   SHA versus RSOI coefficient for different value of: (a) µ/t , (b) v/t and (c) βD/t . (Plotted using 
octave − 6.3.0).

Figure 9.   (a) SHC/LCC as a function of αR/t and βD/t . (b) Contour plot of SHC/LCC in the (αR − βD)− 
plane for μ/t = 0.05 and v/t = 0.05. (Plotted using octave − 6.3.0).
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Figure 10.   SHC/LCC as a function of v . (Plotted using octave − 6.3.0).
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