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Nespolo et al. [1] provided a recompilation of published data on energy use
during mammalian hibernation based on over-winter decreases in body
mass, which led them to three main conclusions: (i) daily energy expenditure
during hibernation (DEEHIB) scales directly or isometrically with body mass,
(ii) energy savings during hibernation become zero compared to remaining at
basal metabolic rate (BMR) at body masses above 75 kg (and above 155 kg com-
pared to DEE); thus there would be no or little energy savings in a bear-sized
hibernator, and (iii) and that the isometric scaling of DEEHIB is due to an
inherent per cell minimum metabolism. In our opinion, there are issues with
how these data were selected and compiled. The most important problem is
that DEEHIB was not compared to empirical BMR data for each species, but
rather drawn from general allometric relationships. Use of species-specific
measures of BMR changes the body mass at which regression lines cross and
thus where no savings from hibernation can be expected from 75 kg to over
2250 kg. Besides, empirical data have demonstrated that hibernating black
bears (Ursus americanus) (approx. 100 kg) reduce minimum metabolic rate
during hibernation to 25% of BMR [2,3]. Thus, bears indeed hibernate in the
woods to save energy.

We also suggest that isometric scaling of DEEHIB, shown previously by
Heldmaier et al. [4], has an alternative or complementary explanation to mini-
mum cellular metabolism: storage of fat and other substrates used as energy
sources during hibernation is limited by body volume and scales isometrically
with body mass, and thus DEEHIB will also scale near isometrically with body
mass. Since mass-specific BMR increases exponentially with decreasing body
mass in mammals, energy savings during hibernation will also increase expo-
nentially as body mass decreases, and this is effected by active suppression
of metabolism and decreasing body temperature.

In addition, referring to the original article’s table S1, relatively few data are
available at high body masses, and the data of the larger species that are com-
pared deserve extra attention. Thus, we replaced data from the American
badgers (Taxidea taxus), which only have sporadic bouts of daily torpor [5],
with DEEHIB data derived from weight loss in European badgers (Meles
Meles) that show a pattern of decreased body temperature resembling that of
black bears [6] and are considered to be hibernators. The metabolic rate
saving in black bears listed at the bottom of table S1 is quoted incorrectly
and should be a 75% saving with respect to minimum metabolic rate [2].
DEEHIB for black bears was derived from weight loss of both pregnant and
non-pregnant black bears in mid-hibernation [7] and should be limited to the
non-pregnant bears since there is mass transfer from the sow to cubs during
lactation, and females maintain euthermic levels of body temperatures during
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Figure 1. (a) Logarithm of metabolic rates (MR; kJ d−1) versus logarithm of BM (g). Blue squares: corrected log DEEHIB data as described in the text; orange
triangles: log BMR data for the same species derived from appendix 1 in [13] except for Dromiciops gliroides [14], U. parryii [15], Marmota monax [16], Tachyglossus
aculeatus [17], U. americanus [2], Marmota marmota [18], Hipposideros terasensis [19] and M. meles [20]; dotted line is the allometric estimate for log BMR based
on White & Seymour [21] used in the original article, dashed line estimate for log DEEHIB of the original article [1]. (b) Same data and regression lines expressed as
kJ d−1 kg−1 on linear y-axis versus BM (g) expressed on logarithmic x-axis, showing the exponential increase in mass specific BMR and need to save energy with
decreasing body mass below 2268 kg, while mass-specific DEEHIB remains constant. (Online version in colour.)
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the gestation period [2,8,9], affecting metabolic rate. The
DEEHIB from brown bears by Hilderbrand et al. [10] also
included pregnant females and was determined over a
much longer period of time, from before immergence in Octo-
ber until after emergence in mid-April to early June. Thus,
these data also included weight loss during less well-defined
transitions in and out of hibernation, when the bears possibly
were in a non-hibernating state and females were nursing
cubs. Also, data on overwinter weight loss suggesting mini-
mal changes in arctic ground squirrels (Urocitellus parryii)
are incorrect since they included that from reproductive
males, which after ending hibernation gain weight by
eating cached food while they develop their testes before
they emerge in spring and are weighed [11,12]. Finally,
there is no rationale for subtracting interbout arousals from
hibernation as was indicated in S1 unless the purpose is to
assess minimum metabolism, and then minimum metabolic
rate data should be used rather than DEEHIB. We redefine
DEEHIB to not include arousals using data in the DEEHIB

total column of the original table S1 as the starting point to
represent the revised DEEHIB.

As shown in figure 1, these changes to the data result in a
change in exponent of the logarithmic regression of DEEHIB

versus body mass, going from a slightly positive exponent
(1.022) to slightly negative exponent (0.981) and a better cor-
relation (R2 = 0.977 versus 0.965). At a body mass of 75 kg, it
contributes to a decrease in DEEHIB of 22%. The main pro-
blem in the original article [1], however, is that it uses
inaccurate estimates of BMR by use of White & Seymore’s
[21] allometric equation, which is based on metabolic rate
data that have been temperature compensated to a body
temperature of 36.2°C, with a Q10 of 3.0 (the dotted line in
figure 1). This compensation was aimed at comparing a
very wide group of mammals over a large range of body
masses, but does not represent the actual predicted metabolic
rate at normal body temperature. Black bears have a consider-
ably higher body temperature, at 37.8°C, and have a
relatively high BMR of 0.276 ml/(g h) [2], and are thus very
far off from the allometry based estimate of 0.111 ml/(g h).
If empirically measured BMR is used where available instead
of allometrically predicted data, the resulting log–log
regression for BMR for the included species intersects with
DEEHIB at a body mass of 2268 kg, much higher than stated
in the original article (figure 1). Speakman & Król’s [22]
allometric estimates for DEE are also likely too low at
higher body mass for the species included as they become
less than our BMR estimates at body masses beyond
1517 kg. A doubly labelled water study in polar bears [23]
found a DEE that is twice the Speakman & Krol [22] estimate
at the average body mass of 182 kg. Comparisons of
both BMR and DEE to DEEHIB clearly show that the discus-
sion of the original article of why bears hibernate is not
supported: hibernating bears need to decrease DEEHIB well
below BMR to make their fat reserves last through hiber-
nation, even when not pregnant and lactating, thus the
original statement of the article should not be standing.
Data accessibility. A spreadsheet with the data and sources for figure 1 is
available in the Dryad Digital Repository: https://doi.org/10.5061/
dryad.msbcc2g1w [24].
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