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A Combination of Hermetia illucens
Reared on Fish Waste and Poultry
By-Product Meal Improves Sensory
and Physicochemical Quality of
Farmed Barramundi Filets
Md Reaz Chaklader*, Wing H. Chung, Janet Howieson and Ravi Fotedar

School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia

The proximate composition, sensory attributes, and shelf life of filets from barramundi,

Lates calcarifer, were fed a fishmeal (FM) based diet (0PBM-0HI) and three test diets

replacing FM protein entirely with 85% poultry by-products meal (PBM) and 15%

Hermetia illucens (HI) larvae meal protein (85PBM-15HI), 80% PBM and 20% HI

(80PBM-20HI) and 75% PBM and 25% HI (75PBM-25HI) were investigated. After a

56-day feeding trial, the crude protein, moisture, and ash percentage were unchanged

while the crude lipid increased in barramundi filet when fed with PBM-HI-based diets.

The increase in C12:0 (lauric acid) and C14:0 (myristic acid) resulted in an increase

in the total saturated fatty acid while the monounsaturated fatty acid elevated due

to an increase in C16:1n7 and C18:1cis + trans in the filet of the barramundi fed

with a PBM-HI based diet. While the decrease in the total polyunsaturated fatty acid

(PUFA) content in PBM-HI based fed barramundi filet was mainly due to a decrease

in essential fatty acids including C20:5n3 [eicosapentaenoic acid (EPA)] and C22:6n3

[docosahexaenoic acid (DHA)] when compared with the 0PBM-0HI fed barramundi filet.

The sensory quality was improved by PBM-HI-based diets, manifested by the highest

scores given by the panelists. Texture profiles were not affected by diet but cohesiveness,

gumminess, and chewiness decreased with increasing storage time. On days 1 and

8, skin brightness decreased in the skin of the barramundi fed with 85PBM-15HI and

80PBM-20HI compared with the skin of the 0PBM-0HI fed barramundi. Skin redness

improved in fish-fed PBM-HI-based diets. The flesh brightness and yellowness increased

significantly in barramundi when fed with PBM-HI-based diets. On days 1 and 4, the flesh

brightness of the barramundi fed with PBM-HI-based diets demonstrated an increase

compared with 0PBM-0HI. PBM-HI diets suppress lipid oxidation while lipid oxidation

increased over the storage time. In summary, the improvement in sensory quality and

color coupled with the suppression of rancidity in barramundi filets underpinned the

potentiality of using the mixture of PBM and HI transformed from food waste in the

barramundi diet to improve the filet quality and thus support sustainability and circular

economy in aquaculture.

Keywords: Lates calcarifer, black soldier fly larvae, poultry by-products, circular bioeconomy, sensory evaluation,

filet brightness, lipid oxidation
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INTRODUCTION

The rapid expansion of the global aquaculture industry has
exceeded the annual growth rate of other animal protein-
producing industries such as the poultry, pork, dairy, and beef
industry (1). However, due to high cost and sustainability issues
associated with fishmeal (FM), this resource is progressively
being replaced by various plant and animal-based sources to fill
the macronutrient void in aquafeed production, an approach
also supporting the provision of aquaculture sustainability. The
high inclusion of plant-based sources featuring low protein
content, imbalanced amino acid profile, and biologically active
antinutritional factors have been reported to stimulate a negative
effect on carnivorous fish, such as barramundi, Lates calcarifer as
demonstrated by a number of studies in our laboratory (2–9).

Barramundi is an important tropical food fish farmed in South
East Asian countries andAustralia and its 40% annual production
come from captive aquaculture production among the total
global harvest estimated at around 164,000 t per annum where
in Australia, 60% of barramundi is produced by aquaculture
out of the total national production (10–12). However,
barramundi farming in Australia is heavily dependent on
imported conventional protein sources, consequently reducing
the profitability of barramundi (13). Recent innovations have
successfully validated FM-free diets for barramundi (14, 15),

GRAPHICAL ABSTRACT |

however, farmed barramundi of all sizes develop blue-grayish
discoloration on the dorsal area of filet flesh associated with
the acceptance of consumers (16). The same authors attempted
to resolve the blue-grayish problems in barramundi by dietary
modifications in a trial but the problems were unresolved. The
mixture of poultry by-product and black soldier fly, Hermetia
illucens (HI) larvae meal on flesh color and other filet quality
traits beyond the growth and health performance at the exclusion
of FM has not been thoroughly investigated.

Poultry by-products meal (PBM) has been considered as
one of the animal protein ingredients to replace FM in the
diets of carnivorous and omnivorous aquaculture species (17).
This is due to high production volume together with cheaper
price, high protein, complete amino acid profile, a good amount
of essential fatty acids, vitamins, minerals, and acceptable
palatability (18–20). Nevertheless, the nutritional composition
of PBM, depending on processing techniques and suppliers,
can vary and often lacks essential fatty acids and amino acids.
PBM has been evaluated on numerous finfish and shellfish
species with various successes (20). In barramundi, PBM can
completely replace FM without compromising the growth,
serum metabolites, immune response, and integrity of various
tissues when complemented with fish protein hydrolysate and/or
insects larvae (21–24). However, the potentiality of an ingredient
cannot be solely evaluated by the effects on growth and other
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physiological and immunological parameters as dietary alteration
may stimulate alteration in organoleptic characteristics and other
biochemical composition functions of fish filets. The exclusive or
complete inclusion of animal protein ingredients such as PBM
or meat meal had no effect on the barramundi filet texture
and color (24, 25) though female tenches, Tinca tinca filet
quality was impacted by PBM (26). Except for filet organoleptic
characteristics, PBM alone reduced the retention of nutrient
composition such as essential amino acid and fatty acid for
barramundi (27, 28), however, such effects were not observed
for other species. Nonetheless, the effects that the mixture
of HI larvae meal and PBM might have on barramundi filet
organoleptic traits have not yet been evaluated.

Recently, insects have received much attention in the light
of circular bioeconomy principles being applied to aquaculture
(29). Besides valorizing low-quality by-products or organic waste
leaving less environmental footprint (30–32), HI, one of the
promising insects can accumulate a good amount of proteins
(31–59%) featuring minor deficiency in essential amino acids
suitable for omnivorous and carnivorous fish. It is also a good
source of fat (11–49%), vitamins, minerals, and even biologically
active compounds such as chitin, antimicrobial peptide, and
short- and medium-chain fatty acids (SCFAs and MCFAs) (33),
making this insect as novel alternative protein ingredients.
These biologically active compounds have been associated with
improved fish health by enhancing the innate immune response
and modulating the gut microbiota (34–37). However, due to
lower protein levels, the utilization of full-fat HI (FHI) larvae
meal is a less popular approach than the use of defatted HI
larvae meal (38). It is worthy to mention that a number of recent
studies have proven the ameliorative effect of full-fat HI larvae
in PBM and plant protein on the health of barramundi (39) and
rainbow trout (40). Also, the replacement of FM with full-fat HI
larvae meal alone improved the feed utilization, gut health, and
immune responses of different fish species. What is more, the
utilization of full-fat HI larvae meal will reduce the additional
cost incurred by the defatting process which may degrade the
nutritional quality and functional compounds (38). However,
evaluating filet quality traits beyond the health aspects of the
fish is a research area of high interest while introducing new
alternative protein ingredients in aqua diets. It has been reported
that the filet qualitative traits of fish were influenced by the HI
larvae, nevertheless, the effect of full-fat HI larvae meal in PBM
replacing FM completely on the filet quality traits has not been
investigated till now.

Besides the influence of dietary modification on filet quality,
the post-harvest condition has been reported to influence the filet
quality attributes (12). Hence, the enrichment of fish filet muscle
with functional molecules has been suggested as a good strategy
to extend the shelf-life by reducing lipid oxidation (41, 42). This
was underpinned by Jones and Carton (12) who found that
feeding barramundi with alpha-tocopherol acetate enriched diet
retarded the lipid oxidation thereby extending shelf-life during
chilled storage. Hence, complementation of PBM with full-fat
HI rich in functional molecules could be an option to prevent
rancidity production and associated deteriorations in farmed
barramundi filets during storage conditions.

The current study integrated the findings on growth
performance and organo-somatic indices, serum metabolites,
gastrointestinal mucosal morphology, and gut microbiota, and
immunity of the barramundi fed with the mixture of full-fat HI
larvae and PBM (43), by exploring the influence of this mixture
of two animal protein sources on the filet quality traits in terms
of fatty acids, texture, color, and muscle structure during shelf life
for 8 days.

MATERIALS AND METHODS

Ethical Statement
The feeding trial and all the protocols conducted at the Curtin
Aquatic Research Laboratory (CARL) were performed in strict
compliance with the guidelines and regulations of Australia and
the acts were reviewed and approved by the Curtin University
Animal Ethics Committee (ARE2018-37).

Diets, Fish Husbandry, and Sampling
The details of the diet formulations and fish rearing are reported
in our earlier study (43). Briefly, four isonitrogenous and
isolipidic were formulated: an FM-based diet control (0PBM-
0HI) diet and three diets with the complete replacement of FM
protein with 85% PBM and 15% HI larvae meal (85PBM-15HI),
80% PBM and 20% HI larvae (80PBM-20HI), and 75% PBM
and 25%HI larvae (75PBM-25HI). The ingredients and chemical
composition of the diets are presented in Table 1.

After acclimatization with the experimental condition, 300
barramundis with 7 g of mean initial weight were stocked
into 12 tanks (73 × 84 cm and 300 L capacity) with 25 fish
per tank. A biological filter, heater, and aerator were set up
with each tank. Water quality parameters including dissolved
oxygen, temperature, salinity, ammonia, nitrite and nitrate, and
photoperiod were monitored daily and maintained within the
recommended ranges as illustrated in our earlier study (22, 43).
Each diet was assigned in triplicate and the fish were hand-fed
twice a day (9.00 and 18.00) until satiety for 56 days. After 56
days of the feeding trial, the fish were not fed for 24 h and 8
fish/replicate were fileted immediately after stabbing the brain.
Skinless filets from two fish were freeze-dried and stored at
−80◦C for further fatty acid analysis. For the remaining six fish,
one side of the filets was transported immediately post-mortem
on sterilized ice to a simulated display refrigerator for shelf-life
study, while the other filets were subjected to individual quick
freezing (IQF) with liquid nitrogen and stored at −80◦C to
preserve sensory quality until sensory evaluation.

Proximate Composition Analysis
The crude protein, crude fat, ash, and moisture were analyzed
following the Association of Official Analytical Chemists
(AOAC) (44) standard methods. For protein analysis, 1 g of the
sample, a boiling chip, and a Kjeldhal catalyst tablet were placed
in a digestion tube. Then, 8ml of a sulfuric acid-phosphoric acid
mixture along with 4ml of 35% hydrogen peroxide were added
to the tube, and the digestion was completed using a Kjeltec
digester block (Foss Tecator 2020, Högänas, Sweden) at 420◦C.
After distilling the digested samples using the Kjeltec distilling
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TABLE 1 | Feed formulation and nutritional composition of control and test diets containing different proportions of poultry by-products meal (PBM) and Hermetia illucens

(HI) larvae meal.

Experimental diets *Ingredients

aIngredients (g/100g) 0PBM-0HI 85PBM-15HI 80PBM-20HI 75PBM-25HI PBM FHI

FM 72.00 0.00 0.00 0.00 - -

PBM 0.00 60.50 56.00 53.00 - -

Canola oil 1.00 3.00 2.00 1.10 - -

Full-fat HI 0.00 16.70 23.00 28.70 - -

Corn/wheat starch 7.00 8.00 5.90 6.00 - -

Lecithin–Soy (70%) 1.00 2.00 2.00 2.00 - -

Vitamin C 0.05 0.05 0.05 0.05 - -

Dicalcium Phosphate 0.05 0.05 0.05 0.05 - -

Wheat (10 CP) 16.90 6.20 7.50 6.40 - -

Vitamin and mineral premix 0.50 0.50 0.50 0.50 - -

Salt (NaCl) 1.00 1.00 1.00 1.00 - -

Cod liver oil 0.50 2.00 2.00 1.20 - -

Nutritional composition (%)

Crude protein 47.88 47.76 47.36 47.41 - -

Crude Lipid 12.59 13.29 13.78 13.41 - -

Moisture 4.56 4.68 4.53 4.36 - -

Ash 10.97 11.10 11.25 11.06 - -

Fatty acid (% of total FA)

C10:0 0.04 0.32 0.44 0.57 0.04 2.31

C12:0 1.01 7.51 10.42 13.70 0.09 43.05

C14:0 2.32 2.11 2.61 3.04 0.68 6.80

C16:0 20.12 16.55 16.72 16.94 21.65 11.11

C16:1n7 2.80 3.45 3.61 3.70 5.01 1.55

C17:0 1.16 0.31 0.34 0.37 0.45 0.53

C18:0 6.75 5.11 5.05 5.08 7.07 3.51

C18:1cis + trans 20.50 37.23 34.69 31.93 40.88 16.05

C18:2 cis 10.17 16.42 15.33 14.92 16.09 12.23

C18:3n3 2.22 3.91 3.61 3.34 2.41 1.65

C20:1 1.41 1.57 1.56 1.21 0.56 0.09

C20:4n6 1.95 0.77 0.77 0.77 1.67 0.05

C20:5n3 3.66 1.07 1.20 1.12 0.16 0.05

C22:4n6 1.80 0.08 0.07 0.07 0.04 0.00

C22:5n3 1.13 0.34 0.35 0.28 0.34 0.01

C22:6n3 19.39 1.35 1.25 0.88 0.25 0.01

SFA† 33.12 32.55 36.20 40.34 31 67.86

MUFA‡ 25.47 42.65 40.26 37.17 46.88 17.92

PUFA 41.58 24.97 23.69 22.60 22.18 14.23

n-3 PUFA 26.95 7.04 6.86 6.16 3.33 1.75

n-6 PUFA 4.05 1.09 1.08 1.15 2.45 0.15

0PBM-0HI, fishmeal based diet; 85PBM-15HI, 85% protein from poultry by-product meal and 15% H. illucens; 80PBM-20HI, 80% protein from poultry by-product meal and 20% H.

illucens and 75PBM-25HI, 75% protein from poultry by-product meal and 25% H. illucens.
aFeed formulation and nutritional composition from our previous study (43).
†
Includes also C8:0, C10:0, C11:0, C13:0, C15:0, C17:0, C20:0, C21:0, C22:0, C23:0, and C24:0.

‡ Includes also C14:1n5, C15:1, C17:1, C22:1n9, and C24:1.

Includes also C18:2 trans, C18:3n6, C18:4n3, C20:2, C20:3n6, C20:3n3, C22:2.

Includes also C18:4n3 and C20:3n3.

Includes also C18:3n6, C20:3n6.

*Fatty acids composition of PBM and FHI from our previous study (23).
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unit (Foss Tecator 1002, Högänas, Sweden), the distillate was
collected into a flask with 25ml of boric acid indicator containing
bromocresol green and methyl red which was subjected to
titration with hydrochloric acid and conversion factor of 6.25 was
used to calculate the crude protein content.

The crude fat content was determined using the petroleum
ether extraction method where the fat from the samples was
extracted using the Soxhlet unit (Extraction unit E-816, BÜCHI
Labortechnik AG, Flawil, Switzerland). The extracted fat was
then dried at 105◦C till constant weight was obtained and the
crude fat percentage was calculated by dividing the weight of the
extracted fat over the sample weight.

For the ash content determination, the sample was weighed
before and after heating overnight at 550◦C using a muffle
furnace (Thermolyne muffle furnace, model 48000, Thermo
Fisher Scientific Inc, Iowa, USA). The ash content was calculated
by dividing the post-heating sample weight over the initial
sample weight.

For moisture estimation, the sample was weighed before and
after oven drying at 105◦C until a constant weight was obtained.
The moisture content was then calculated by dividing the post-
drying weight over the pre-drying weight.

Fatty Acid Analysis
The fatty acid of the experimental diets and whole freeze-dried
filet (skinless) were analyzed following the protocol of O’Fallon
et al. (45) as reported in our earlier study (28).

Sensory Quality
All the procedure-related sensory trial was carried out in
strict compliance with the Australian Code for the Responsible
Conduct of Research and National Statement on Ethical Conduct
in Human Research, and reviewed and approved by the
Curtin University Human Research Ethics Committee (Approval
Number: HRE2020-0689).

The sensory quality of the barramundi filets at the end of the
56-day feeding trial was designated and evaluated following the
method described by Gedarawatte et al. (46) and Lawless and
Heymann (47). Eleven persons with no allergies, smoking habits,
chronic health issues, visual impairment, respiratory issues, taste
disorders, pregnant condition, not breast-feeding or on long-
term medication, and who consume fish at least once every
fortnight, were recruited, consented, and trained according to
AS 2542.1.3:2014 (48) and CAC-GL 31-1999 (49). Before starting
the sensory evaluation, screening on sensory sensitivity was
conducted using multiple fish filets of various qualities. Three of
the potential panelists were excluded due to their low precision
in determining fish quality after repeat exposures. After that, 9
participants in the age of 18–50, consisting of 5 females and 4
males were screened and considered to be eligible and included
in the study as semi-trained panelists. A labeled magnitude
scale (50) was used to evaluate the visual appearance, odor, and
overall acceptability of the raw barramundi samples in order to
understand the quality of the barramundi in retail display.

Then, the same samples were sous-vided at 74◦C for 6min in
vacuum-sealed boil-in pouches and served to the panelists within
15min to evaluate the appearance, odor, texture, taste, and overall
acceptability of the cooked samples similar to the raw samples.

Simulated Retail Display for Shelf-Life
Studies
The freshly fileted fish samples were immediately placed on ice
inside an uncovered polystyrene box. The box was then placed
in a 4◦C refrigerator to simulate conditions in retail display.
Melted ice was drained daily with new ice replaced. Six filets from
different fishes were analyzed per treatment during each day on
Days 1, 4, and 8 post-fileting.

Physical Parameters

Texture Profile Analysis
Before texture analysis, the fish filets were tempered at 24.5◦C for
30min. For each quality, A 5 × 5 cm fish cube sampled between
the pelvic and anal fin portion along the lateral line including
the dorsal and ventral portion, was then compressed using the
texture analyzer TVT 6700 (PerkinElmer, Inc., Waltham, Middx,
USA) equipped with a 20 kg load cell and a 25mm flat-ended
cylindrical probe. Two consecutive cycles of 50% compression
with 5 s in between were conducted under a constant speed
of 50 mm/min. Six texture parameters: hardness, cohesiveness,
adhesiveness, springiness, gumminess, and chewiness were
obtained from each analysis using Bourne’s (51) calculation
methods and the TexCal 5.0 instrumental software.

Microscopic Observation of Filet Tissues
One portion of muscle at days 1, 4, and 8 stored at 0◦C was
cut from three filets/treatment and immediately fixed in 10%
buffered formalin before dehydrating with a series of alcohol.
Then, the samples were embedded in paraffin, sectioned to 5µm
thickness, and stained with hematoxylin and Eosin (H&E) for
observation under a light microscope according to the standard
histological procedure.

Drip Loss
Drip loss was calculated from day 0 to 8 by dividing the weight
loss over the initial weight of the fresh fish samples and expressed
as a percentage.

Color
Prior to color measurement, HunterLab ColorFlex colorimeter
(Hunter Association Laboratory Inc., Reston, VA, USA)
was calibrated using manufacturer standards. Surface color
coordinates (L∗, a∗, b∗) were then obtained from portions along
the lateral filet line.

Quality Index
The QI of the barramundi filets was determined following the
method described by Fuentes-Amaya et al. (52). In brief, the skin,
appearance, and flesh of the fish were scored out of 10 based
on quality parameters such as brightness, transparency, texture,
blood color, odor, and gaping.

Chemical Parameters

pH
Approximately 1 g of muscle tissue was homogenized with 10ml
of distilled water, mixed using a rotary suspension mixer (Ratek,
Boronia, Vic, AU) for 30min and the pH values of the aliquot
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were determined using a three-scale calibrated Aqua-pH meter
(TPS Pty, Ltd., Brendale, QLD, AU) (44).

Lipid Oxidation
Lipid oxidation was determined using 2-thiobarbituric acid
reactive substances (TBARS) following the method of Raharjo
et al. (53) with somemodifications. A total of 10 g ofmuscle tissue
were added to 40ml of 5% trichloroacetic acid (TCA) along with
1ml of 0.15% 2,6-di-teri-butil-4-methylphenol (BHT) in ethanol.
The mixture was homogenized, filtered, and adjusted with 5%
TCA to 50ml. After which, 2ml of 0.08M 2-thiobarbutric acid
(TBA)was added to 2ml of sample in a screw cap test tube, heated
at 100◦C for 10min. Absorbance was then measured at 532 nm
and concentration was calculated using standards prepared with
1,1,3,3-tetrathyoxypropane (TEP) in 20% TAC at 1–10 µM.

Statistical Analysis
All results are presented as mean ± SE. To determine the
effect of diet and storage, two-way ANOVA was performed with
Tukey’s multiple comparison test if the data met normality and
homogeneity of variance, checked by Kolmogorov-Smirnov and
Levene’s tests, respectively. If any of the factors were significant,
one-way ANOVA was performed individually to compare the
data among the diets and storage time. Data on proximate
composition and fatty acid were compared using one-way
ANOVA with Tukey’s multiple comparison test. Variations were
considered as significant at 0.05 < P < 0.001.

RESULTS

Filet Proximate Composition and Fatty
Acid Profile
The proximate composition of barramundi filet fed PBM-HI was
similar to the 0PBM-0HI fed barramundi filet, except for crude
lipid which increased in the filet of the barramundi fed with PBM-
HI based diets (Table 2). The total saturated fatty acid (SFA)
increased significantly due to a gradual increase in C12:0 (lauric
acid) and C14:0 (myristic acid) in the filet of the barramundi
fed with PBM-HI-based diets. A gradual increase of HI larvae
meal in the diets also elevated the level C12:0 and C14:0 in
the filets from the respective diets. An elevation of the C16:1n7
and C18:1cis + trans concentration resulted in an increase in
the total concentration of monounsaturated fatty acid (MUFA)
in the filet of the barramundi fed with PBM-HI-based diets.
The lower concentration of total n-3 polyunsaturated fatty acid
(PUFA) and n-6 PUFA, particularly, C20:5n3, C22:5n3, C22:6n3,
C20:4n6, and C22:4n6, decreased the total PUFA in PBM-HI
fed barramundi filets. A similar tendency was observed in the
respective diets (Table 1).

Sensory Attributes
The sensory evaluation of the raw and cooked flesh of the
barramundi fed with fishmeal-free diets containing the different
proportions of PBM and HI larvae meal for 56 days is
presented in Table 3. PBM-HI-based diets improved the raw
filet of barramundi, manifested by the higher scores given by
the panelists for visual appearance, odor, and overall quality.

TABLE 2 | Filet proximate composition and fatty acid profile (% of total FA) of

barramundi (n = 6) fed with the mixture of PBM and full-fat black soldier fly larvae.

Experimental diets

0PBM-0HI 85PBM-15HI 80PBM-20HI 75PBM-25HI

Proximate composition (%, Wet basis)

Moisture 76.10 ± 0.25 76.23 ± 0.35 75.57 ± 0.05 76.40 ± 0.35

Crude protein 20.58 ± 0.56 20.04 ± 0.24 20.23 ± 0.27 20.38 ± 0.39

Crude lipid 1.77 ± 0.15b 2.04 ± 0.35ab 2.25 ± 0.05a 2.86 ± 0.61ab

Ash 1.10 ± 0.07 1.12 ± 0.05 1.17 ± 0.03 1.07 ± 0.02

Fatty acid (% of total fatty acid)

C12:0 1.39 ± 0.84c 4.43 ± 0.16b 6.67 ± 0.14a 8.65 ± 0.22a

C14:0 2.30 ± 0.14c 2.28 ± 0.03c 2.87 ± 0.04b 3.47 ± 0.06a

C16:0 19.26 ± 0.24a 17.51 ± 0.08b 17.60 ± 0.29b 17.69 ± 0.02b

C16:1n7 3.35 ± 0.15c 3.64 ± 0.05bc 3.94 ± 0.04ab 4.17 ± 0.04a

C18:0 6.39 ± 0.13a 5.51 ± 0.12b 5.21 ± 0.10b 5.25 ± 0.03b

C18:1cis + trans 25.53 ± 1.57b 36.64 ± 0.11a 35.05 ± 0.17a 33.32 ± 0.10a

C18:2 cis 9.59 ± 0.81b 15.44 ± 0.09a 14.72 ± 0.03a 14.33 ± 0.14a

C18:3n3 2.00 ± 0.12c 3.33 ± 0.06a 3.21 ± 0.44ab 3.00 ± 0.02b

C20:1 1.20 ± 0.03b 1.38 ± 0.01a 1.40 ± 0.00a 1.13 ± 0.02b

C20:4n6 1.93 ± 0.06a 1.48 ± 0.09b 1.31 ± 0.05b 1.31 ± 0.08b

C20:5n3 2.51 ± 0.20a 1.22 ± 0.03b 1.35 ± 0.04b 1.30 ± 0.06b

C22:4n6 1.58 ± 0.24a 0.16 ± 0.01b 0.14 ± 0.01b 0.14 ± 0.01b

C22:5n3 1.71 ± 0.09a 0.98 ± 0.05b 0.95 ± 0.04b 0.95 ± 0.03b

C22:6n3 17.38 ± 2.66a 2.99 ± 0.18b 2.52 ± 0.14b 1.86 ± 0.10b

SFA† 31.20 ± 0.56b 30.73 ± 0.18b 33.40 ± 0.31a 36.20 ± 0.32a

MUFA‡ 30.57 ± 1.64b 42.03 ± 0.13a 40.77 ± 0.20a 39.00 ± 0.12a

PUFA 38.37 ± 2.20a 27.37 ± 0.23b 25.97 ± 0.35b 24.93 ± 0.35b

n-3 PUFA 24.10 ± 2.81a 9.03 ± 0.18b 8.63 ± 0.23b 7.77 ± 0.17b

n-6 PUFA 4.27 ± 0.19a 2.60 ± 0.06b 2.30 ± 0.12b 2.53 ± 0.09b

Different superscript letters in the same row indicate significant differences while the mean

holding no superscript letters indicates no variation between fishmeal (FM) based diet

(0PBM-0HI) and test diets.
†
Includes also C8:0, C10:0, C11:0, C13:0, C15:0, C17:0, C20:0, C21:0, C22:0, C23:0,

and C24:0.
‡ Includes also C14:1n5, C15:1, C17:1, C22:1n9, and C24:1.

Includes also C18:2 trans, C18:3n6, C18:4n3, C20:2, C20:3n6, C20:3n3, C22:2.

Includes also C18:4n3 and C20:3n3.

Includes also C18:3n6, C20:3n6.

Compared with 0PBM-0HI, the cooked odor was better in the
filet of the barramundi fed with PBM-HI-based diets. The cooked
texture and taste were unchanged by the test diets, whereas the
cooked overall quality was better in the filet of the barramundi
fed with PBM-HI-based diets when compared with the filet of
the 0PBM-0HI fed barramundi.

Drip Loss
Diet had no influence on drip loss while storage time had a
significant effect on drip loss (Figure 1). The percent of drip loss
increased significantly over the storage time irrespective of diet.
There was no interaction between diet and storage time.

Texture and Color of Barramundi Filet
None of the texture profiles were influenced by the diet
whereas storage time significantly influenced the cohesiveness,
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TABLE 3 | Sensory quality of the raw and cooked filet of barramundi fed with PBM and HI larvae meal replacing FM entirely for 8 weeks.

0PBM-0HI 85PBM-15HI 80PBM-20HI 75PBM-25HI

Raw visual appearance 3.64 ± 0.41b 6.01 ± 0.65a 5.07 ± 0.48ab 6.55 ± 0.55a

Raw odor 3.56 ± 0.29b 6.60 ± 0.46a 5.63 ± 0.60a 6.37 ± 0.71a

Raw overall quality 3.67 ± 0.37b 6.04 ± 0.63a 5.46 ± 0.34ab 5.99 ± 0.62a

Cooked visual appearance 3.93 ± 0.58b 5.19 ± 0.48ab 6.24 ± 0.46a 5.99 ± 0.71ab

Cooked odor 3.55 ± 0.68b 6.14 ± 0.49a 5.77 ± 0.54a 6.23 ± 0.49a

Cooked texture 4.90 ± 0.61 5.24 ± 0.31 5.94 ± 0.61 6.02 ± 0.69

Cooked taste 3.99 ± 0.76 4.81 ± 0.73 5.39 ± 0.58 5.94 ± 0.64

Cooked overall quality 3.48 ± 0.72b 5.49 ± 0.82ab 5.57 ± 0.49ab 6.23 ± 0.61a

Means are average of six biological replicates ± SE. Different superscript letters in the same row indicate significant differences while the mean holding no superscript letters indicates

no variation between 0PBM-0HI and test diets. Means were compared by one-way ANOVA with Dunnett’s multiple comparisons test at 0.05 < P < 0.001.

FIGURE 1 | Drip loss of barramundi filet after 56 days of feeding PBM and HI-based diets during chilled storage. Box and whiskers plot indicates the range and

square shape marker indicates the number of biological replicates used for the analysis. The black square shape backmarker denotes the mean with standard error.

The effect of factors including diet (D) and storage time (T) and their interaction (D × T) was conducted by two-way ANOVA at P < 0.001. Upper case letters on the

top of the box plot indicate a significant difference between storage times in all test diets.

gumminess, and chewiness, as demonstrated by two-way
ANOVA analysis (Table 4). Cohesiveness, gumminess, and
chewiness decreased in all test diets over the storage time. There

was no interaction found between diet and storage time in the
texture profiles. Skin brightness and redness were significantly
affected by diet. The brightness in the skin of barramundi fed
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TABLE 4 | Texture and color changes of barramundi fed control and test diets containing different proportions of PBM and HI larvae meal during chilled storage.

Experimental diets Two-way ANOVA

0PBM-0HI 85PBM-15HI 80PBM-20HI 75PBM-25HI D T D × T

Texture

Springiness (mm) Day 1 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.01 0.99 ± 0.00

Day 4 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.62 0.66 0.89

Day 8 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Cohesiveness (ratio) Day 1 0.33 ± 0.02 0.34 ± 0.01 0.35 ± 0.01 0.33 ± 0.01

Day 4 0.30 ± 0.02 0.31 ± 0.02 0.32 ± 0.01 0.31 ± 0.01 0.46 0.00 0.98

Day 8 0.30 ± 0.00 0.30 ± 0.00 0.31 ± 0.01 0.32 ± 0.01

Gumminess (g) Day 1 1,673.56 ± 92.96 1,493.84 ± 88.88 1,713.28 ± 17.91 1,711.11 ± 136.02

Day 4 1,268.03 ± 175.40 1,375.89 ± 148.82 1,299.16 ± 93.19 1,485.75 ± 103.87 0.28 0.01 0.77

Day 8 1,297.75 ± 51.85 1,418.23 ± 114.66 1,585.28 ± 107.74 1,568.49 ± 164.75

Chewiness (g/mm) Day 1 1,668.96 ± 93.86 1,492.86 ± 87.19 1,709.05 ± 175.85 1,698.33 ± 132.14

Day 4 1,262.16 ± 174.43 1,371.71 ± 148.42 1,293.11 ± 93.60 1,477.99 ± 102.87 0.29 0.01 0.77

Day 8 1,292.66 ± 50.91 1,407.80 ± 113.14 1,576.33 ± 106.37 1,559.56 ± 164.11

Adhesiveness (g/s) Day 1 −39.60 ± 10.22 −37.39 ± 6.93 −42.00 ± 11.16 −31.18 ± 7.08

Day 4 −46.63 ± 15.48 −38.80 ± 5.15 −40.96 ± 9.54 −32.75 ± 7.65 0.67 0.93 0.88

Day 8 −47.34 ± 11.17 −49.58 ± 20.25 −25.81 ± 6.27 −39.63 ± 15.15

Hardness (g) Day 1 5,067.50 ± 216.77 4,353.00 ± 284.39 4,830.67 ± 350.69 5,146.67 ± 354.13

Day 4 4,170.00 ± 341.12 4,449.67 ± 316.38 4,138.67 ± 283.77 4,721.33 ± 231.06 0.20 0.05 0.35

Day 8 4,324.17 ± 116.64 4,663.50 ± 220.70 5,014.00 ± 229.68 4,926.33 ± 295.69

Skin color

L* Day 1 55.97 ± 1.45 52.27 ± 0.99 50.30 ± 0.93 53.06 ± 1.82

Day 4 54.75 ± 1.30 52.35 ± 0.79 52.52 ± 0.51 54.06 ± 0.90 0.00 0.73 0.42

Day 8 54.41 ± 1.14 50.07 ± 0.97 51.78 ± 0.83 54.97 ± 1.69

a* Day 1 −0.73 ± 0.05 −0.41 ± 0.09 −0.27 ± 0.12 −0.16 ± 0.15

Day 4 −0.63 ± 0.09 −0.44 ± 0.11 −0.54 ± 0.04 −0.58 ± 0.08 0.01 0.00 0.07

Day 8 −0.77 ± 0.07 −0.50 ± 0.11 −0.69 ± 0.10 −0.73 ± 0.14

b* Day 1 −4.04 ± 0.72 −4.95 ± 0.46 −5.45 ± 0.36 −4.21 ± 0.34

Day 4 −5.39 ± 0.63 −5.31 ± 0.28 −5.32 ± 0.20 −6.03 ± 0.48 0.18 0.02 0.24

Day 8 −4.75 ± 0.37 −5.61 ± 0.29 −5.49 ± 0.21 −4.87 ± 0.21

C* Day 1 4.40 ± 0.62 4.98 ± 0.45 5.47 ± 0.36 4.25 ± 0.34B

Day 4 5.44 ± 0.63 5.34 ± 0.28 5.61 ± 0.27 6.06 ± 0.48A 0.21 0.01 0.37

Day 8 4.83 ± 0.36 5.65 ± 0.29 5.54 ± 0.21 4.95 ± 0.20AB

Flesh color

L* Day 1 44.00 ± 0.98 49.37 ± 0.46 48.15 ± 0.63 45.79 ± 0.84

Day 4 45.74 ± 1.13 49.23 ± 0.29 49.50 ± 1.25 49.02 ± 0.37 0.00 0.00 0.02

Day 8 46.74 ± 0.45 48.66 ± 0.62 48.55 ± 0.38 50.30 ± 0.63

a* Day 1 4.47 ± 1.09 1.42 ± 0.3 1.76 ± 0.31 3.41 ± 0.85

Day 4 2.01 ± 0.44 2.06 ± 0.24 2.84 ± 1.00 2.26 ± 0.53 0.23 0.18 0.03

Day 8 1.80 ± 0.33 1.96 ± 0.58 2.10 ± 0.42 2.09 ± 0.26

b* Day 1 6.29 ± 0.63 5.68 ± 0.21 5.32 ± 0.31 5.86 ± 0.40

Day 4 5.15 ± 0.47 6.45 ± 0.27 7.31 ± 0.55 6.33 ± 0.51 0.00 0.06 0.00

Day 8 4.79 ± 0.31 6.77 ± 0.44 7.29 ± 0.30 7.02 ± 0.22

C* Day 1 7.97 ± 1.11 5.93 ± 0.23 5.65 ± 0.39 7.05 ± 0.74

Day 4 5.63 ± 0.56 6.80 ± 0.32 8.10 ± 0.96 6.81 ± 0.36 0.26 0.88 0.00

Day 8 5.18 ± 0.37 7.18 ± 0.61 7.66 ± 0.40 7.36 ± 0.26

Days Diets

Day 1 Day 4 Day 8 0PBM-0HI 85PBM-15HI 80PBM-20HI 75PBM-25HI

Two way ANOVA

Texture

Springiness (mm) A A A a a a a

(Continued)
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TABLE 4 | Continued

Days Diets

Day 1 Day 4 Day 8 0PBM-0HI 85PBM-15HI 80PBM-20HI 75PBM-25HI

Cohesiveness (ratio) A B B a a a a

Gumminess (g) A B AB a a a a

Chewiness (g/mm) A B AB a a a a

Adhesiveness (g/s) A A A a a a a

Hardness (g) A B AB a a a a

Skin color

L* A A A a bc c ab

a* A AB B b a ab a

b* A B AB a a a a

C* B A AB a a a a

Flesh color

L* B A A b a a a

a* A A A

b* A A A b a a a

C* A A A a a a a

The effect of factors including diet (D) and storage time (T) and their interaction (D× T) was conducted by two-way ANOVA. L*, brightness; a*, red/green; b*, yellow/blue and c*, Chroma.

with 85PBM-15HI and 80PBM-20HI decreased significantly on
days 1 and 8. On Day 1, skin redness changed significantly in
barramundi when fed with PBM-HI-based diets. Regardless of
diet, skin redness over the 8 days storage time decreased. A
similar change in the yellowness and chroma of the skin was
found over the storage time, though diet did not change the
skin yellowness and chroma. Filet brightness in response to test
diets and storage time increased while flesh redness was not
affected by diet and storage time. Flesh yellowness was increased
by diet and storage time. Skin chroma was unaffected by diet
and storage time. The microstructure of the muscle tissues in
response to diets and over the storage time is presented in
Figure 2. On Days 1 (Figures 2A–D) and 4 (Figures 2E–H),
the muscle micro-structure was unchanged, supported by the
tight attachment and regular shape of myofibrils together with
a uniform distribution and distinct connective tissues. However,
on day 8, the muscle tissue of the barramundi fed with 0PBM-
0HI (Figure 2I) showed muscle degeneration and atrophy while
the barramundi fed with PBM-HI-based diets (Figures 2J–L)
demonstrated mild structural changes in muscles with 75PBM-
25HI showing the least changes. It is also worth noting that an
increase in intermyofibrillar spaces, reduced fiber-fiber adhesion,
ruptured fiber, and loss of cell borders were observed on
day 8.

The Linear Relationship Between QI Score
and Post-Days Storage
Diet did not influence any of the attributes including skin
brightness, appearance transparency, flesh texture, flesh blood,
flesh odor, and flesh gaping used for QI schemes while storage
time affected these attributes, as demonstrated by two-way
ANOVA (Table 5). The score of all attributes increased over the
storage time regardless of diet. No significant interaction was

found between diet and storage time. There were a strong linear
relationship between storage time and QI score in 0PBM-0HI
(R2 = 0.934) (Figure 3A), 85PBM-15HI (R2 = 0.91) (Figure 3B),
80PBM-20HI (R2 = 0.91) (Figure 3C), and 75PBM-15HI (R2 =
0.91) (Figure 3D).

pH and Lipid Oxidation
The results of the two-way ANOVA of the pH and TBARs
activity of barramundi filet in response to diets and storage time
are presented in Figure 4. The pH of the filet was influenced
by diet and showed an interaction between diet and storage
time (Figure 4A). The pH of the barramundi filet upsurged
at Day 1 and 4 when fed with the mixture of PBM and HI
larvae meal. However, storage time had no significant effect
on pH. The malondialdehyde (MDA) content, measured by
TBARS, was influenced by both factors with a significant
interaction (Figure 4B). On day 8, PBM-HI-based diets retarded
the production of MDA in the flesh of barramundi but there was
a gradual increase in lipid oxidation production over the storage
time irrespective of diets.

DISCUSSION

The production data and other physiological responses to the
different diet in terms of growth and body indices, muscle amino
acid composition, gut mucosal morphology and microbiota,
serum metabolites, antioxidant activity, and resistance to Vibrio
harveyi have been illustrated in our earlier article (43). Briefly,
growth performance in the test diets was comparable to the fish-
fed FM-based control diet, with no changes in body indices and
muscle amino acid composition. However, the distal intestine
mucosal barrier functions were improved by PBM-HI-based
diets, as further supported by the positive changes in the
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FIGURE 2 | Microstructure changes in barramundi muscle (H&E staining and 40 × magnification) when fed PBM-HI based diets during the chilled storage of days 1

(A–D), 4 (E–H), and 8 (I–L).

abundance of beneficial microbiota. The purpose of this study,
however, was to align filet quality traits using multidisciplinary
approaches to test parameters including proximate and fatty acid
profile, sensory attributes, texture correlating with the muscle
structure, and color and lipid oxidation of barramundi filet after
56 days of feeding on diets representing a complete replacement
of FM with animal-based protein.

Filet Proximate Composition
The crude protein levels were unaffected by the mixture of PBM
and full-fat HI larvae meal, suggesting that barramundi can
assimilate protein from PBM-HI as effectively as FM protein.
Likewise, barramundi fed with poultry protein concentrate alone
(6.7–20%) or supplemented with phosphorous (15), hybrid
grouper fed blends of PBM, shrimp meal, and spray-dried blood
meal (20–80%) (54) and juvenile black sea bass fed with PBM
(40–100) (55) produced a similar whole-body protein content
to fish fed FM protein. However, a higher lipid concentration
reported here indicated the flesh quality improvement of
barramundi flesh since lipid concentration has been reported
to be associated with the taste and appearance of cooked flesh
(56, 57). This result was mainly due to the inclusion of FHI larvae
which contain a higher concentration of lipid.

Regarding the muscle FA profile, an increase in total SFA in
the muscle of barramundi fed with 80PBM-20HI and 75PBM-
25HI was due to the substantial increase in lauric acid (C12:0)
and myristic acid (C14:0). The HI larvae meal is a rich source

of C12:0 and C14:0 which have been reported to enhance
the total SFA concentration in barramundi (23, 24) and other
fish species such as Siberian sturgeon, Acipenser baerii (58),
rainbow trout (59), and Eurasian perch, Perca fluviatilis (60).
Oleic acid plus elaidic acid (C18: 1cis + trans), causing a higher
concentration of MUFA in PBM-HI-based diets clearly improved
the MUFA concentration of barramundi in the present study.
This is similar to what has previously been reported in the MUFA
concentration of barramundi (22–24, 28), juvenile coho salmon,
Oncorhynchus kisutch (61), Atlantic Salmon, S. salar (62), and
juvenile gilthead seabream, Sparus aurata (57) fed with PBM.
PBM is a rich source of oleic acid, resulting in higher MUFA
concentration in the aforementioned studies, however, it contains
a lower concentration of n-3 LC-PUFA, EPA (20:5n-3), and DHA
(22:6n-3). Similarly, a lower concentration of n-3 LC-PUFA,
EPA, and DHA decreased the total PUFA in PBM-HI-based
diets, perhaps underpinning the lower concentration PUFA in
barramundi filet fed with PBM-HI based diets. Similarly, the high
inclusion of PBM resulted in a lower concentration of PUFA in
barramundi, totoaba juveniles, Totoaba macdonaldi, and juvenile
coho salmon, Oncorhynchus kisutch.

Sensory Attributes
Sensory quality is important to investigate the potentiality
of new alternative protein ingredients and is associated with
consumer acceptance. PBM-HI-based diets improved the raw
and cooked filet quality of barramundi, perhaps suggesting that
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TABLE 5 | Results of sensory parameters evaluated by quality index method (QIM): skin brightness, appearance transparency, flesh texture, flesh blood, flesh odor, and

flesh gaping in barramundi filet fed with PBM-HI-based diets during chilled storage.

Experimental diets Two-way ANOVA

QI parameters 0PBM-0HI 85PBM-15HI 80PBM-20HI 75PBM-25HI D T D × T

Skin brightness Day 1 - - - -

Day 4 - – - - 0.53 0.00 0.62

Day 8 1.33 ± 0.21 1.00 ± 0.00 1.17 ± 0.17 1.17 ± 0.17

Appearance transparency Day 1 - - - -

Day 4 0.50 ± 0.22 0.67 ± 0.21 0.83 ± 0.17 0.33 ± 0.21 0.44 0.00 0.32

Day 8 1.00 ± 0.00 0.83 ± 0.17 1.00 ± 0.00 1.00 ± 0.00

Flesh texture Day 1 0.17 ± 0.17 0.17 ± 0.17 - -

Day 4 0.83 ± 0.17 0.67 ± 0.21 0.50 ± 0.22 0.67 ± 0.21 0.48 0.00 0.92

Day 8 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Flesh blood Day 1 0.17 ± 0.17 - - -

Day 4 1.00 ± 0.00 1.17 ± 0.17 1.17 ± 0.17 1.00 ± 0.26 0.84 0.00 0.94

Day 8 1.83 ± 0.17 1.67 ± 0.21 1.83 ± 0.17 1.67 ± 0.33

Flesh odor Day 1 - - - -

Day 4 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.40 0.00 0.43

Day 8 1.83 ± 0.17 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00

Flesh gaping Day 1 1.50 ± 0.22 1.17 ± 0.31 1.33 ± 0.21 1.00 ± 0.26

Day 4 2.00 ± 0.00 1.83 ± 0.17 1.83 ± 0.17 1.50 ± 0.22 0.14 0.00 0.78

Day 8 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00

Day 1 Day 4 Day 8 0PBM-0HI 85PBM-15HI 80PBM-20HI 75PBM-25HI

Two-way ANOVA

Skin brightness B B A a a a a

Appearance transparency C B A a a a a

Flesh texture C B A a a a a

Flesh blood C B A a a a a

Flesh odor C B A a a a a

Flesh gaping B A A a a a a

The effect of factors including diet (D) and storage time (T) and their interaction (D × T) was conducted by two-way ANOVA.

the aligned increase in filet lipid might be aligned with the
improved sensory quality of the barramundi filet. Besides lipid
content, chitin present in HI larvae might have played a role
in improving sensory filet quality as chitosan coating has been
reported to improve the sensory scores in seafood (63–66),
however, the mode of actions of chitin in HI larvae meal after
feeding in improving the filet quality is not well-understood. The
present study provides the first insight on the improvement of
barramundi filet quality when fed with FM–free diets containing
a mixture of PBM and HI larvae meal. However, the total
substitution of FM with PBM deteriorated the sensory quality of
female tenches, Tinca MacDonald (26), and meat meal did not
affect the sensory quality of the barramundi filet (25). Hence,
further study is needed to identify the components in HI larvae
meals that may improve the filet quality of fish.

Drip Loss
Evaluation of drip loss is of importance in determining the post-
harvest fish quality due to the fact that it is directly related
to lower water holding capacity caused by fiber shrinkage, cell
damage, lower protein solubility, and protein denaturation (67),

leading to sensory loss including texture and flavor (68), loss of
water-soluble nutrients such as protein and amino acids (69), and
financial implications (68). The unchanged drip loss in the filet of
barramundi fed PBM-HI based diets similar to the unchanged
filet water holding capacity of rainbow trout fed HI larvae
prepupae meal (70) and blackspot sea bream, Pagellus bogaraveo
fed mealworm larvae meal (71). This finding is consistent with
the results of texture and lipid oxidation. Regardless of diet,
gradual increase in drip loss over the 8 days storage is consistent
with the findings of Siah and Ariff (72) who reported an increase
in drip loss in barramundi flesh samples over time during storage
at 2± 2◦C but was not consistent with the findings of Wilkinson
et al. (73) who reported no differences in drip loss in barramundi
flesh samples over 4 days storage at 2–4◦C. The result is within
expectation as degradation in structure and gradual increase in
lipid oxidation was found, indicating that the integrity of cell
membranes reduces with storage time, enhancing passage of
sarcoplasmic fluid which lead to an increase in drip loss (74, 75).
However, the changes in drip loss from 0.16 to 2.86% cannot be
considered as high and therefore not a major problem in chilled
barramundi, as reported by earlier studies (67, 76, 77).

Frontiers in Nutrition | www.frontiersin.org 11 January 2022 | Volume 8 | Article 788064

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Chaklader et al. Enhancement of Barramundi Filets Quality

FIGURE 3 | Linear correlation between quality index (QI) and storage time for test diets including 0PBM-0HI (A), 85PBM-15HI (B), 80PBM-20HI (C), and

75PBM-25HI (D).

Texture Profile and Microstructure of
Muscle
A good number of studies have been evaluated the efficacy of
FM replacement with PBM on 33 different fish species, though

none of them have been evaluated the flesh quality (20). However,
our recent study found no changes in the final flesh quality of
barramundi in terms of pH, texture, and color when fed PBM-
based diets, concurrently supplemented with tuna hydrolysate
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FIGURE 4 | The production of pH (A) (n = 6) and rancidity (B) [2-thiobarbituric acid reactive substances (TBARS)] (n = 9) of barramundi filet after 56 days of feeding

PBM and HI based diets during chilled storage. Box and whiskers plot indicates the range and square shape marker indicates the number of biological replicates used

for analysis. Square shape black marker denotes the mean with standard error. The effect of factors including diet (D) and storage time (T) and their interaction (D × T)

was conducted by two-way ANOVA at **P < 0.01 and ****P < 0.0001. Lower case letters on the top of the box and whisker plot denote significant differences within

the treatment in each day while Upper case letters on the top of the box plot indicate a significant difference between storage times in all test diets.

and HI larvae meal (24). Similarly, in this study texture including
springiness, cohesiveness, gumminess, chewiness, and hardness
of barramundi filets were not affected by the mixture of PBM
and full-fat HI larvae meal. Regardless of PBM inclusion,
HI larvae meal (33–100%) had no influence on the texture
(hardness, cohesiveness, resilience, and adhesiveness) of salmon
(78). This is similar to what has been reported by Iaconisi et al.
(71) who found no variation in filet hardness, cohesiveness,
gumminess, and adhesiveness of sea bream, Pagellus bogaraveo
fed mealworm, Tenebrio molitor. However, storage time had a
significant effect on the cohesiveness, gumminess, chewiness,
and hardness, which decreased significantly on day 8. A similar
result was found in shelf-life studies conducted in sea bream,
Sparus aurata, where identical parameters reduced over time
(79, 80). This phenomenon has shown to be highly related to
histological structure, especially the increase in intermyofibrillar
spaces, reduced fiber-fiber adhesion, ruptured fiber, and loss of
cell borders. Thus, it can be suggested that textural changes
were a consequence of structural degradation over time. These
results are further supported by elevated lipid oxidation over
the storage time in the present study, suggesting that protein
deterioration took place by the action of endogenous cathepsins
and exogenous protease due to microorganisms (81, 82).

Hence, whole microbiome profile evaluation using modern tool
rather than plate counting in barramundi filet in response to
PBM-HI based diet during shelf life study is needed to be
thoroughly investigated.

Filet Color
The Color of fish is an important factor influencing consumer
preference and it is largely governed by dietary and post-harvest
factors in fish since fish do not have de novo power to synthesis
color. There is a lack of studies concerning the effect of processed
animal protein on the color of fish. However, the complete
replacement of FM with PBM, concurrently supplemented with
HI larvae meal and tuna hydrolysates did not change skin and
filet color in barramundi (24). In this study, the skin brightness
(L∗) was affected by diet and this variation in the present
study could be due to light or lack of shading. Farmed fish are
more exposed to light than wild fish, leading to darker skin
chromophores. These suggest the farmed fish may be darker than
wild fish (83). This was proven by Howieson et al. (16) who
reported that barramundi reared in shaded tanks were less dark
than the barramundi reared in unshaded tanks. PBM-HI-based
diets improved the redness (a∗) in barramundi skin which could
be due to the presence of β-carotene in insects (84). A similar
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effect was observed in blackspot seabream, Pagellus bogaraveo
skin when fed mealworm, Tenebrio molitor (85).

Blue-gray discoloration due to melanosis is one of the
common problems in farmed barramundi filet, reducing the
appeal of the raw farmed barramundi filet on display to
consumers and consequently impacting sales in the retail sectors
(16). The same authors fed barramundi for 6 weeks by changing
the levels of the substrate (the amino acid tyrosine) or substrate
competitors (the amino acid tryptophan), or limiting enzyme
(tyrosinase) co-factors like copper in the experimental diets to
manipulate the melanin synthesis pathway, and however, none
of these diets improved the graying issue. Irrespective of storage
time, the improvement in barramundi filet brightness when fed
with PBM-HI in the present study suggested that HI larvae meal
might have properties to reduce melanosis. This is not similar to
the report of Bruni et al. (70) andMoutinho et al. (86) who found
no differences in the filet brightness of European seabass and
rainbow trout fed with HI prepupae meal. However, brightness
over the 8 days storage time increased irrespective of diet which
is similar to the brightness of barramundi flesh over the 14 days
of storage time (12). Also, the brightening of fish flesh over the
prolonged storage time has been frequently reported by many
studies (87–90). It could be due to the elevated lipid oxidation
during the storage time which has been reported to affect the flesh
color of fish. Flesh brightening may also be attributed to some
other factors including alterations in light scattering properties
in muscle during rigor (90, 91) and light-absorbing and reflecting
properties due to decreases in the translucency of fish muscle (92,
93). Riboflavin (vitamin B2), a yellow-colored pigment variably
found in most edible insects (71), may also influence the skin
and flesh color of fish. The improvement in yellowness (b∗) in the
flesh of barramundi fed with PBM-HI-based diets could be due to
the presence of 2.2 mg/100 g riboflavin in the HI larvae meal (94).
In contrast, a 6-week feeding trial on barramundi fed with PBM-
based diets supplemented with 5 and/or 10% of HI larvae and
tuna hydrolysate did not influence the skin and flesh yellowness
(24). A similar influence to a previous study on the yellowness of
European seabass,Dicentrarchus labrax juveniles filets was found
when fed pre-pupae larvae (86). These discrepancies in color
variation might also be attributed to different inclusion levels of
HI larvae meal, trial duration, and different fish species.

QI
Quality index (QI) is a scoring system to estimate the freshness
and quality of fishery products based on some attributes
including appearance, odor, and texture changing during the
storage time. The score for all attributes increased gradually
during the storage time but the score was below 3 (low freshness)
(52) for all attributes, indicating that barramundi filets were
acceptable until day 8. However, a significant linear relationship
between QI score and storage time was expected since a similar
trend has been reported in many fish species (95–100). After 8
days of storage, the highest demerit score for QI for all diets was
similar to the results of textural attributes, musclemicrostructure,
and lipid oxidation in the present study.

The final product quality deterioration of fish including
color degradation, muscle gaping, blood spotting, flesh texture

alterations, and drip loss is associated with the reduction of pH
(12, 73, 101). An elevated level of pH in the filet of barramundi
fed with PBM-HI based diet in the present study is similar to
what has been reported by Moutinho et al. (86) in which pH
increased in the filet of European seabass fed pre-pupae meal
after slaughtering and 3 days post-storage. However, pH over the
storage time in the present study changed from 6.34 to 6.74 was
within the normal pH range of barramundi muscle (73).

pH and Lipid Oxidation
Although pH elevation may be attributed to the formation
of nitrogenous compounds such as ammonia, dimethylamine,
trimethylamine, histamine, etc., produced by endogenous
enzymes and microbial enzymatic actions (102), the increase
in pH at certain levels has been reported to prevent the
production of volatile bases, leading bacteria to take energy from
the oxidative product rather than glycogen and other normal
substrates (12). Hence, an inverse association between pH and
lipid has been reported in barramundi filet after 5 months of
feeding of alpha-tocopherol acetate and following a 2-week post-
storage time (12). A similar association was found between pH
and TBARS analysis in the present study. TBARS is widely used
to quantify the degree of second stage lipid peroxidation of
fish that produce aldehydes and ketones from the degradation
of polyunsaturated fatty acids, associated with unpleasant odor
(103). PBM-HI-based diets inhibited the rancidity production
(MDA) compared with 0PBM-HI in the current study, the
reduction in MDA level could be related to elevated MCFAs level
as it reduced the amount of double bond which is prone to be
attacked by an oxidant (104). A similar trend was also supported
by Table 2 fatty acid profile, where a decrease in TBARS was only
found when the MCFAs were significantly higher. A previous
study has suggested that HI larvae may possess antioxidant
properties to halt lipid oxidation. For example, Moutinho et al.
(86) reported the efficacy of HI larvae meal to reduce the
production of TBARs in the filet of European seabass. The less
production of TBARS in the present study might be attributed
to the lower proportion of PUFA, in particular, EPA and DHA
which are sensitive to peroxidation in contact with oxygen (105).

Or, the presence of chitin in HI larvae might have retarded
oxidation since the deacetylated form of chitin is known as
chitosan which has been reported to delay lipid oxidation by
binding the free amino groups and hydroxyl radicals of the
polymer with themetal ions (Fe2+) and free radicals on food, thus
making stable macromolecular structures (66, 106, 107). Another
potential reason behind these improvements in rancidity is
associated with the interaction between positively charged
(NH+

3 ) amino groups of chitosan with the negative carboxyl
groups (COO−) situated on the outer part of the membrane
or the cell wall of bacteria and fungi (66), which change
the permeability of the membrane of by blocking the passage
of nutrients and oxygen important for cellular metabolism,
leading to cell death (108, 109). Although chitinolytic enzymes,
chitinoclastic bacteria, and the assimilation of chitosan have not
been reported previously in barramundi, endogenous production
of chitinase has been previously reported in marine carnivorous
teleost fish (110, 111). Regardless of the diets, the flesh TBARS
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increase over the storage time in the current study is consistent
with the reported TBARS production of barramundi flesh during
2-weeks chilled storage (12) and in filets of European seabass
when fed with different levels of HI pre-pupae larvae meal (86).
The range (0.70–6.69mg MDA/kg) of TBARs production in the
present study up to Day 8 was below the reported critical limits
(7–8mg MDA/kg) for fish (112, 113).

CONCLUSION

The complete replacement of FM with a mixture of PBM and
full-fat HI larvae meal increased the lipid content while reducing
the synthesis of essential fatty acid content. Interestingly, sensory
quality in both raw and cooked filet was improved by PBM-HI-
based diets. Drip loss in response to diet and storage time was
within the acceptable range. PBM-HI-based diets enhanced the
brightness, redness, and yellowness in skin and flesh, though diet
did not influence the texture profile. A significant correlation
between storage time and QI was observed for all diets. Test
diets influenced the pH and reduced the production of rancidity
over the 8 days storage time. Altogether, the mixture of PBM
and HI could increase consumer acceptability and resolve
the blue-grayish coloration problem in farmed barramundi.
However, further research is needed to better understand the
complementary effect of HI larvae functional molecules in
improving the filet quality. Also, enriching HI larvae with n-3
PUFA by changing feeding substrate could be recommended to
increase the synthesis of n-3 PUFA in the flesh of barramundi.
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