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Transmissible gastroenteritis virus 
infection decreases arginine uptake 
by downregulating CAT‑1 expression
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Abstract 

Transmissible gastroenteritis virus (TGEV) is a coronavirus that causes severe diarrhea in suckling piglets. TGEV primar-
ily targets and infects porcine intestinal epithelial cells, which play an important role in nutrient absorption. However, 
the effects of TGEV infection on nutrient absorption in swine have not yet been investigated. In this study, we evalu-
ated the impact of TGEV infection on arginine uptake using the porcine small intestinal epithelial cell line IPEC-J2 
as a model system. High performance liquid chromatography (HPLC) analyses showed that TGEV infection leads to 
reduced arginine uptake at 48 hours post-infection (hpi). Expression of cationic amino acid transporter 1 (CAT-1) was 
attenuated as well. TGEV infection induced activation of phospho-protein kinase C α (p-PKC α), phospho-epidermal 
growth factor receptor (p-EGFR), and enhanced the expression of caveolin-1, all of which appear to be involved in 
down-regulating arginine uptake and CAT-1 expression. These results illuminate the relationship between TGEV infec-
tion and nutrient absorption, and further our understanding of the mechanisms of TGEV infection.
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Introduction
Transmissible gastroenteritis (TGE) is a highly con-
tagious enteric disease of pigs caused by TGE virus 
(TGEV), with mortality rates as high as 100% in piglets 
less than 2 weeks old [1, 2]. TGEV infects the epithelial 
cells of the intestinal tract, resulting in villus atrophy 
and impaired absorption of nutrition [3, 4]. The porcine 
small intestinal epithelial cell line IPEC-J2 is an intestinal 
columnar epithelial cell line that was isolated from the 
mid-jejunum of a neonatal piglet [5]. IPEC-J2 cells are 
used for in vitro investigations of swine viruses and nutri-
tion [6, 7].

Arginine, an amino acid that is essential in neonates, is 
synthesized by enterocytes [8, 9]. Arginine is one of the 
most metabolically versatile amino acids, and serves as a 
precursor for synthesis of protein, nitric oxide, creatine, 
polyamines, agmatine, and urea, which mediate impor-
tant regulatory functions that affect nutrient metabolism 

and immune responses [10–13]. The cellular uptake of 
arginine is mediated primarily by proteins in the cati-
onic amino acid transporter (CAT) family [14]. Abun-
dant evidence indicates that this family is important for 
maintaining arginine homeostasis and overall protein 
nutrition in the body [15–17].

The molecular mechanism underlying CAT-1 expres-
sion is associated with the activation of the intracellular 
signal transduction molecule protein kinase C (PKC). 
PKC is located in close proximity to CAT-1 in the caveola 
and regulates CAT-1 activity [18, 19]. PKC has been iden-
tified as a family of protein kinase enzymes that partici-
pate in many cellular processes, and classical isoforms of 
PKC are involved in the regulation of the CAT-1 trans-
porter [20, 21]. The role of PKC-α in the regulation of 
arginine transport has been investigated in different cell 
types [22, 23].

Intestinal arginine transport is regulated by local as 
well as systemic factors such as growth factors, differen-
tiation states, and luminal substrates [24]. Several growth 
factors, including epidermal growth factor (EGF) and 
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transforming growth factor α (TGF-α), elicit their func-
tions by binding to EGF receptors (EGFR) and instigating 
an intracellular PKC signal transduction cascade [25, 26]. 
EGFR is a transmembrane protein and is expressed on 
the surface of many different cell types. Previous studies 
in our laboratory have shown that EGFR promotes TGEV 
entry into intestinal epithelial cells by regulating cofilin 
activity, and that both clathrin- and caveolin-mediated 
endocytosis are important for TGEV and EGFR internali-
zation [27, 28].

Most studies have focused on the pathogenesis of 
TGEV infection. However, little is known about the 
impact of TGEV infection on nutrient uptake from the 
small intestine, especially for amino acids. We therefore 
evaluated TGEV infection on arginine uptake and the 
signaling pathways involved in arginine uptake in IPEC-
J2 cells.

Materials and methods
Cell lines
IPEC-J2 cells were purchased from the DSMZ (Ger-
many), and HEK293T cells were purchased from the 
American Type Culture Collection (ATCC). Both cell 
lines were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM, Gibco) with 10% fetal bovine serum 
(FBS, Gibco), using an incubator maintained at 37  °C in 
5% CO2.

Viral infection
TGEV strain SHXB (GenBank: KP202848.1) was pro-
vided by the Jiangsu Academy of Agricultural Sciences 
(JAAS, Jiangsu Province, China) [29]. For experimen-
tal assays, cells were infected with TGEV at a multiplic-
ity of infection (MOI) of 3 for 1 h at 37 °C in serum-free 
medium and washed with phosphate-buffered saline 
(PBS, pH 7.2) three times to remove unbound virus. Cells 
were then cultured in maintenance medium (DMEM 
containing 2% FBS).

RNA extraction and real‑time PCR analysis
Total RNA was extracted from TGEV-infected IPEC-J2 
cells using TRIzol (Invitrogen), according to the manu-
facturer’s instructions. cDNA was synthesized by using 
HiScript Q RT SuperMix for qPCR (Vazyme, China), 
according to manufacturer’s instructions. Gene expres-
sion was measured via quantitative RT-PCR using a 
TaKaRa SYBR Green qPCR Kit (TaKaRa, Japan). Prim-
ers are shown in Table 1. Quantitative real-time PCR was 
performed with an Applied Biosystems 7500 real-time 
PCR System. Data were normalized against β-actin lev-
els and are expressed as fold differences between control 
and TGEV-infected cells according to the 2−∆∆CT method 
[30].

Western blotting
Protein was obtained from IPEC-J2 cells at the indi-
cated time points post-infection using ice-cold radioim-
munoprecipitation assay (RIPA) lysis buffer containing 
10  mM phenylmethylsulfonyl fluoride (PMSF). Total 
protein concentrations were determined using a bicin-
choninic acid (BCA) protein assay kit (Thermo Scien-
tific, USA). Cell lysates that contained equal amounts 
of protein were denatured, subjected to 10% sodium 
dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE), and transferred to polyvinylidene dif-
luoride (PVDF) membranes (Millipore, USA). Mem-
branes were blocked with Tris-buffered saline (TBS) 
containing 5% nonfat dry milk for 2  h, and incubated 
with the indicated primary antibodies at 4 °C overnight. 
The following antibodies were used in this study: phos-
pho-EGF receptor rabbit mAb (CST, USA); anti-CAT1 
(Abcam, UK); caveolin-1 antibody, phospho-PKC α 
antibody, and β-tubulin antibody (EnoGene Biotech, 
USA). The next day, membranes were washed three 
times with TBST and incubated with HRP-conjugated 
secondary antibodies for 2 h at room temperature. The 
membranes were then washed with TBST for 5  min 
four times. Protein band detection was performed 
using ECL reagents (Thermo Scientific, USA).

Lentivirus‑mediated RNA interference (RNAi) depletion 
experiments
pLVX-shRNA is an HIV-1-based lentiviral expres-
sion vector designed to express a small hairpin RNA 
(shRNA) for RNA interference (RNAi) studies (Clon-
tech, USA). The target sequences for shRNA were 
designed from the following sequences: NM_214007 
(porcine EGFR), NM_001012613.1 (porcine CAT-1), 
and NM_214438 (porcine caveolin-1). HEK293T cells 
were transfected with 1 μg of specific expression plas-
mid per 106 cells using the X-tremeGENE HP DNA 
Transfection Reagent (Roche, Switzerland), diluted 
in Opti-MEM (Invitrogen) in T-25 cell culture flasks. 
Lentiviral particles (MOI = 1) were subsequently 
added to IPEC-J2 cells and gently mixed.

Table 1  Primers used for RT-PCR 

Gene Sequence (5′–3′) Size (bp)

β-Actin F: AGA​TCA​AGA​TCA​TCG​CGC​CT 171

R: ATG​CAA​CTA​ACA​GTC​CGC​CT

CAT-1 F: AGA​CGG​GCT​GCT​GTT​TAA​GT 131

R: ACC​GTT​AAA​ATA​CCG​GCG​TG

CAT-2 F: TGG​ATG​GCA​CTT​GGT​TTC​CTG​ 91

R: GCA​GGT​GAA​AGG​CCT​CGT​AT
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Arginine detection in cell culture medium using HPLC [31]
To measure arginine uptake by IPEC-J2 cells, 100  μL 
of medium was deproteinated with 200  μL of trichlo-
roacetate using HPLC. The medium was vortexed and 
centrifuged at 13  000  rpm for 15  min at 4  °C. Super-
natant was recovered using a pipette and purified by 
passage through a 0.22  μm filter. The derivatization 
procedure was a modification of the method described 
by Elkin et al. [32]. Next 50 μL of the derivatizing rea-
gent acetonitrile-TEA-PITC (8:1:1:1 [v/v]) was added, 
and the reaction was incubated at room temperature 
for 60  min. A mixture of ddH2O–Hexane (1  mL and 
0.5  mL) was added and incubated for 10  min. Finally 
the solvents were removed under a nitrogen stream, 
and the tube was sealed and stored at 4  °C pending 
analysis. Chromatography was carried out using a gra-
dient elution at a constant temperature of 40 °C. Eluant 
A was an aqueous buffer prepared by adding 0.1 mol/L 
sodium acetate solution; Eluant B was acetonitrile. The 
gradient program is shown in Table 2. Arginine uptake 
was calculated as follows: arginine uptake (mg/L per 
106 cells) = (arginine concentration of the control 
group − arginine concentration of the experimental 
group)/cell number.

Statistical analysis
All results are expressed as the means ± standard devia-
tions (SD) from three independent experiments. Sig-
nificant differences between control and experimental 
groups were analyzed using Student’s t-test. Difference 
were considered significant at *0.01 < p < 0.05, **p < 0.01.

Results
TGEV infection decreases arginine uptake
The uptake of arginine was quantified by HPLC after 
calibrating the assay using arginine standards (Figure 1A) 
and preparing a standard curve (data not shown). TGEV 
infection had no effect on the uptake of arginine at 12 h 
and 24 h. Arginine uptake began to decrease at 36 h, and 
was significantly lower at 48 h and 60 h (Figure 1B).

TGEV infection reduces CAT‑1 expression
Arginine uptake is mediated by the CAT family of 
transporters. mRNA levels of CAT-1 and CAT-2 were 
quantified by RT-PCR. Expression of CAT-1 markedly 
decreased at 48 h and 60 h, while mRNA levels of CAT-2 
did not change significantly (Figures 2A and B). Expres-
sion of CAT-1 protein was consistent with CAT-1 mRNA 
expression (Figure 2C).

PKC α is involved in arginine uptake
PKC α is involved in the regulation of CAT-1 trans-
port activity [33]. Our results showed the activation of 
p-PKC α after TGEV infection at 48  h (Figure  3A). To 
further investigate whether PKC α was responsible for 
CAT-1 expression and arginine uptake, we used phor-
bol 12-myristate 13-acetate (PMA), a classical activator 
of PKC α. TGEV-infected IPEC-J2 cells that were treated 
with PMA for 12  h exhibited significant activation of 
p-PKC α, and also a noticeable decrease of CAT-1 (Fig-
ure  3B). The uptake of arginine was also dramatically 
reduced after treatment with PMA (Figure 3C).

Table 2  Gradient program employed for the separation of PTC-amino acids 

Time (min) 0 10 20 21 34 35 43 44 49 50 53

A% (v/v) 95 91 89 79 77 75 68 20 10 95 95

B% (v/v) 5 9 11 21 23 25 32 80 90 5 5

Figure 1  TGEV infection decreases arginine uptake. A HPLC analysis of a purified sample of arginine used as a standard. B IPEC-J2 cells were 
incubated with TGEV (MOI = 3), and culture supernatants were collected for arginine analysis at the indicated time points. Results are expressed as 
means ± SDs of three independent experiments. Differences were considered significant at *0.01 < p < 0.05, **p < 0.01.
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EGFR regulates CAT‑1 and arginine uptake
PKC acts as the downstream target of EGFR signaling, 
and can be regulated by EGFR [34, 35]. We therefore 
analyzed the expression level of p-EGFR. As expected, 

TGEV infection markedly induced activation of p-EGFR 
(Figure 4A). AG1478, an inhibitor of EGFR, was used to 
determine whether EGFR was involved in the process. 
As shown in Figure  4B, AG1478 showed a decrease of 

Figure 2  TGEV infection decreases expression of CAT-1. A, B Relative mRNA expression for CAT-1 and CAT-2, determined using RT-PCR. C 
Western blot analysis of CAT-1 protein levels. Differences were considered significant at *0.01 < p < 0.05, **p < 0.01.

Figure 3  TGEV infection activates p-PKC α and PKC α influences arginine uptake. A Protein levels of p-PKC α were analyzed by Western blot 
at 48 hpi. B Cells pre-infected with TGEV were treated with PBS, DMSO (100 nM), or PMA (100 nM) for 12 h. Expression of p-PKC α and CAT-1 was 
analyzed. C Arginine uptake was assayed. Differences were considered significant at *0.01 < p < 0.05, **p < 0.01.
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p-EGFR, while CAT-1 expression was promoted. Moreo-
ver, arginine uptake was increased after TGEV-infected 
cells were treated with AG1478 (Figure 4C).

To study the relationship between EGFR and CAT-1, 
we manipulated EGFR and CAT-1 expression in knock-
down and overexpression experiments. EGFR-targeting 

Figure 4  TGEV infection decreases arginine uptake via activated p-EGFR. A Western blot analysis was performed to determine levels of 
p-EGFR at 48 hpi. B TGEV-infected cells were treated with PBS, DMSO (100 nM), or AG1478 (100 nM) for 12 h, and then were analyzed to determine 
protein expression levels of p-EGFR and CAT-1. C Arginine concentrations in the culture medium from each group were assayed. D Cells were 
transfected with EGFR specific shRNAs or the shRNA control for 48 h. p-EGFR and CAT-1 expression were evaluated by Western blot analysis. E 
Culture medium from each group was assayed to determine arginine uptake. F Cells were transfected with a plvx-EGFR shRNA or the plvx control, 
and analyzed for p-EGFR and CAT-1 protein levels by Western blot. G The uptake of arginine was assayed. H Cells were transfected with three CAT-1 
specific shRNAs or the shRNA control, and analyzed for CAT-1 and p-EGFR protein levels by Western blot. I Cells were transfected with a plvx-CAT-1 
shRNA or the plvx control for 48 h, and analyzed for CAT-1 and p-EGFR protein expression by Western blot. Differences were considered significant 
at *0.01 < p < 0.05, **p < 0.01.
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shRNAs significantly inhibited p-EGFR expression, 
but expression of CAT-1 increased (Figure  4D). Argi-
nine uptake also increased after transfecting with 
EGFR-targeting shRNAs (Figure  4E). In contrast, cells 
transfected with plvx-EGFR had higher p-EGFR expres-
sion, lower CAT-1 expression, and decreased arginine 
uptake (Figures  4F  and G). TGEV-infected cells trans-
fected with CAT-1 specific shRNAs exhibited reduced 
CAT-1 expression but no effects on EGFR (Figure 4H). 
Transfection with plvx-CAT-1 resulted in higher levels 
of CAT-1 but left EGFR unchanged (Figure  4I). Taken 

together, these results indicated that TGEV infection 
activates p-EGFR, which modulates CAT-1 and thereby 
affects arginine uptake.

Caveolin‑1 participates in arginine uptake
Figure  5A shows that TGEV infection increased caveo-
lin-1 expression. Caveolin-1 knockout suppressed the 
expression of caveolin-1, while increasing CAT-1 pro-
tein expression and arginine uptake (Figures 5B and C). 
Transfection with CAT-1-targeting shRNAs resulted 
in higher caveolin-1 protein expression than in control 

Figure 5  Caveolin-1 is involved in arginine uptake during TGEV infection. A Western blot analysis was performed to determine the levels 
of caveolin-1 protein 48 h after TGEV infection. B Cells were transfected with three caveolin-1 specific shRNAs or the shRNA control. Cell extracts 
were then subjected to Western blot analysis to measure expression of caveolin-1 and CAT-1. C The uptake of arginine was assayed. D Cells were 
transfected with three CAT-1 specific shRNAs or the shRNA control. Western blot analysis was used to measure expression of CAT-1 and caveolin-1. 
E Cells were transfected with a plvx-CAT-1 shRNA or the plvx control. Western blot analysis was used to measure expression of CAT-1 and caveolin-1 
after TGEV infection. Differences were considered significant at *0.01 < p < 0.05, **p < 0.01.
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cells (Figure 5D), and plvx-CAT-1 had the opposite effect 
(Figure 5E).

A signaling cascade regulates arginine uptake during TGEV 
infection
Finally, we explored the relationships between EGFR, 
PKC α, caveolin-1, and CAT-1 to probe their behavior as 
a signaling pathway. As shown in Figure  6A, treatment 
of cells with EGFR inhibitor (AG1478) resulted in inhi-
bition of p-EGFR, p-PKC α, and decreased caveolin-1 
protein expression, and higher CAT-1 expression. PMA 
(a PKC α activator) had no influence on p-EGFR, while it 
increased p-PKC α and caveolin-1, and decreased CAT-1 
expression.

Discussion
Arginine is an essential amino acid in mammals and plays 
an important role in tissue growth. In the present study, 
we showed that TGEV infection decreased the uptake of 
arginine in IPEC-J2 cells. Although four CAT proteins 

(CAT-1, CAT-2, CAT-3, and CAT-4) mediate arginine 
transport, only CAT-1 and CAT-2 are expressed in por-
cine intestinal epithelial cells. It has been demonstrated 
that CAT-1 is a higher-affinity carrier for cationic amino 
acids, and has more pronounced trans stimulation com-
pared with CAT-2 [8, 36]. Our experiments showed that 
expression of CAT-1 was consistent with the trends of 
arginine uptake, while CAT-2 mRNA levels remained 
unchanged. These results suggest that CAT-1 may play 
an important role in mediating arginine uptake during 
TGEV infection.

Previous studies demonstrated that PKC α acts as a 
regulator of CAT-1 transporter activity in cells [21]. PKC 
α activity is controlled by phosphorylation, and activa-
tion of PKC α leads to down-regulation of CAT-1 at the 
cell surface [37]. Treatment with PMA, a PKC stimulant, 
decreased the uptake of arginine and the expression of 
CAT-1. Consistent with results reported by Schwartz 
et  al., the modulation of CAT-1 was associated with 

Figure 6  TGEV infection decreases arginine uptake. A Cells were treated with PBS, DMSO (100 nM), AG1478 (100 nM) or PMA (100 nM) at 37 °C 
for 12 h, and Western blot analysis was then used to measure expression of p-EGFR, p-PKC α, caveolin-1 and CAT-1. Differences were considered 
significant at *0.01 < p < 0.05, **p < 0.01. B Proposed model showing signaling pathway that regulates arginine uptake during TGEV infection. TGEV 
infection activates the EGFR-PKC α-caveolin-1 signaling pathway, suppresses CAT-1 expression, and decreases arginine uptake.
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p-PKC α [38]. We therefore conclude that p-PKC α influ-
ences the transport activity of CAT-1.

EGFR belongs to the receptor tyrosine kinase (RTK) 
family and is activated by many viruses [27, 39]. Acti-
vated EGFR triggers numerous downstream signaling 
pathways, including PKC-mediated cascades, and acti-
vates Ras, which affects various MAP kinases [40]. Hu 
et  al. demonstrated that EGFR influences TGEV entry, 
and plays a synergistic role with APN early in TGEV 
infection. TGEV acts via the EGFR-PI3  K-Rac1/Cdc42-
PAK-LIMK signaling pathway to regulate coflin activity 
and F-actin arrangement early in infection, and promotes 
TGEV entry [27]. Further research showed EGFR acts as 
a co-factor for TGEV entry, and TGEV S1 protein is able 
to bind to EGFR [28]. Moreover, EGFR is also involve 
in the regulation of glucose uptake during TGEV infec-
tion [41]. Our data provide evidence that EGFR regulates 
arginine uptake by functioning as a signal molecule in 
an EGFR-PKC α-caveolin-1-CAT-1 signaling pathway in 
TGEV-infected cells (Figure  6B). Our model includes a 
previously unreported signaling pathway that links EGFR 
with CAT-1. However, it is not yet known how EGFR 
passes a signal to CAT-1, or if other as yet unidentified 
signaling molecules regulate CAT-1.

Both PKC and CAT-1 are located in the caveola, sug-
gesting that caveolin-1 may be involved in arginine 
uptake. Caveolin-1 is the main protein component of 
caveolae, and is necessary for caveolae formation [42]. 
CAT-1 and caveolin-1 were reported to co-localize on 
the surface of cells. Our results showed that increased 
caveolin-1 levels are involved in the regulation of CAT-
1. A possible explanation is that TGEV infection pro-
motes CAT-1 clustering to caveolae islands, resulting in 
co-location.

In conclusion, we found that TGEV infection induces 
activation of p-EGFR and p-PKC α, enhances the expres-
sion of caveolin-1, attenuates CAT-1 expression, and 
decreases arginine uptake in IPEC-J2 cells. This study 
furthers our understanding of the mechanisms of TGEV 
infection, and is the first description of TGEV infection 
and amino acid uptake in vitro.
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