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Abstract: Significant efforts in wet and dry laboratories are devoted to resolving molecular structures.
In particular, computational methods can now compute thousands of tertiary structures that populate
the structure space of a protein molecule of interest. These advances are now allowing us to
turn our attention to analysis methodologies that are able to organize the computed structures
in order to highlight functionally relevant structural states. In this paper, we propose a methodology
that leverages community detection methods, designed originally to detect communities in social
networks, to organize computationally probed protein structure spaces. We report a principled
comparison of such methods along several metrics on proteins of diverse folds and lengths. We
present a rigorous evaluation in the context of decoy selection in template-free protein structure
prediction. The results make the case that network-based community detection methods warrant
further investigation to advance analysis of protein structure spaces for automated selection of
functionally relevant structures.

Keywords: protein structure space; nearest-neighbor graph; community detection; decoy selection;
template-free protein structure prediction

1. Introduction

The (tertiary) structure which the peptide-bonded amino acids pack in three-dimensional (3d)
space in a protein molecule is now recognized to be central to the biological activities of a protein in the
living cell [1]. Due to this recognition, significant efforts in molecular biology are devoted to modeling
a protein’s biologically active tertiary structure(s), also known as native structure(s). The plurality
indicates that the native structure may often not be unique. The multiplicity of native structures may
be harnessed by a protein to participate in several processes in the cell [2].

While great progress has been made in the wet-laboratory on protein (tertiary) structure
determination (PSP), due to labor and cost demands, such efforts cannot keep up with the
rapid advances in high-throughput sequencing technologies [3]. Computational methods offer a
complementary approach. The most visible computational efforts are those under the umbrella
of template-free PSP [4–7]. Provided a protein amino-acid sequence, these methods seek tertiary
structures that are local minima of some selected energy/cost function, using this function as an
indicator of biological activity. These functions are known to be inherently inaccurate; that is, structures
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that they report in the deepest local minimum they find may not be native, and known native structures
may not reside in local minima of the employed function. Therefore, in addition to improving the
accuracy of such functions, another central goal in template-free PSP is to generate/compute many
structures, and then to employ additional criteria for discrimination of the native structure(s) among
the ones computed.

The contribution of the work presented in this paper is on the recognition goal, also known as
the decoy selection problem; that is, given a computed set/ensemble of tertiary structures (to which
one refers as decoys, as they hide among them the active structures), analyze this set to assist with
recognition of the native structure(s). As our review of related work in Section 1.1 makes the case,
decoy selection is a very challenging problem [8,9] for several reasons. One such reason is that software
and hardware advances have resulted in an explosion of tertiary structure data. Template-free PSP
methods can now generate dozens (and even hundreds) of thousands of tertiary protein structures for
a given protein sequence in a matter of a few days, mainly by leveraging embarrassing parallelism
in supercomputer architectures [3]. There is a growing need for methods that can uncover the
organization of the protein structure space probed in silico by template-free PSP methods. Such
organization can reveal, for instance, the grouping of structures in different thermodynamically stable
states (corresponding to deep and broad basins/minima) and semi-stable states (corresponding to
shallower basins).

In this paper, rather than designing criteria by which to analyze a computed tertiary structure,
we propose techniques to elucidate the organization of the overall structure data provided by a
template-free PSP method. For the purpose of evaluation, we focus here on tertiary, all-atom structure
data obtained via the popular Rosetta ab-initio protocol, which represents a state-of-the-art and
representative template-free PSP. Our approach is inspired by graph-based community detection
of social and friendship networks. In a preliminary, proof-of-concept presentation of this approach
in [10], we show how one can leverage a graph-based organization of tertiary structures to identify
with community detection methods. In this paper, we extend and mature this work, and additionally
incorporate the notion of energy in the construction of the network of computed structures. In addition
to providing a principled evaluation of state-of-the-art, representative community detection methods
for their ability to identify communities, we evaluate the utility of identifying communities for decoy
selection. Among other results, we show that incorporation of energy in the construction of the
network provides clear improvements for decoy selection.

The rest of this paper is organized as follows. Section 1.1 provides a summary of related work
on decoy selection, followed by a detailed presentation of the results in Section 2 and a discussion in
Section 3. The proposed methodology is described in Section 4.

1.1. Related Work

Research on decoy selection is regularly evaluated in the Critical Assessment of protein Structure
Prediction (CASP) series of community-wide experiments [11]. Current decoy selection methods
can be grouped into single-model, bag-of-models, quasi-single methods, and machine learning (ML)
methods.

Single-model methods assess the quality of one tertiary structure at a time [12,13]. They do so by
designing a physics- or knowledge-based energy/scoring function. Statistical functions are shown
to be better able to distinguish native from non-natives structures [14]. In principle, all single-model
methods employ a score threshold to determine which decoys pass the threshold and so can be deemed
to be native-like. This approach is unreliable, as the threshold misses native structures or allows the
inclusion of too many non-native ones [15].

In response, another approach is to ignore energy and instead cluster decoys by structural
similarity [16,17]. The highest-populated clusters are offered as prediction (likely to contain native-like
structures). Cluster-based decoy selection implements the bag-of-models approach that operates under
the premise that decoys are randomly distributed around the “true answer,” which a consensus-seeking
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method ought to reveal. This may not be a valid assumption. Template-free methods employ
heuristics that bias decoy generation away from uniform sampling of the structure space. Moreover,
employed energy/scoring functions that are used to guide the sampling contain inherent biases that
often invalidate entire regions of the structure space space. Cluster-based methods fail to pick up
exceptionally good decoys and are challenged on hard targets where decoys can be very different from
the known native structure(s), highly dissimilar, and sparsely sampled [11].

Quasi single-model methods combine strategies from single-model and bag-of-models methods,
selecting first some high-quality structures to compare with the rest of the decoys [18]. These methods
outperform single-model methods and consensus-seeking methods [19,20]. Recently, several machine
learning (ML) models such as Support Vector Machines (SVM) [21], Neural Network [22], and Random
Forest [23] have also shown to be competitive in decoy selection. Ensemble learning techniques
outperform SVM learning [24] with or without statistical features. ML-based decoy selection represents
a promising new thread of research in decoy selection.

2. Results

Our evaluation focuses on 10 target proteins of different folds and lengths (number of amino
acids), listed in Table 1. The decoy ensemble of each target is generated from its amino-acid sequence
via the Rosetta ab-initio protocol [4]. We make use of the Mason Argo supercomputing cluster to
execute the protocol in an embarrassingly parallel fashion so as to obtain ensembles of at least 50,000
decoys per target. The actual ensemble sizes are shown in Column 5 in Table 1. The selected targets
have known native structures to aid the evaluation. The Protein Data Bank [25] identifier (id) of the
(crystallographic) native structure of each target is shown in Column 3 in Table 1.

The targets listed in Table 1 are divided into three categories (easy, medium, and hard) to indicate
the quality of the Rosetta-generated decoy ensembles. This categorization emerges from analysis
in terms of the lowest distance (measured via least root-mean-squared distance—lRMSD [26]) of all
Rosetta-computed decoys from the corresponding native structure of a target. This distance is shown
as min_dist in Column 6 in Table 1.

Table 1. Column 2 shows the PDB ID of a known native structure for each test case. Columns 3 and 4
show the fold (* indicates native structures with a predominant β fold and a short helix) and the length
(number of amino acids), respectively. Column 5 shows the size of the decoy set Ω generated via Rosetta,
and column 6 shows the lowest lRMSD from the known native structure over the decoy ensemble.

PDB ID Fold Length (# aas) |Ω| min_dist (Å)

Easy
1. 1dtdb α + β 61 57, 839 0.51
2. 1tig α + β 88 52, 099 0.60
3. 1dtja α + β 74 53, 526 0.68

Medium

4. 1hz6a α + β 64 57, 474 0.72
5. 1c8ca β∗ 64 53, 322 1.08
6. 1bq9 β 53 53, 663 1.30
7. 1sap β 66 51, 209 1.75

Hard
8. 2ezk α 93 50, 192 2.56
9. 1aoy α 78 52, 218 3.26
10. 1isua coil 62 60, 360 5.53

2.1. Evaluation Setup

For a given target protein (listed in Table 1), all decoys with lRMSD from the native
conformation (in the corresponding PDB entry in Table 1) within a threshold dist_thresh are deemed
native/near-native conformations. The threshold allows the population of a positive data set that is
used for evaluation. As in previous related work [10], the threshold dist_thresh is set on a per-target
basis, as there are targets on which Rosetta does not get close to 3 Å of the conformation in the
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target’s PDB entry: Specifically, if the lowest lRMSD (over all decoys) min_dist ≤ 0.7 (these are
the easy cases in Table 1), dist_thresh is set to 2 Å. For medium-difficulty targets (0.7 Å< min_dist
< 2 Å), dist_thresh varies in the range 2−4.5 Å. We set the minimum dist_thresh to 6 Å if min_dist
≥ 2 Å (these are the hard cases). In [27], the interested reader can find the impact of different values
of dist_thresh on the top cluster obtained via leader-clustering over these decoy datasets, which is
used as guidance to determine dist_thresh values for construction of the nearest-neighbor graphs
embedding decoy datasets.

The evaluation proceeds along two main dimensions.
First, we investigate the utility of organizing computed tertiary structures in nearest-neighbor

graphs (nngraphs). While details can be found in Section 4, the main idea is that each computed
structure becomes the vertex of the graph and is connected to other structures based on its lRMSD from
other structures (employing either a maximum number of neighbors or a pre-determined distance
threshold). In the directed version of the graph, edges have directionality, pointing from a vertex
corresponding to a structure with higher energy (using Rosetta all-atom score score12) to a vertex
corresponding to a structure with lower energy. Visually, these edges descend in the energy landscape
probed by Rosetta via the computed decoys. On each setting, directed vs. undirected, we investigate
state-of-the-art graph-based community detection methods and use benchmarks to evaluate these
methods and select a few top-performing ones.

In a second dimension of our analysis, we focus on the top-performing community detection
methods only and further evaluate the quality of the communities they detect in the context of decoy
selection. Building on our prior work, we employ several selection criteria to select among the
computed communities a few communities that are offered as prediction. These communities are
evaluated according to several metrics we describe in detail in Section 4. We additionally propose new
metrics, such as rank and entropy in this paper, and harden our observations via statistical significance
tests. Additional evaluation is conducted to assess the impact of parameters in the performance of the
presented approach, such as the impact of varying the number of nearest neighbors on the results.

2.2. Evaluation of Community Structure from Community Detection Methods

In our preliminary investigation in [10], we compare the performance of several state-of-the-art
community detection methods along each of the benchmark metrics listed in Section 4 on undirected
graphs constructed over the decoy datasets. The edge betweenness method is excluded from the
comparison due to its ability to handle mainly sparse graphs. The evaluation in [10], which relates
results on modularity, flake odf, conductance, and separability shows that the top performing method
is Louvain, followed closely by Label Partitioning and Greedy Modularity Maximization (GMM).

Here we carry out a similar evaluation of these different community detection methods on the
quality of the communities they detect (as gaged by the benchmark metrics listed in Section 4) on
directed graphs constructed over the decoy datasets. Out of all community detection methods, only
three implementations can handle directed graphs: Infomap, Louvain, and Walktrap. The performance
of these three on (a) modularity, (b) flake odf, (c) conductance, and (d) separability is related in Figure 1.

Figure 1a relates the comparison along modularity and shows that Louvain achieves higher
modularity than the other methods on each of the 10 test cases; as related in Section 4, higher modularity
relates to better community structure. As described in Section 4, a better partitioning method achieves
lower flake odf and lower conductance. Figure 1b–d draw the logarithm (base 10) of these metrics.
Louvain, InfoMap, and Walktrap perform comparably according to flake odf, whereas, on conductance,
Louvain achieves lower values than the other methods. Louvain outperforms the other methods on
separability. As related in Section 4, the separability metric is higher in well-defined communities with
many edges inside but fewer edges pointing to the rest of the network. This comparison again points
to Louvain as the top community detection method to identify community structure in decoy data
embedded in a directed nngraph.
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Figure 1. Comparison of community detection methods (encoded by different colors) on directed
nngraphs embedding each of the 10 decoy datasets along (a) modularity, (b) flake odf, (c) conductance,
and (d) separability.

2.3. Evaluation of Community Selection Strategies for Decoy Selection

Based on the results related above, we now focus the remainder of our evaluation on the
communities obtained with the Louvain method on undirected and directed graph embeddings
of decoy data, as well as on communities obtained with the GMM method (on undirected graph
embeddings). Out of the communities into which a decoy dataset is partitioned by a specific community
detection method, we select a top few via four different selection strategies. These are described in
detail in Section 4. In summary, the selection strategies leverage the size of a community (the number
of decoys in it) and its energy (defined as either the minimum or average energy over the decoys in it)
to sort communities and then select the top l from the obtained sorted order, with l varying in {1, 2, 3}.

The selected communities are evaluated along the n and p metrics, also described in Section 4.
In summary, these metrics evaluate the quality of a selected community in the specific context of
decoy selection: n measures the percentage of near-native decoys in a selected set of decoys (the top
community, or the combined decoys over the top l > 1 communities) relative to the overall number of
near-native decoys in the entire decoy dataset. Please note that a selected set of decoys can contain
many near-native decoys but also many non-native ones. Therefore, p measures the percentage of
near-native decoys in the selected set over the number of decoys in the set. This measure penalizes
decoys with a lot of non-native decoys despite the number of near-native decoys. The idea is to relate
the utility of a selected set of decoys that is offered as prediction. If p is high, then drawing at random
from the selected set is likely to yield a near-native decoy, which can thus be offered as prediction.
As related in further detail in Section 4, these metrics are inspired by machine learning performance
metrics.

We focus our evaluation on the top 1 ≤ l ≤ 3 (selected) communities, which we refer to as C1,
C1− 2, and C1− 3 as l varies. The n and p metrics are calculated over the decoys in the combined set;
that is, if we focus on the top three communities, the decoys in these three communities are combined,
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and the metrics of interest are computed over the resulting set. These metrics are related in Tables 2–4
for Louvain on undirected graphs, Louvain on directed graphs, and GMM on undirected graphs. In
addition to n and p, these tables also report the size s of a selected set as a percentage over an overall
decoy dataset. We note that for the selection strategies that use the energy of a community in addition
to its size, Tables 2–4 only show results obtained when using the average energy over decoys in a
community to associate an energy with a community. Obtained results are similar or worse when
using the minimum energy.

Table 2. The s, n, p of the sets of communities selected by different selection strategies over communities
identified by the Louvain algorithm on decoy datasets embedded as directed ngraphs. We refer to this
setting as LouvainDirected. Recall that s stands for size (number of decoys), and n and p are the two
performance metrics described above (and in more detail in Section 4).

LouvainDirected

Sel-S Sel-S+E Sel-PR Sel-PR+PC
s, n, p (%) s, n, p (%) s, n, p (%) s, n, p (%)

1dtdb
C1: 5.3, 23.4, 100 C1: 5.3, 23.4, 100 C1: 5.3, 23.4, 100 C1: 0.005, 0, 0

C1−2: 10.3, 45.2, 100 C1−2: 5.5, 24.3, 100 C1−2: 5.3 24.3, 99.9 C1−2: 0.009, 0, 0
C1−3: 15, 65.7, 100 C1−3: 10.2, 44.7, 100 C1−3: 5.4, 23.4, 99.7 C1−3: 5.3, 23.4, 99.8

1tig
C1: 10.4, 10.1, 14.6 C1: 10.4, 10.1, 14.6 C1: 10.4, 10.1, 14.6 C1: 10.4, 10.1, 14.6

C1−2: 18.7, 18.4, 14.8 C1−2: 15.9, 15.6, 14.7 C1−2: 10.4, 10.1, 14.6 C1−2: 10.4, 10.1, 14.6
C1−3: 24.2, 23.9, 14.9 C1−3: 17.7, 17.3, 14.8 C1−3: 10.4, 10.1, 14.6 C1−3: 10.4, 10.1, 14.6

1dtja
C1: 3.6, 16, 100 C1: 0.9, 3.9, 100 C1: 3.6, 16, 100 C1: 0.004, 0, 0

C1−2: 6.6, 29.6, 100 C1−2: 3.6, 16, 100 C1−2: 6.3 28.1, 100 C1−2: 0.007, 0, 0
C1−3: 9.4, 41.7, 100 C1−3: 5.2, 23, 100 C1−3: 7.2, 32, 100 C1−3: 0.01, 0.02, 33.3

1hz6a
C1: 6.4, 6.7, 11.7 C1: 3.9, 4.3, 12.6 C1: 6.4, 6.7, 11.7 C1: 0.02, 0.02, 9.1

C1−2: 12, 12.4, 11.7 C1−2: 9.4, 8.9, 10.7 C1−2: 11.9, 11.2, 10.6 C1−2: 0.02, 0.02, 7.7
C1−3: 17.5, 17, 11 C1−3: 13.9, 13.1, 10.6 C1−3: 15.8, 15.6, 11.1 C1−3: 0.03, 0.02, 6.7

1c8ca
C1: 4.6, 0.1, 0.1 C1: 2.9, 8.3, 31.7 C1: 4.6, 0.1, 0.1 C1: 0.006, 0, 0
C1−2: 8.8, 6, 7.4 C1−2: 6, 32.8, 59.8 C1−2: 8.8, 6, 7.4 C1−2: 2.9, 8.3, 31.6

C1−3: 12.5, 13.3, 11.6 C1−3: 7.5, 33.6, 48.8 C1−3: 11.9, 30.4, 27.8 C1−3: 6, 32.8, 59.7

1sap
C1: 11.4, 0, 0 C1: 8.5, 59.9, 16.3 C1: 11.4, 0, 0 C1: 8.5, 60, 16.3

C1−2: 21.7, 0, 0 C1−2: 13.5, 62.5, 10.7 C1−2: 21.7, 0, 0 C1−2: 18.7, 60, 7.4
C1−3: 30.6, 0.1, 0.01 C1−3: 23.8, 62.5, 6.1 C1−3: 30.2, 59.9, 4.6 C1−3: 18.7, 60, 7.4

1bq9
C1: 11.3, 9.9, 1.4 C1: 10.3, 11, 1.7 C1: 11.3, 9.9, 1.4 C1: 0.01, 0, 0

C1−2: 21.6, 20.9, 1.5 C1−2: 21.6, 20.9, 1.5 C1−2: 21.6, 20.9, 1.5 C1−2: 0.02, 0, 0
C1−3: 25.7, 25.2, 1.6 C1−3: 25.7, 25.5, 1.6 C1−3: 21.6, 20.9, 1.5 C1−3: 10.3, 11, 1.7

2ezk
C1: 30.1, 50.7, 22 C1: 30.1, 50.7, 22 C1: 30.1, 50.7, 22 C1: 30.1, 50.7, 22

C1−2: 56.5, 56.2, 13 C1−2: 56.5, 56.2, 13 C1−2: 30.1, 50.7, 22 C1−2: 30.1, 50.7, 22
C1−3: 73, 94.5, 16.9 C1−3: 60.8, 56.6, 12.1 C1−3: 30.1, 50.7, 22 C1−3: 30.1, 50.7, 22

1aoy
C1: 38, 22.6, 6.5 C1: 38, 22.6, 6.5 C1: 38, 22.6, 6.5 C1: 38, 22.6, 6.5

C1−2: 54.9, 29.7, 5.9 C1−2: 52.5, 90.7, 18.9 C1−2: 38, 22.6, 6.5 C1−2: 38, 22.6, 6.5
C1−3: 69.4, 97.9, 15.4 C1−3: 59.5, 92.7, 17 C1−3: 38, 22.6, 6.5 C1−3: 38, 22.6, 6.5

1isua
C1: 15.6, 57.3, 19.5 C1: 5, 0.7, 0.8 C1: 15.6, 57.3, 19.5 C1: 0.003, 0, 0

C1−2: 26.3, 70.2, 14.2 C1−2: 9.9, 2, 1.1 C1−2: 22.5, 62.3, 14.7 C1−2: 0.007, 0, 0
C1−3: 33.2, 75.2, 12 C1−3: 15.9, 3.6, 1.2 C1−3: 28.5, 63.9, 11.9 C1−3: 0.01, 0, 0

Tables 2–4 show that in many of the target proteins, the top communities have a high-percentage
of near-native decoys. Purity is also high on the easy and medium targets, even reaching 100% purity
on easy targets. The comparison of the four selection strategies to one another within each of the
three community detection methods is made clearer in Figure 2a–c which show the purity of the top
selected community, C1, by each of the four selection strategies over communities detected with the
Louvain method on directed nngraph embeddings of decoy data in Figure 2a, the Louvain method
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on undirected nngraph embeddings of decoy data in Figure 2b, and the GMM method on undirected
nngraph embeddings of decoy data in Figure 2c. This comparison shows that Sel-S+E and Sel-S
outperform the other two selection strategies. Further comparison is provided in Figure 3, which
shows n and p for C1 and in Figure 4, which does so for C1− 3 selected by Sel-S and Sel-S+E over
communities detected by any of the three community detection methods (Louvain over directed and
undirected nngraphs and GMM over undirected nngraphs).

Table 3. The s, n, p of the communities selected by different selection strategies over communities
identified by the Louvain algorithm on decoy datasets embedded as undirected ngraphs.

Louvain

Sel-S Sel-S+E Sel-PR Sel-PR+PC
s, n, p (%) s, n, p (%) s, n, p (%) s, n, p (%)

1dtdb
C1: 4.7, 20.4, 100 C1: 2.5, 10.8, 100 C1: 3.1, 13.7, 100 C1: 0.01, 0, 0

C1−2: 8.2, 35.9, 99.9 C1−2: 5.1, 22.2, 100 C1−2: 7.8, 34.1, 100 C1−2: 0.01, 0, 0
C1−3: 11.3, 49.5, 99.9 C1−3: 7.2, 31.5, 100 C1−3: 10.2, 44.9, 100 C1−3: 2.5, 10.8, 99.6

1tig
C1: 12.6, 12.3, 14.7 C1: 12.6, 12.3, 14.7 C1: 12.6, 12.3, 14.7 C1: 12.6, 12.3, 14.7

C1−2: 23, 23, 15 C1−2: 16.4, 16, 14.7 C1−2: 12.6, 12.3, 14.7 C1−2: 12.6, 12.4, 14.8
C1−3: 28, 28.1, 15.1 C1−3: 18, 17.7, 14.8 C1−3: 12.6, 12.3, 14.7 C1−3: 12.6, 12.4, 14.8

1dtja
C1: 3.2, 14.2, 100 C1: 1.4, 6.2, 100 C1: 3.2, 14.2, 100 C1: 0.004, 0, 0
C1−2: 6.3, 28, 100 C1−2: 3.1, 13.6, 100 C1−2: 6.3, 28, 100 C1−2: 0.007, 0, 0
C1−3: 9, 40.1, 100 C1−3: 5.8, 25.7, 100 C1−3: 9, 40.1, 100 C1−3: 0.01, 0.02, 33.3

1hz6a
C1: 7, 7.1, 11.4 C1: 5.8, 5.9, 11.5 C1: 6, 6, 11.3 C1: 0.02, 0.02, 9.1

C1−2: 13, 13.1, 11.3 C1−2: 11.1, 10.7, 10.9 C1−2: 11.8, 11.9, 11.4 C1−2: 0.02, 0.02, 7.7
C1−3: 18.8, 19, 11.4 C1−3: 17.1, 16.6, 11 C1−3: 18.8, 19, 11.4 C1−3: 0.03, 0.02, 6.7

1c8ca
C1: 4.7, 0.1, 0.2 C1: 2.7, 8.5, 34.8 C1: 2.7, 8.5, 34.8 C1: 0.006, 0, 0

C1−2: 8.6, 32.4, 41.1 C1−2: 6.6, 40.8, 67.5 C1−2: 7.3, 8.6, 12.8 C1−2: 2.7, 8.5, 34.7
C1−3: 12.2, 42.8, 38.2 C1−3: 9.9, 47.3, 51.8 C1−3: 11.2, 40.9, 39.6 C1−3: 6.6, 40.8, 67.4

1sap
C1: 10.1, 0, 0 C1: 8.8, 59.6, 15.6 C1: 9.9, 0, 0 C1: 8.8, 59.6, 15.6
C1−2: 20, 0, 0 C1−2: 14.2, 64.1, 10.4 C1−2: 20, 0, 0 C1−2: 18.7, 59.6, 7.3

C1−3: 28.8, 59.6, 4.8 C1−3: 24.1, 64.1, 6.1 C1−3: 28.8, 59.6, 4.8 C1−3: 28.8, 59.6, 4.8

1bq9
C1: 11.3, 9.7, 1.4 C1: 10.3, 11.2, 1.7 C1: 10.3, 11.2, 1.7 C1: 0.01, 0, 0

C1−2: 21.7, 20.9, 1.5 C1−2: 21.7, 20.9, 1.5 C1−2: 21.7, 20.9, 1.5 C1−2: 0.02, 0, 0
C1−3: 26.2, 25.6, 1.5 C1−3: 26.2, 25.7, 1.6 C1−3: 21.7, 20.9, 1.5 C1−3: 10.4, 11.2, 1.7

2ezk
C1: 26.9, 47.2, 22.9 C1: 26.9, 47.2, 22.9 C1: 26.9, 47.2, 22.9 C1: 26.9, 47.2, 22.9

C1−2: 53.1, 52.3, 12.8 C1−2: 53.2, 52.3, 12.8 C1−2: 26.9, 47.2, 22.9 C1−2: 26.9, 47.2, 22.9
C1−3: 69.2, 81.8, 15.4 C1−3: 58.1, 52.7, 11.8 C1−3: 26.9, 47.2, 22.9 C1−3: 26.9, 47.2, 22.9

1aoy
C1: 36.8, 27.6, 8.2 C1: 36.8, 27.6, 8.2 C1: 36.8, 27.6, 8.2 C1: 36.8, 27.6, 8.2

C1−2: 53.1, 33.7, 6.9 C1−2: 52.4, 91.6, 19.1 C1−2: 36.8, 27.6, 8.2 C1−2: 36.8, 27.6, 8.2
C1−3: 68.8, 97.7, 15.5 C1−3: 65, 91.9, 15.5 C1−3: 36.8, 27.6, 8.2 C1−3: 36.8, 27.6, 8.2

1isua
C1: 14.3, 56, 20.7 C1: 5.5, 1.3, 1.2 C1: 5.6, 1.5, 1.4 C1: 0.003, 0, 0

C1−2: 23.9, 64.5, 14.3 C1−2: 11.2, 2.8, 1.3 C1−2: 13.5, 6.4, 2.5 C1−2: 0.007, 0, 0
C1−3: 31.8, 69.3, 11.6 C1−3: 16.3, 6, 2 C1−3: 27.8, 62.4, 11.9 C1−3: 0.01, 0, 0

Taken altogether, these results suggests that a community-based, blind prediction method will
offer as prediction only near-native decoys on ensembles of good-quality decoys (purity is as high as
100%). In particular, GMM seems well-suited to be used with either Sel-S and Sel-S+E. However, as
the test cases become harder, Louvain yields higher purity, with the undirected and directed versions
performing comparably. It is worth noting that prior work in [10] shows that community-based decoy
selection performs better than (leader) clustering-based selection, particularly as the decoy datasets
become more challenging.
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Table 4. The s, n, p of the communities selected by different strategies over communities
identified by the Greedy Modularity Maximization (GMM) algorithm on decoy datasets embedded as
undirected graphs.

GMM

Sel-S Sel-S+E Sel-PR Sel-PR+PC
s, n, p (%) s, n, p (%) s, n, p (%) s, n, p (%)

1dtdb
C1: 11.1, 48.7, 100 C1: 11.1, 48.7, 100 C1: 11.1, 48.7, 100 C1: 0.005, 0, 0

C1−2: 18.3, 80.1, 99.9 C1−2: 14.8, 65, 100 C1−2: 11.1, 48.7, 99.9 C1−2: 0.009, 0, 0
C1−3: 22, 96.4, 99.9 C1−3: 15.3, 65, 96.8 C1−3: 11.1, 48.7, 99.9 C1−3: 0.02, 0, 0

1tig
C1: 19.2, 18.7, 14.7 C1: 19.2, 18.7, 14.7 C1: 19.2, 18.7, 14.7 C1: 19.2, 18.7, 14.7
C1−2: 31.6, 31.5, 15 C1−2: 20.4, 20, 14.8 C1−2: 19.2, 18.7, 14.7 C1−2: 19.2, 18.7, 14.7
C1−3: 43, 42.3, 14.8 C1−3: 22.9, 22.3, 14.7 C1−3: 19.2, 18.7, 14.7 C1−3: 19.2, 18.7, 14.7

1dtja
C1: 7.6, 33.7, 100 C1: 0.03, 0.1, 100 C1: 7.6, 33.7, 100 C1: 0.004, 0, 0

C1−2: 14.5, 64.6, 100 C1−2: 7.6, 33.9, 100 C1−2: 7.6, 33.9, 100 C1−2: 0.007, 0, 0
C1−3: 17.6, 78.5, 100 C1−3: 14.5, 64.7, 100 C1−3: 7.6, 33.9, 100 C1−3: 0.01, 0.02, 33.3

1hz6a
C1: 24.7, 24.8, 11.3 C1: 24.7, 24.8, 11.3 C1: 24.7, 24.8, 11.3 C1: 0.02, 0.02, 9.1

C1−2: 48.7, 48.8, 11.3 C1−2: 25.7, 25.7, 11.3 C1−2: 24.7, 24.8, 11.3 C1−2: 0.03, 0.03, 12.5
C1−3: 59, 59.2, 11.3 C1−3: 28.3, 28.4, 11.3 C1−3: 24.7, 24.8, 11.3 C1−3: 0.03, 0.05, 15.8

1c8ca
C1: 11.6, 6.9, 6.5 C1: 6.4, 15.7, 26.5 C1: 11.6, 6.9, 6.5 C1: 0.006, 0, 0

C1−2: 23.1, 60.9, 28.7 C1−2: 17.9, 69.7, 42.3 C1−2: 23.1, 60.9, 28.7 C1−2: 0.06, 0.5, 91.2
C1−3: 29.5, 76.6, 28.3 C1−3: 18.3, 69.7, 41.4 C1−3: 29.5, 76.6, 28.3 C1−3: 6.5, 16.2, 27.2

1sap
C1: 26, 0, 0 C1: 24.6, 99.3, 9.3 C1: 26, 0, 0 C1: 0.01, 0, 0

C1−2: 50.6, 99.3, 4.5 C1−2: 40.5, 99.3, 5.7 C1−2: 50.6, 99.3, 4.5 C1−2: 24.6, 99.3, 9.3
C1−3: 66.5, 99.3, 3.4 C1−3: 66.6, 99.3, 3.4 C1−3: 50.6, 99.3, 4.5 C1−3: 24.6, 99.3, 9.3

1bq9
C1: 24.5, 23.8, 1.5 C1: 24.5, 23.8, 1.5 C1: 24.5, 23.8, 1.5 C1: 0.01, 0, 0

C1−2: 32.6, 32.4, 1.6 C1−2: 24.9, 24.1, 1.5 C1−2: 24.5, 23.9, 1.6 C1−2: 0.02, 0, 0
C1−3: 38.7, 38.7, 1.6 C1−3: 26.9, 26.1, 1.5 C1−3: 24.5, 23.9, 1.6 C1−3: 0.03, 0.1, 7.1

2ezk
C1: 43.1, 7, 2.1 C1: 22.4, 40, 23.3 C1: 43.1, 7, 2.1 C1: 22.4, 40, 23.3

C1−2: 76.6, 60, 10.2 C1−2: 65.5, 47, 9.4 C1−2: 65.5, 47, 9.4 C1−2: 65.5, 47, 9.4
C1−3: 99, 100, 13.2 C1−3: 65.5, 47, 9.4 C1−3: 65.5, 47, 9.4 C1−3: 65.5, 47, 9.4

1aoy
C1: 45.6, 66.8, 16 C1: 35.6, 33, 10.1 C1: 45.6, 66.8, 16 C1: 35.6, 33, 10.1

C1−2: 81.2, 99.7, 13.1 C1−2: 81.2, 99.7, 13.4 C1−2: 81.2, 99.7, 13.4 C1−2: 35.6, 33, 10.1
C1−3: 96.8, 100, 11.3 C1−3: 81.2, 99.7, 13.4 C1−3: 81.2, 99.7, 13.4 C1−3: 81.2, 99.7, 13.4

1isua
C1: 39.6, 70, 9.4 C1: 14.1, 1.9, 0.7 C1: 39.6, 70, 9.4 C1: 0.007, 0, 0

C1−2: 78.7, 97.7, 6.6 C1−2: 14.8, 1.9, 0.7 C1−2: 53.7, 71.9, 7.1 C1−2: 0.01, 0, 0
C1−3: 92.9, 99.5, 5.7 C1−3: 54.4, 71.9, 7 C1−3: 53.8, 71.9, 7.1 C1−3: 0.02, 0, 0
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Figure 2. Comparison of the various selection strategies on the purity of the top community C1 selected
over communities detected with the Louvain method on directed nngraph embeddings of decoy data
in (a), the Louvain method on undirected nngraph embeddings of decoy data in (b), and the GMM
method on undirected nngraph embeddings of decoy data in (c).
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Figure 3. Comparison of community detection methods based on the quality of the top community
selected by Sel-S and Sel-S+E. In the legend, Lo-D refers to the Louvain method applied to
directed nngraphs that embed the decoy datasets. The -S and -S+E refer to the Sel-S and Sel-S+E
selection strategies.
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Figure 4. Comparison of community detection methods based on the quality of the top three
communities selected by Sel-S and Sel-S+E. In the legend, Lo-D refers to the Louvain method applied
to directed nngraphs that embed the decoy datasets. The -S and -S+E refer to the Sel-S and Sel-S+E
selection strategies.

2.3.1. Rank-Based Comparison of Selection Strategies

We harden the above comparison of selection strategies via two sets of analyses.
First, we compare the four selection strategies based on the rank/position of the purest community

in the sorted order they impose on detected communities. Table 5 reports the rank of the top-selected
community (by each selection strategy) in a purity-based ordering (from high to low purity). The
lowest rank over the selection strategies is highlighted in bold font. The results in Table 5 show that
the lowest rank is obtained overall by Sel-S+E, which selects communities by size and energy (see
Section 4 for a detailed description of the four selection strategies). Moreover, on the medium- and
hard-difficulty datasets, the Louvain on directed and undirected and GMM behave comparably, with
GMM outperforming the two other methods on the easy datasets.

Table 5. Rank (by Size(S), Size and Energy(S+E), Pareto rank(PR), Pareto rank and Pareto count
(PR+PC)) of the community with the highest purity among those identified by Louvain (Lo),
LouvainDirected (LoD) and GMM.

Rank by (Lo) Rank by (LoD) Rank by (GMM)
S, S+E, PR, PR+PC S, S+E, PR, PR+PC S, S+E, PR, PR+PC

1dtdb 3, 4, 1, 9 1, 1, 1, 3 1, 1, 1, 8
1tig 691, 396, 7069, 7073 229, 112, 2287, 2289 283, 44, 962, 963

1dtja 71, 64, 26735, 26736 1, 7, 1, 12 1, 3, 1, 9

1hz6a 647, 639, 10160, 10166 280, 49, 673, 670 337, 70, 748, 740
1c8ca 818, 572, 9700, 9736 42, 31, 540, 542 15, 1, 4, 2
1bq9 1230, 267, 4816, 4836 1223, 268, 4810, 4827 1271, 269, 4826, 4853
1sap 3301, 137, 538, 541 3298, 137, 538, 551 3369, 142, 566, 566

2ezk 6, 5, 13, 12 3, 9, 14, 16 3, 1, 2, 1
1aoy 3, 2, 12, 11 3, 3, 14, 13 1, 3, 1, 3
1isua 135, 117, 1519, 1527 136, 117, 1520, 1525 194, 193, 1236, 1241
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Second, we conduct 1-sided and 2-sided statistical significance analysis via Fisher’s [28] and
Barnard’s [29] exact tests on 2 × 2 contingency matrices. The analysis compares Sel-S+E to the other
three selection strategies on the rank of the top-selected community in a purity-based ordering (from
high to low purity). That is, 30 values are obtained for each selection strategy. Over each of the 10
decoy datasets, the rank of the top-community selected over those identified by Louvain on directed
and undirected nngraphs and GMM on undirected nngraphs. Fisher’s exact test is conditional and
widely adopted for statistical significance. Barnard’s test is unconditional and generally considered
more powerful than Fisher’s test on 2 × 2 contingency matrices. We use 2-sided tests to determine
which algorithms do not have similar performance and 1-sided tests to determine if Sel-S+E performs
significantly better than the other selection strategies.

The top panel in Table 6 evaluates the null hypothesis that Sel-S+E does not provide the best rank,
considering each of the other three selection strategies in turn. The bottom panel evaluates the null
hypothesis that Sel-S+E does not provide a better rank with respect to another particular selection
strategy, considering each of the other three in turn. The results in Table 6 show that the null hypothesis
is rejected in both cases.

Table 6. Comparison of Size + Energy (S+E) to other selection strategies on best rank via 1-sided
Fisher’s and Barnard’s tests. Top panel evaluates the null hypothesis that Sel-S+E does not provide the
best rank (based on reported p-values), considering each of the other three selection strategies in turn.
Similarly, the lower panel evaluates the null hypothesis that Sel-S+E does not provide a better rank
with respect to another particular selection strategy, considering each in turn.

Best Rank

Test Sel–S Sel–PR Sel–PR+PC

Fisher’s 6.621 × 10−7 1.626 × 10−7 9.388 × 10−12

Barnard’s 2.314 × 10−7 6.33 × 10−8 2.128 × 10−12

Better Rank

Test Sel–S Sel–PR Sel–PR+PC

Fisher’s 0.0001154 7.744 × 10−7 4.194 × 10−15

Barnard’s 6.738 × 10−5 3.811 × 10−7 8.075 × 10−16

Table 7 shows a similar comparison for a 2-sided test. The results in Table 7 show that the
null hypothesis is rejected in both cases. Taken together, the analysis confirms that Sel-S+E is the
top performing selection strategy with regards to the rank of the the top-selected community in a
purity-based order of detected communities.

Table 7. Comparison of Size + Energy to other selection strategies on best rank via 2-sided Fisher’s
and Barnard’s tests. The tests evaluate the null hypothesis (based on reported p-values) that Sel-S+E
(or, Size+Energy) provides similar ranking in comparison to other selection strategies.

Best Rank

Test Sel–S Sel–PR Sel–PR+PC

Fisher’s 1.324 × 10−6 3.252 × 10−7 1.878 × 10−11

Barnard’s 4.629 × 10−7 1.266 × 10−7 4.255 × 10−12

Better Rank

Test Sel–S Sel–PR Sel–PR+PC

Fisher’s 0.000231 1.549 × 10−6 8.388 × 10−15

Barnard’s 0.0001348 7.621 × 10−7 1.615 × 10−15
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2.3.2. Impact of Graph Density on Purity

The density of the nngraph embedding a decoy dataset impacts purity, as it ultimately impacts
community detection. Therefore, here we conduct the following experiment. We vary the number
of nearest-neighbors k that determines the number of edges that connect a vertex to other vertices.
Specifically, k varies in {10, 15, 20, 25, 30, 35, 40, 45, 50}. In each case, a new nngraph is computed from
a decoy dataset, and a community detection method is applied. Sel-S+E is applied over the detected
communities, and the purity of the top community C1 is calculated. Figure 5 reports purity of the top
community as a function of k only for the GMM, as the trend that is observed is similar for Louvain on
directed and undirected nngraphs.

Figure 5. Purity for the range of k from 10 to 50.

Figure 5 shows that the number of nearest neighbors has a great impact on the purity of the
top community. As expected, the trend observed is that purity decreases as the number of nearest
neighbors increase. For most of the datasets, the decrease starts after 20–25 neighbors, suggesting a
value of k = 20, which is the one we have used for the results reported in this section.

2.4. Entropy-Based Evaluation of Identified Communities

Finally, we pursue an orthogonal evaluation of the communities identified by the Louvain method
on undirected and directed nngraph-embedded decoy datasets and GMM on undirected nngraphs.
In particular, we investigate how the near-native decoys are spread among identified communities:
are they mainly housed by a few communities, or are they spread over all identified communities?
An entropy-based measure allows us to evaluate the heterogeneity of this distribution. Specifically,
we define Entropy = −∑C(n ∗ ln n) where n is the fraction of near-native decoys in a community C.
A low entropy value indicates that the near-native decoys are distributed among fewer communities,
whereas a high entropy value indicates that the near-native decoys are spread over all or most of the
communities. In the extreme, if all of the near-native decoys are present in a single community, then
the value of entropy is 0 (the minimum possible value). A uniform distribution of near-native decoys
over all communities yields the maximum value for entropy.

Table 8 shows the entropies obtained by Louvain (on undirected and directed nngraphs) and
GMM on each of the 10 test decoy datasets. The lowest value on each row is highlighted in bold font.
The results show that the lowest entropy is obtained for GMM on the decoy dataset 1sap. Specifically,
the second largest community among those identified by this method on this dataset contains 99.3% of
the near-native decoys. Overall, GMM achieves the lowest entropy on each decoy dataset, as, due to
its greedy nature, the method reports few, large communities that are likely to have many near-native
decoys. Invariably, such communities have low purity, as related above. On the other hand, Louvain
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reports communities with higher purity, and the entropy values it obtains approach those of GMM
as the datasets become harder. In particular, on the most difficult decoy datasets (the third category),
Louvain on directed nngraphs reports lower entropy values than Louvain on undirected nngraphs.

Table 8. Entropy values for the Louvain and GMM methods.

EntropyLo(Undirected) EntropyGMM(Undirected) EntropyLo(Directed)

1dtdb 2.054332 1.335355 2.007146
1tig 5.571811 5.19006 5.660448

1dtja 3.679291 2.990441 3.670991

1hz6a 4.2847 3.472866 4.400298
1c8ca 3.323009 2.713008 3.480973
1bq9 4.920814 4.575263 4.92005
1sap 0.961949 0.054711 0.914548

2ezk 1.222933 0.888501 1.065169
1aoy 0.905185 0.652051 0.873628
1isua 1.725124 0.715579 1.680263

3. Discussion

The findings show that community detection methods warrant further investigation for organizing
protein structure spaces probed in silico and promise advancing decoy selection in template-free protein
structure prediction. The evaluation related here makes the case that state-of-the-art community
detection algorithms, such Louvain and Greedy Modularity Maximization, when coupled with
simple selection strategies discriminating communities by size and energy, offer communities with
a high purity for decoy selection. The presented results additionally suggest that on challenging
decoy datasets, directed graph embeddings that further consider decoy energy may provide purer
communities or better rank of the purest community.

The presented work motivates further algorithmic research in community detection algorithms
for on-graph clustering of molecular structure data. The work opens additional lines of enquiry.
For instance, the decoys in communities can be further assessed by different scoring functions for
indicators of nativeness. The quality of the selected communities themselves can be further improved
via a combination of unsupervised and supervised learning strategies.

The presented work focuses on an important sub-problem in template-free protein structure
prediction. We note, however, that the work can also be applicable in other settings beyond
template-free protein structure prediction. Many other structure modeling studies necessitate analysis
of numerous structures generated in silico, whether of uncomplexed or complexed molecular systems.
The work presented here may be useful in revealing the underlying organization of such data and
capturing functionally relevant structural states.

4. Materials and Methods

We propose to leverage a graph-based representation of a computationally probed protein
structure space as follows. A nearest-neighbor graph, which we define below, is used to embed
computed structures of a protein molecule of interest. Utilizing ideas and techniques from network
science and network community detection, the graph is then subjected to community detection
methods. The latter group/organize structures into communities. In this paper, we first evaluate the
obtained communities and then demonstrate how various ranking-based techniques that leverage
properties of identified communities perform in automatically selecting communities more likely to
contain functionally relevant structures in the context of decoy selection. We now describe the main
steps of the proposed approach.
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4.1. A Graph-Based Embedding of Decoys

We first note that the ideas laid out in this paper are general and extend beyond molecular
structures. However, to directly connect with our objective of evaluating these ideas in the context
of decoy selection, we refer to the data (the molecular structures) where we seek an underlying
organization as decoys.

As summarized above, a nearest-neighbor graph (nngraph) is employed to represent the structure
space probed via computation. The graph encodes the proximity of decoys in this space. Let us denote
the nngraph where the set of decoys are embedded as G = (V, E). The decoys populate the vertex
set V. A local neighborhood structure is inferred for each decoy to populate the edge set E. This is
based on proximity, measuring the distance between two decoys via root-mean-squared-deviation
(RMSD). First, each decoy is superimposed over a decoy selected as reference (we arbitrarily choose
as reference the first decoy). The superimposition minimizes differences due to rigid-body motions,
as described in [26]. After this superimposition, the RMSD is then measured between every pair of
decoys. Please note that superimposing all decoys to a reference decoy and then performing pairwise
RMSD computations saves computational time. In contrast, seeking an optimal superimposition for
each pair of decoys would result in quadratic (rather than linear) running time. Once such distances
are available for every pair of decoys, the neighbors of each vertex u ∈ V are other vertices v ∈ V such
that d(u, v) ≤ ε, where ε is a user-defined parameter that controls the radius of the neighborhood.
A vertex is connected via an edge to each of its neighbors determined in this manner. We note that
proximity query data structures (such as kd-trees and others) allow efficiently extracting the nearest
neighbors of a vertex.

It is worth noting that the value of ε is an important consideration. A small value may result in a
disconnected graph. This can be remedied by initializing ε to some initial value ε0 and then increasing
it by δε over a maximum number nε iterations, while at the same time controlling the density of the
nngraph via a parameter k. This parameter specifies the maximum number of neighbors allowed per
vertex. In this way, only vertices with no more than k neighbors gain neighbors after each iterative
increment of ε. Please note that k allows controlling the density of the graph.

We note that alternative constructions of nngraphs use k directly rather than ε. Indeed, Section 2
presents an evaluation in terms of k. However, in molecular structure data that may be the result of
non-uniform sampling, specifying k may result in connecting structures that are very different from
each-other (that is, not in proximity).

We note that in what is described above, the nngraph is undirected. Directionality can be easily
added to additionally include the role of energy in the embedding of a decoy dataset in a discrete
structure, such as a graph. An edge can be directed from a vertex corresponding to a decoy with higher
energy to a neighboring vertex corresponding to a decoy with lower energy.

Whether undirected or directed, the nngraph can now be investigated for its organization via
community detection methods. We consider 7 representative, state-the-art methods, described below.

4.2. Community Detection Methods

Edge betweenness (Girvan-Newman): This approach was introduced to sidestep the drawbacks
of hierarchical clustering. It operates based on the intuition that edges linking the communities
are anticipated to possess high edge betweenness, which generalizes Freeman’s betweenness
centrality [30] from vertices to edges. To reveal the underlying community structure of the network,
the Girvan-Newman method successively removes edges with high edge betweenness. Measuring
edge betweenness takes O(|E| · |V|) time. Since this step has to be carried out repeatedly (for each
edge), the entire approach runs in O(|E|2 · |V) time.

Leading Eigenvector (LE): The prime objective of this method is modularity maximization (in
terms of the eigenspectrum of modularity matrix) across possible subdivisions of a network [31]. With
repeated divisions, the method discovers a leading eigenvector that partitions the graph into two
subgroups; the goal of maximal improvement of modularity is achieved at every step. This process
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terminates when modification of modularity in the sub-network starts being negative. In fact, the
method is associated with additional outcomes: a spectral measure of bipartite architecture in the
network and a centrality measure to detect the vertices holding nuclear positions in communities.
In general, the partitioning step takes O(|V|(|E|+ |V|)) time.

Walktrap (WT): This method employs random walks to take into account the architectural
resemblance between vertices (or groups of vertices). The underlying intuition is that vertices that are
within the same community are supposed to have shorter distance for random walks [32]. The methods
administers an agglomerative approach which starts from |V| communities (reduced to singleton
clusters) and hierarchically merges two adjacent communities at each step. This is an effective approach
to handle dense subgraphs of sparse graphs, which is most often the case for real-world complex
networks. The method runs in time O(|E||V|2) and space O(|V|2) in the worst case.

Label Propagation (LP): This method is based on the intuition that each vertex in the network is
supposed to follow the majority of its neighbors while joining a community [33]. The method aims
robust use of the network infrastructure instead of a predefined objective function (to optimize) or
a-priori information on the communities. At the beginning, a unique label is assigned to each vertex;
that is, the method initializes |V| singleton communities. In progressive steps, adoption of a label
comes into play for each vertex depending on the label possessed by the majority of its neighbors
at that instant. This iterative process effectively performs the task of label propagation through the
network and helps to form a consensus on a unique label for densely connected vertices. The process
halts when each vertex and most its neighbors have an identical label. The algorithm takes linear time
in the number of edges (O(|E|)).

Louvain (Lo): This is a heuristic-based method focusing on modularity optimization [34].
The method consists of iterative repetition of two stages. The first stage deals with the initial partition,
where each vertex is assigned to a unique community (singleton communities). Modularity gain is
measured by assigning a vertex to a neighbor community so as to exclusively search for the way to
maximize positive gain. The order in which vertices are explored does not affect modularity but may
increase computation time. The second stage commences with the construction of a new weighted
network, whose vertices are the communities generated by the first phase. The above process continues
until maximum modularity is achieved.

InfoMap (IM): This method identifies communities by using random walks along with
information flow analysis [35]. The vertices and their connections are decomposed into modules
to represent the network in such a way that maximizes the amount of information in the actual
network. The method tries to assign codewords to vertices; the process is efficient in terms of the
dynamics on the network. A signal is transmitted to a decoder (via a limited capacity channel) who
tries to decode the message, as well as to form viable candidates for the actual network. The lower
the number of candidates, the more information about the actual network has been transmitted. The
method runs in O(|E|) time.

Greedy Modularity Maximization (GMM): This is a hierarchical agglomeration method that
makes use of a greedy optimization approach. The underlying assumption is that high values of
modularity are associated with good communities [36]. Initially, each vertex itself forms a community.
Then, vertices of two communities are combined together in a way that yields maximum modularity
gain. This step is repeated (|V|− 1) times. The process is represented as a hierarchical tree-like structure
(a dendrogram), whose end-nodes represent the vertices of the actual network, and the internal vertices
correspond to the connections; that is, the dendrogram shows a hierarchical decomposition (level-wise)
of the network into communities. The method runs in O(|E|d log |V|) time, where d is the depth of the
dendrogram representing the network’s community architecture.
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4.3. Metrics for Evaluating Community Detection Methods

A comprehensive list consisting of 15 community-recommended metrics has been considered to
assess the community detection methods summarized above [37]. We note that the following metrics
are scoring functions that perform mathematical formalization of the community-wise connectivity
structure of a provided set of vertices and identify communities as high-scored sets. To summarize
these metrics, let us consider a graph G(V, E) with n = |V| vertices and m = |E| edges, and a
community is defined as a set S of nS vertices and mS edges.

Fraction Over Median Degree (fomd): Let the degree of u for each vertex u ∈ S be denoted by
d(u), and let dm be the median across the degrees d(u). Then, fomd is determined as the fraction of
vertices in S with an internal degree greater than dm; that is, f (S) = |{u:u∈S,|{(u,v):v∈S}|>dm}|

nS
. The denser

and more cohesive the communities, the higher the associated fomd scores.
Max odf (out degree fraction): Max odf evaluates the maximum ratio of edges of a vertex in

community S which point outward from S. That is, f (S) = maxu∈S
|{(u,v)∈E:v/∈S}|

d(u) . According to Max
odf, a community is characterized as a set of vertices that connect to more vertices within the set than
to vertices outside of it. As a result, better communities are associated with lower Max odf scores.

Triangle(Triad) Participation Ratio (tpr): Let Tc denotes the number of vertices which form a
triangle in S. The tpr metric measures the ratio of vertices belonging to a triangle and can be formulated
as: f (S) = |{u:u∈S,{(v,w):v,w∈S,(u,v)∈E,(u,w)∈E,(v,w)∈E}6=∅}|

nS
. Better community clustering yields higher tpr

scores.
Internal Edge Density: For a set S, let us denote the maximum number of possible edges by

mSmax = nS(nS− 1)/2. The internal edge density is the ratio of the edges that are actually in S, denoted
by mS, over mSmax; that is, f (S) = mS

nS(nS−1)/2 . This metric represents the internal connectivity of a
cluster (community) and a higher score indicates that there are more connections within the vertices of
that community.

Average Internal Degree: This metric determines the average internal degree of the members of
set S and can be formulated as: f (S) = 2mS

nS
. The denser a community, the higher its average internal

degree score.
Cut Ratio: Let CS denotes the edges that are going outward from a set S. The cut ratio score

measures the ratio of CS over all possible edges and is defined as: f (S) = CS
nS(n−nS)

. Better communities
are associated with lower scores.

Expansion: This metric calculates the number of edges (for each vertex) going out of a set S and
can be formulated as: f (S) = CS

nS
. Lower scores correspond to better communities.

Edges Inside: This metric measures the internal connectivity of a set S as f (S) = mS. Better
communities are related with higher scores.

Conductance: This metric is based on the combination of internal and external connectivity and
is measured as: f (S) = CS

(2mS+CS)
. Lower scores relate with well-separated communities.

Normalized Cut: This metric is defined as: f (S) = CS
(2mS+CS)

+ CS
2(m−mS)+CS

. The metric has the
special property that concurrently meets the two following objectives: maximization of dissimilarity
across communities and minimization of overall similarity (eschewing the unnatural bias for breaking
up small sets). Lower values of normalized cut maintain balance between these two objectives.

Coverage: This metric measures the ratio of the number of intra-community edges to the number
of edges in the graph and is defined as: f (S) = ω(C)

ω(G)
. Here, ω(C) = ∑k

i=1 ω(E(vx, vy)); vx, vy ∈ Ci.
Higher coverage values indicate that there are more connections within communities rather than edges
linking various communities. In fact, the ideal scenario is that communities are completely separated
from one another, which would correspond to a coverage of 1 (the maximum possible value).

Average odf This metric provides the average ratio of edges that point outward of S over vertices
in S and is defined as: f (S) = 1

nS
∑u∈S

|{(u,v)∈E:v/∈S}|
d(u) . Lower values of average odf relate with better

communities.
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Modularity: This metric is based on the network model and determines the difference between
the number of edges within S and the anticipated number of such edges in a random graph of exactly
the same degree sequence. Modularity can be defined as: f (S) = 1

4 (mS − E(mS)). Higher values of
modularity correspond to denser connections within a community than anticipated at random.

Flake odf: This metric combines internal and external connectivity and determines the fraction of
the number of vertices with fewer connections within the community than with the outside. Flake
odf is defined as: f (S) = |{u:u∈S,|{(u,v)∈E:v∈S}|<d(u)/2}|

nS
. Better communities are associated with higher

values.
Separability: This is a community-goodness metric [37] based on the intuition that good

communities are well-separated (have relatively few edges from set S to the rest of the network).
Separability finds the ratio between edges pointing in and outside of the set S and is defined as:
f (S) = mS

CS
. Higher value indicate better communities.

We note that these metrics can be grouped into four major classes [37]: metrics based on internal
connectivity (fraction over median degree, triangle participation ratio, internal edge density, average
internal degree, edges inside), metrics based on external connectivity (cut ratio, expansion), metrics
based on internal-external connectivity (conductance, normalized cut, max odf, average odf, flake odf),
and metrics based on the network model (modularity).

4.4. Community Selection for Decoy Selection

The methods described above organize decoys into communities (more generally, groupings)
by using ideas from network community detection. In previous work [27], we have used ideas from
statistics and computational geometry to group molecular structures into energy basins, leveraging
the concept of the energy landscape. In that work, ranking-based methods are also debuted that
evaluate groupings based on group-level characteristics and use these characteristics to rank groupings.
Rankings provide a straightforward approach for decoy selection, and the quality of top-rank, selected
groupings can be evaluated in the specific context of decoy selection.

Here, building on work in [27], we summarize what group-level characteristics can be associated
with communities. They fall into three categories: size, energy, and hybrid characteristics. The size of a
community is the number of decoys/vertices in it. Energy can also be associated with a community.
We note that the decoys we consider here are generated from template-free methods, which pursue
an optimization approach that seeks to minimize the interatomic energy in a structure via a selected
energy function. The result is that each decoy has an associated energy value. Given the energies of
decoys in a community, the energy of a community can be defined as the minimum energy over all
decoys in it or the average over the energies of the decoys in it.

Whether size or energy, a selection technique ranks (via sorting) the communities and selects the c
top-rank communities, offering them as “prediction” for where native and near-native structures reside.
We refer to the size-based ranking/selection strategy as Sel-S. We recall that considering only energy
would promote a significant number of false positives, as it is well known that protein energy functions
are inherently inaccurate (which is the reason decoy selection remains challenging, as summarized in
Section 1). Therefore, we consider both size and energy together in a second selection strategy to which
we refer as Sel-S+E; we consider the l > c largest communities and then re-sort them from lowest to
highest energy, selecting the top c of them for prediction.

Hybrid characteristics consider both size and energy but additionally take into account the
possibility that size and energy are possibly conflicting optimization criteria. Since solutions
minimizing all conflicting objectives simultaneously are typically non-existent, Pareto-optimal
solutions are sought. A Pareto-optimal solution cannot be improved in one objective without sacrificing
the quality of at least one other objective. That is, a solution S1 Pareto-dominates another solution S2 if
the following two conditions are satisfied: (1) For all optimization objectives i, scorei(S1) ≥ scorei(S2);
(2) For at least one optimization objective i, scorei(S1) > scorei(S2).
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Based on the above, two additional quantities, Pareto Rank (PR) and Pareto Count (PC), can
be associated with each community C. These two quantities employ the concept of dominance,
summarized above. PR(C) is the number of communities that dominate C. PC(C) is the number of
communities that C dominates. It is now straightforward to use these two new, hybrid characteristics,
in the same ranking-based manner. We just note that in Sel-PR, the communities are sorted by low to
high PR values; in Sel-PR+PC, PC is additionally considered as follows: Communities with the same
PR value are additionally sorted from high to low PCs.

4.5. Evaluating Selected Communities

We note that the ranking-based techniques described above complete an unsupervised learning
framework, where we first organize decoys into communities and then automatically select a set S of
decoys from the top c selected communities to offer as “prediction”. As we relate in Section 2, c can be
varied so as to evaluate not only the top community but to additionally extend the analysis to the top
c > 1 communities.

The set S of decoys offered as prediction can now be evaluated in the presence of a known native
structure. The native structure is treated as the ground truth. Decoys within a dist_thresh RMSD of
the native structure are considered near-native and are labeled as true positives (TP). We delay details
on the selection of dist_thresh and its impact on the evaluation. Two metrics inspired from machine
learning can be associated with a selected set S of decoys [27]: (1) n (number) and p (purity). The first
measures the percentage of near-native decoys in S relative to the overall number of near-native decoys
in the entire decoy dataset. The second measures the percentage of near-native decoys in S over the
number of decoys in S itself. We note that p penalizes S if S contains a high number of false positives
(non-native decoys) and so is a useful metric for decoy selection. If a set of decoys is presented to
contain the true answer but the majority of decoys are false positives, then the ratio of signal to noise is
too low to be useful for automated decoy selection. In contrast, a set with more near-native decoys is a
better “prediction,” as the likelihood of selecting a near-native decoy uniformly at random from it is
higher when the number of false positives is low.

We note that selecting a threshold dist_thresh RMSD allows populating the positive data set and
carry out further evaluation. The threshold dist_thresh is set on a per-target basis, as there are protein
targets on which the quality of generated decoys suffers from either the size and/or fold of the protein
under investigation. We have taken care to consider proteins that are easy, medium, and hard in their
difficulty for template-free structure prediction methods, such as Rosetta. For instance, we include in
our evaluation cases where Rosetta does not get close to 3 Å of the known native structure. As we
have done in previous work [27], we consider the following thresholds: If the lowest lRMSD min_dist
(over all decoys) from a given native structure is ≤0.7 (these are considered easy cases), dist_thresh
is set to 2 Å. Otherwise, dist_thresh is set to the minimum value that results in a non-zero number
of near-native decoys in the largest-size cluster obtained via leader clustering; the latter is used as
a baseline in our evaluation of community-based decoy selection. For medium-difficulty proteins
(0.7 Å< min_dist < 2 Å), dist_thresh varies between 2−4.5 Å. We set dist_thresh to 6 Å if min_dist
≥ 2 Å (these are the hard cases). This ensures a non-zero number of near-native decoys for evaluation.
A detailed analysis of the impact of this threshold on cluster-based decoy selection is related in [27].

4.6. Implementation Details

Our in-house codes are implemented in Python. In the nngraph construction, δε = 0.2 Å, k = 20,
nε = 5; ε0 is set so as not to exceed 900K edges, varying in 0.5−2.2 Å for most test cases, with one
particularly challenging case for Rosetta set to 6.0 Å. The construction of the nngraph takes between
26 min to 4.25 h on one CPU. We consider different proximity-query data structures but select the
kd-tree over the vp-tree for fast extraction of nearest neighbors, based on analysis of the time demands
as a function of dimensionality (data not shown). The considered community detection methods take
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between 7 minutes and 35 hours using 8-cores and 1GB memory per core. We note that we consider
1 ≤ c ≤ 3 in community selection.

Supplementary Materials: The following are available online. Supplementary Figure S1: Comparison of
community detection methods (encoded by different colors) on undirected nngraphs embedding each of the
10 decoy datasets along (a) Modularity, (b) Conductance, (c) Max odf (out degree fraction); Figure S2: Comparison
of community detection methods (encoded by different colors) on undirected nngraphs embedding each of the
10 decoy datasets along (a) expansion, (b) cut ratio, (c) average odf (out degree fraction); Figure S3: Comparison
of community detection methods (encoded by different colors) on directed nngraphs embedding each of the
10 decoy datasets along (a) expansion, (b) cut ratio, (c) average odf (out degree fraction); Figure S4: Comparison of
the various selection strategies on the percentage of near-natives of the top 3 communities C1−3 selected over
communities detected with the Louvain method on directed nngraph embeddings of decoy data in (a), the Louvain
method on undirected nngraph embeddings of decoy data in (b), and the GMM method on undirected nngraph
embeddings of decoy data in (c); Figure S5: Comparison of the various selection strategies on the purity of the
top 3 communities C1−3 selected over communities detected with the Louvain method on directed nngraph
embeddings of decoy data in (a), the Louvain method on undirected nngraph embeddings of decoy data in (b),
and the GMM method on undirected nngraph embeddings of decoy data in (c).
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The following abbreviations are used in this manuscript:

GMM Greedy Modularity Maximization
IM InfoMap
LE Leading Eigenvector
Lo Louvain
LP Label Propagation
PDB Protein Data Bank
CASP Critical Assessment of protein Structure Prediction
lRMSD least root-mean-squared-deviation
ML Machine Learning
PC Pareto Count
PR Pareto Rank
SVM Support Vector Machines
WT Walktrap
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